summaryrefslogtreecommitdiff
path: root/common/context_mgmt.c
diff options
context:
space:
mode:
Diffstat (limited to 'common/context_mgmt.c')
-rw-r--r--common/context_mgmt.c378
1 files changed, 378 insertions, 0 deletions
diff --git a/common/context_mgmt.c b/common/context_mgmt.c
new file mode 100644
index 00000000..68ec8945
--- /dev/null
+++ b/common/context_mgmt.c
@@ -0,0 +1,378 @@
+/*
+ * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * Redistributions of source code must retain the above copyright notice, this
+ * list of conditions and the following disclaimer.
+ *
+ * Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * Neither the name of ARM nor the names of its contributors may be used
+ * to endorse or promote products derived from this software without specific
+ * prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <arch.h>
+#include <arch_helpers.h>
+#include <assert.h>
+#include <bl_common.h>
+#include <context.h>
+#include <context_mgmt.h>
+#include <interrupt_mgmt.h>
+#include <platform.h>
+#include <platform_def.h>
+#include <smcc_helpers.h>
+#include <string.h>
+
+
+/*******************************************************************************
+ * Context management library initialisation routine. This library is used by
+ * runtime services to share pointers to 'cpu_context' structures for the secure
+ * and non-secure states. Management of the structures and their associated
+ * memory is not done by the context management library e.g. the PSCI service
+ * manages the cpu context used for entry from and exit to the non-secure state.
+ * The Secure payload dispatcher service manages the context(s) corresponding to
+ * the secure state. It also uses this library to get access to the non-secure
+ * state cpu context pointers.
+ * Lastly, this library provides the api to make SP_EL3 point to the cpu context
+ * which will used for programming an entry into a lower EL. The same context
+ * will used to save state upon exception entry from that EL.
+ ******************************************************************************/
+void cm_init(void)
+{
+ /*
+ * The context management library has only global data to intialize, but
+ * that will be done when the BSS is zeroed out
+ */
+}
+
+/*******************************************************************************
+ * The following function initializes the cpu_context 'ctx' for
+ * first use, and sets the initial entrypoint state as specified by the
+ * entry_point_info structure.
+ *
+ * The security state to initialize is determined by the SECURE attribute
+ * of the entry_point_info. The function returns a pointer to the initialized
+ * context and sets this as the next context to return to.
+ *
+ * The EE and ST attributes are used to configure the endianess and secure
+ * timer availability for the new execution context.
+ *
+ * To prepare the register state for entry call cm_prepare_el3_exit() and
+ * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
+ * cm_e1_sysreg_context_restore().
+ ******************************************************************************/
+static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
+{
+ unsigned int security_state;
+ uint32_t scr_el3;
+ el3_state_t *state;
+ gp_regs_t *gp_regs;
+ unsigned long sctlr_elx;
+
+ assert(ctx);
+
+ security_state = GET_SECURITY_STATE(ep->h.attr);
+
+ /* Clear any residual register values from the context */
+ memset(ctx, 0, sizeof(*ctx));
+
+ /*
+ * Base the context SCR on the current value, adjust for entry point
+ * specific requirements and set trap bits from the IMF
+ * TODO: provide the base/global SCR bits using another mechanism?
+ */
+ scr_el3 = read_scr();
+ scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
+ SCR_ST_BIT | SCR_HCE_BIT);
+
+ if (security_state != SECURE)
+ scr_el3 |= SCR_NS_BIT;
+
+ if (GET_RW(ep->spsr) == MODE_RW_64)
+ scr_el3 |= SCR_RW_BIT;
+
+ if (EP_GET_ST(ep->h.attr))
+ scr_el3 |= SCR_ST_BIT;
+
+#if IMAGE_BL31
+ /*
+ * IRQ/FIQ bits only need setting if interrupt routing
+ * model has been set up for BL31.
+ */
+ scr_el3 |= get_scr_el3_from_routing_model(security_state);
+#endif
+
+ /*
+ * Set up SCTLR_ELx for the target exception level:
+ * EE bit is taken from the entrpoint attributes
+ * M, C and I bits must be zero (as required by PSCI specification)
+ *
+ * The target exception level is based on the spsr mode requested.
+ * If execution is requested to EL2 or hyp mode, HVC is enabled
+ * via SCR_EL3.HCE.
+ *
+ * Always compute the SCTLR_EL1 value and save in the cpu_context
+ * - the EL2 registers are set up by cm_preapre_ns_entry() as they
+ * are not part of the stored cpu_context
+ *
+ * TODO: In debug builds the spsr should be validated and checked
+ * against the CPU support, security state, endianess and pc
+ */
+ sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
+ if (GET_RW(ep->spsr) == MODE_RW_64)
+ sctlr_elx |= SCTLR_EL1_RES1;
+ else
+ sctlr_elx |= SCTLR_AARCH32_EL1_RES1;
+ write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
+
+ if ((GET_RW(ep->spsr) == MODE_RW_64
+ && GET_EL(ep->spsr) == MODE_EL2)
+ || (GET_RW(ep->spsr) != MODE_RW_64
+ && GET_M32(ep->spsr) == MODE32_hyp)) {
+ scr_el3 |= SCR_HCE_BIT;
+ }
+
+ /* Populate EL3 state so that we've the right context before doing ERET */
+ state = get_el3state_ctx(ctx);
+ write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
+ write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
+ write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
+
+ /*
+ * Store the X0-X7 value from the entrypoint into the context
+ * Use memcpy as we are in control of the layout of the structures
+ */
+ gp_regs = get_gpregs_ctx(ctx);
+ memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
+}
+
+/*******************************************************************************
+ * The following function initializes the cpu_context for a CPU specified by
+ * its `cpu_idx` for first use, and sets the initial entrypoint state as
+ * specified by the entry_point_info structure.
+ ******************************************************************************/
+void cm_init_context_by_index(unsigned int cpu_idx,
+ const entry_point_info_t *ep)
+{
+ cpu_context_t *ctx;
+ ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
+ cm_init_context_common(ctx, ep);
+}
+
+/*******************************************************************************
+ * The following function initializes the cpu_context for the current CPU
+ * for first use, and sets the initial entrypoint state as specified by the
+ * entry_point_info structure.
+ ******************************************************************************/
+void cm_init_my_context(const entry_point_info_t *ep)
+{
+ cpu_context_t *ctx;
+ ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
+ cm_init_context_common(ctx, ep);
+}
+
+/*******************************************************************************
+ * Prepare the CPU system registers for first entry into secure or normal world
+ *
+ * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
+ * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
+ * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
+ * For all entries, the EL1 registers are initialized from the cpu_context
+ ******************************************************************************/
+void cm_prepare_el3_exit(uint32_t security_state)
+{
+ uint32_t sctlr_elx, scr_el3, cptr_el2;
+ cpu_context_t *ctx = cm_get_context(security_state);
+
+ assert(ctx);
+
+ if (security_state == NON_SECURE) {
+ scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
+ if (scr_el3 & SCR_HCE_BIT) {
+ /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
+ sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
+ CTX_SCTLR_EL1);
+ sctlr_elx &= ~SCTLR_EE_BIT;
+ sctlr_elx |= SCTLR_EL2_RES1;
+ write_sctlr_el2(sctlr_elx);
+ } else if (read_id_aa64pfr0_el1() &
+ (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) {
+ /* EL2 present but unused, need to disable safely */
+
+ /* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */
+ write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
+
+ /* SCTLR_EL2 : can be ignored when bypassing */
+
+ /* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */
+ cptr_el2 = read_cptr_el2();
+ cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT);
+ write_cptr_el2(cptr_el2);
+
+ /* Enable EL1 access to timer */
+ write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT);
+
+ /* Reset CNTVOFF_EL2 */
+ write_cntvoff_el2(0);
+
+ /* Set VPIDR, VMPIDR to match MIDR, MPIDR */
+ write_vpidr_el2(read_midr_el1());
+ write_vmpidr_el2(read_mpidr_el1());
+
+ /*
+ * Reset VTTBR_EL2.
+ * Needed because cache maintenance operations depend on
+ * the VMID even when non-secure EL1&0 stage 2 address
+ * translation are disabled.
+ */
+ write_vttbr_el2(0);
+ }
+ }
+
+ el1_sysregs_context_restore(get_sysregs_ctx(ctx));
+
+ cm_set_next_context(ctx);
+}
+
+/*******************************************************************************
+ * The next four functions are used by runtime services to save and restore
+ * EL1 context on the 'cpu_context' structure for the specified security
+ * state.
+ ******************************************************************************/
+void cm_el1_sysregs_context_save(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx);
+
+ el1_sysregs_context_save(get_sysregs_ctx(ctx));
+}
+
+void cm_el1_sysregs_context_restore(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx);
+
+ el1_sysregs_context_restore(get_sysregs_ctx(ctx));
+}
+
+/*******************************************************************************
+ * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
+ * given security state with the given entrypoint
+ ******************************************************************************/
+void cm_set_elr_el3(uint32_t security_state, uint64_t entrypoint)
+{
+ cpu_context_t *ctx;
+ el3_state_t *state;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx);
+
+ /* Populate EL3 state so that ERET jumps to the correct entry */
+ state = get_el3state_ctx(ctx);
+ write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
+}
+
+/*******************************************************************************
+ * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
+ * pertaining to the given security state
+ ******************************************************************************/
+void cm_set_elr_spsr_el3(uint32_t security_state,
+ uint64_t entrypoint, uint32_t spsr)
+{
+ cpu_context_t *ctx;
+ el3_state_t *state;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx);
+
+ /* Populate EL3 state so that ERET jumps to the correct entry */
+ state = get_el3state_ctx(ctx);
+ write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
+ write_ctx_reg(state, CTX_SPSR_EL3, spsr);
+}
+
+/*******************************************************************************
+ * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
+ * pertaining to the given security state using the value and bit position
+ * specified in the parameters. It preserves all other bits.
+ ******************************************************************************/
+void cm_write_scr_el3_bit(uint32_t security_state,
+ uint32_t bit_pos,
+ uint32_t value)
+{
+ cpu_context_t *ctx;
+ el3_state_t *state;
+ uint32_t scr_el3;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx);
+
+ /* Ensure that the bit position is a valid one */
+ assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
+
+ /* Ensure that the 'value' is only a bit wide */
+ assert(value <= 1);
+
+ /*
+ * Get the SCR_EL3 value from the cpu context, clear the desired bit
+ * and set it to its new value.
+ */
+ state = get_el3state_ctx(ctx);
+ scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
+ scr_el3 &= ~(1 << bit_pos);
+ scr_el3 |= value << bit_pos;
+ write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
+}
+
+/*******************************************************************************
+ * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
+ * given security state.
+ ******************************************************************************/
+uint32_t cm_get_scr_el3(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+ el3_state_t *state;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx);
+
+ /* Populate EL3 state so that ERET jumps to the correct entry */
+ state = get_el3state_ctx(ctx);
+ return read_ctx_reg(state, CTX_SCR_EL3);
+}
+
+/*******************************************************************************
+ * This function is used to program the context that's used for exception
+ * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
+ * the required security state
+ ******************************************************************************/
+void cm_set_next_eret_context(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx);
+
+ cm_set_next_context(ctx);
+}