diff options
Diffstat (limited to 'common/context_mgmt.c')
-rw-r--r-- | common/context_mgmt.c | 378 |
1 files changed, 378 insertions, 0 deletions
diff --git a/common/context_mgmt.c b/common/context_mgmt.c new file mode 100644 index 00000000..68ec8945 --- /dev/null +++ b/common/context_mgmt.c @@ -0,0 +1,378 @@ +/* + * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * Neither the name of ARM nor the names of its contributors may be used + * to endorse or promote products derived from this software without specific + * prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +#include <arch.h> +#include <arch_helpers.h> +#include <assert.h> +#include <bl_common.h> +#include <context.h> +#include <context_mgmt.h> +#include <interrupt_mgmt.h> +#include <platform.h> +#include <platform_def.h> +#include <smcc_helpers.h> +#include <string.h> + + +/******************************************************************************* + * Context management library initialisation routine. This library is used by + * runtime services to share pointers to 'cpu_context' structures for the secure + * and non-secure states. Management of the structures and their associated + * memory is not done by the context management library e.g. the PSCI service + * manages the cpu context used for entry from and exit to the non-secure state. + * The Secure payload dispatcher service manages the context(s) corresponding to + * the secure state. It also uses this library to get access to the non-secure + * state cpu context pointers. + * Lastly, this library provides the api to make SP_EL3 point to the cpu context + * which will used for programming an entry into a lower EL. The same context + * will used to save state upon exception entry from that EL. + ******************************************************************************/ +void cm_init(void) +{ + /* + * The context management library has only global data to intialize, but + * that will be done when the BSS is zeroed out + */ +} + +/******************************************************************************* + * The following function initializes the cpu_context 'ctx' for + * first use, and sets the initial entrypoint state as specified by the + * entry_point_info structure. + * + * The security state to initialize is determined by the SECURE attribute + * of the entry_point_info. The function returns a pointer to the initialized + * context and sets this as the next context to return to. + * + * The EE and ST attributes are used to configure the endianess and secure + * timer availability for the new execution context. + * + * To prepare the register state for entry call cm_prepare_el3_exit() and + * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to + * cm_e1_sysreg_context_restore(). + ******************************************************************************/ +static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) +{ + unsigned int security_state; + uint32_t scr_el3; + el3_state_t *state; + gp_regs_t *gp_regs; + unsigned long sctlr_elx; + + assert(ctx); + + security_state = GET_SECURITY_STATE(ep->h.attr); + + /* Clear any residual register values from the context */ + memset(ctx, 0, sizeof(*ctx)); + + /* + * Base the context SCR on the current value, adjust for entry point + * specific requirements and set trap bits from the IMF + * TODO: provide the base/global SCR bits using another mechanism? + */ + scr_el3 = read_scr(); + scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | + SCR_ST_BIT | SCR_HCE_BIT); + + if (security_state != SECURE) + scr_el3 |= SCR_NS_BIT; + + if (GET_RW(ep->spsr) == MODE_RW_64) + scr_el3 |= SCR_RW_BIT; + + if (EP_GET_ST(ep->h.attr)) + scr_el3 |= SCR_ST_BIT; + +#if IMAGE_BL31 + /* + * IRQ/FIQ bits only need setting if interrupt routing + * model has been set up for BL31. + */ + scr_el3 |= get_scr_el3_from_routing_model(security_state); +#endif + + /* + * Set up SCTLR_ELx for the target exception level: + * EE bit is taken from the entrpoint attributes + * M, C and I bits must be zero (as required by PSCI specification) + * + * The target exception level is based on the spsr mode requested. + * If execution is requested to EL2 or hyp mode, HVC is enabled + * via SCR_EL3.HCE. + * + * Always compute the SCTLR_EL1 value and save in the cpu_context + * - the EL2 registers are set up by cm_preapre_ns_entry() as they + * are not part of the stored cpu_context + * + * TODO: In debug builds the spsr should be validated and checked + * against the CPU support, security state, endianess and pc + */ + sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; + if (GET_RW(ep->spsr) == MODE_RW_64) + sctlr_elx |= SCTLR_EL1_RES1; + else + sctlr_elx |= SCTLR_AARCH32_EL1_RES1; + write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); + + if ((GET_RW(ep->spsr) == MODE_RW_64 + && GET_EL(ep->spsr) == MODE_EL2) + || (GET_RW(ep->spsr) != MODE_RW_64 + && GET_M32(ep->spsr) == MODE32_hyp)) { + scr_el3 |= SCR_HCE_BIT; + } + + /* Populate EL3 state so that we've the right context before doing ERET */ + state = get_el3state_ctx(ctx); + write_ctx_reg(state, CTX_SCR_EL3, scr_el3); + write_ctx_reg(state, CTX_ELR_EL3, ep->pc); + write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); + + /* + * Store the X0-X7 value from the entrypoint into the context + * Use memcpy as we are in control of the layout of the structures + */ + gp_regs = get_gpregs_ctx(ctx); + memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); +} + +/******************************************************************************* + * The following function initializes the cpu_context for a CPU specified by + * its `cpu_idx` for first use, and sets the initial entrypoint state as + * specified by the entry_point_info structure. + ******************************************************************************/ +void cm_init_context_by_index(unsigned int cpu_idx, + const entry_point_info_t *ep) +{ + cpu_context_t *ctx; + ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); + cm_init_context_common(ctx, ep); +} + +/******************************************************************************* + * The following function initializes the cpu_context for the current CPU + * for first use, and sets the initial entrypoint state as specified by the + * entry_point_info structure. + ******************************************************************************/ +void cm_init_my_context(const entry_point_info_t *ep) +{ + cpu_context_t *ctx; + ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); + cm_init_context_common(ctx, ep); +} + +/******************************************************************************* + * Prepare the CPU system registers for first entry into secure or normal world + * + * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized + * If execution is requested to non-secure EL1 or svc mode, and the CPU supports + * EL2 then EL2 is disabled by configuring all necessary EL2 registers. + * For all entries, the EL1 registers are initialized from the cpu_context + ******************************************************************************/ +void cm_prepare_el3_exit(uint32_t security_state) +{ + uint32_t sctlr_elx, scr_el3, cptr_el2; + cpu_context_t *ctx = cm_get_context(security_state); + + assert(ctx); + + if (security_state == NON_SECURE) { + scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); + if (scr_el3 & SCR_HCE_BIT) { + /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ + sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), + CTX_SCTLR_EL1); + sctlr_elx &= ~SCTLR_EE_BIT; + sctlr_elx |= SCTLR_EL2_RES1; + write_sctlr_el2(sctlr_elx); + } else if (read_id_aa64pfr0_el1() & + (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) { + /* EL2 present but unused, need to disable safely */ + + /* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */ + write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0); + + /* SCTLR_EL2 : can be ignored when bypassing */ + + /* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */ + cptr_el2 = read_cptr_el2(); + cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT); + write_cptr_el2(cptr_el2); + + /* Enable EL1 access to timer */ + write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT); + + /* Reset CNTVOFF_EL2 */ + write_cntvoff_el2(0); + + /* Set VPIDR, VMPIDR to match MIDR, MPIDR */ + write_vpidr_el2(read_midr_el1()); + write_vmpidr_el2(read_mpidr_el1()); + + /* + * Reset VTTBR_EL2. + * Needed because cache maintenance operations depend on + * the VMID even when non-secure EL1&0 stage 2 address + * translation are disabled. + */ + write_vttbr_el2(0); + } + } + + el1_sysregs_context_restore(get_sysregs_ctx(ctx)); + + cm_set_next_context(ctx); +} + +/******************************************************************************* + * The next four functions are used by runtime services to save and restore + * EL1 context on the 'cpu_context' structure for the specified security + * state. + ******************************************************************************/ +void cm_el1_sysregs_context_save(uint32_t security_state) +{ + cpu_context_t *ctx; + + ctx = cm_get_context(security_state); + assert(ctx); + + el1_sysregs_context_save(get_sysregs_ctx(ctx)); +} + +void cm_el1_sysregs_context_restore(uint32_t security_state) +{ + cpu_context_t *ctx; + + ctx = cm_get_context(security_state); + assert(ctx); + + el1_sysregs_context_restore(get_sysregs_ctx(ctx)); +} + +/******************************************************************************* + * This function populates ELR_EL3 member of 'cpu_context' pertaining to the + * given security state with the given entrypoint + ******************************************************************************/ +void cm_set_elr_el3(uint32_t security_state, uint64_t entrypoint) +{ + cpu_context_t *ctx; + el3_state_t *state; + + ctx = cm_get_context(security_state); + assert(ctx); + + /* Populate EL3 state so that ERET jumps to the correct entry */ + state = get_el3state_ctx(ctx); + write_ctx_reg(state, CTX_ELR_EL3, entrypoint); +} + +/******************************************************************************* + * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' + * pertaining to the given security state + ******************************************************************************/ +void cm_set_elr_spsr_el3(uint32_t security_state, + uint64_t entrypoint, uint32_t spsr) +{ + cpu_context_t *ctx; + el3_state_t *state; + + ctx = cm_get_context(security_state); + assert(ctx); + + /* Populate EL3 state so that ERET jumps to the correct entry */ + state = get_el3state_ctx(ctx); + write_ctx_reg(state, CTX_ELR_EL3, entrypoint); + write_ctx_reg(state, CTX_SPSR_EL3, spsr); +} + +/******************************************************************************* + * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' + * pertaining to the given security state using the value and bit position + * specified in the parameters. It preserves all other bits. + ******************************************************************************/ +void cm_write_scr_el3_bit(uint32_t security_state, + uint32_t bit_pos, + uint32_t value) +{ + cpu_context_t *ctx; + el3_state_t *state; + uint32_t scr_el3; + + ctx = cm_get_context(security_state); + assert(ctx); + + /* Ensure that the bit position is a valid one */ + assert((1 << bit_pos) & SCR_VALID_BIT_MASK); + + /* Ensure that the 'value' is only a bit wide */ + assert(value <= 1); + + /* + * Get the SCR_EL3 value from the cpu context, clear the desired bit + * and set it to its new value. + */ + state = get_el3state_ctx(ctx); + scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); + scr_el3 &= ~(1 << bit_pos); + scr_el3 |= value << bit_pos; + write_ctx_reg(state, CTX_SCR_EL3, scr_el3); +} + +/******************************************************************************* + * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the + * given security state. + ******************************************************************************/ +uint32_t cm_get_scr_el3(uint32_t security_state) +{ + cpu_context_t *ctx; + el3_state_t *state; + + ctx = cm_get_context(security_state); + assert(ctx); + + /* Populate EL3 state so that ERET jumps to the correct entry */ + state = get_el3state_ctx(ctx); + return read_ctx_reg(state, CTX_SCR_EL3); +} + +/******************************************************************************* + * This function is used to program the context that's used for exception + * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for + * the required security state + ******************************************************************************/ +void cm_set_next_eret_context(uint32_t security_state) +{ + cpu_context_t *ctx; + + ctx = cm_get_context(security_state); + assert(ctx); + + cm_set_next_context(ctx); +} |