Age | Commit message (Collapse) | Author |
|
They are all part of the init sequence.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221121140048.534395323@linutronix.de
|
|
W=1 build complains:
drivers/irqchip/irq-gic-v2m.c:570:12: warning: no previous prototype for ‘gicv2m_init’ [-Wmissing-prototypes]
570 | int __init gicv2m_init(struct fwnode_handle *parent_handle,
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221121140048.470680255@linutronix.de
|
|
Assigning a void pointer which points to a struct to two different data
types only works by chance if the second type is the first member of the
struct.
Replace this works by chance code by using the primary struct pointer.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221121140048.344525618@linutronix.de
|
|
There is warning report about of_node refcount leak
while probing mdio device:
OF: ERROR: memory leak, expected refcount 1 instead of 2,
of_node_get()/of_node_put() unbalanced - destroy cset entry:
attach overlay node /spi/soc@0/mdio@710700c0/ethernet@4
In of_mdiobus_register_device(), we increase fwnode refcount
by fwnode_handle_get() before associating the of_node with
mdio device, but it has never been decreased in normal path.
Since that, in mdio_device_release(), it needs to call
fwnode_handle_put() in addition instead of calling kfree()
directly.
After above, just calling mdio_device_free() in the error handle
path of of_mdiobus_register_device() is enough to keep the
refcount balanced.
Fixes: a9049e0c513c ("mdio: Add support for mdio drivers.")
Signed-off-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Yang Yingliang <yangyingliang@huawei.com>
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Link: https://lore.kernel.org/r/20221203073441.3885317-1-zengheng4@huawei.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
|
|
The skb is delivered to napi_gro_receive() which may free it, after
calling this, dereferencing skb may trigger use-after-free.
Fixes: 542ae60af24f ("net: hisilicon: Add Fast Ethernet MAC driver")
Signed-off-by: Liu Jian <liujian56@huawei.com>
Link: https://lore.kernel.org/r/20221203094240.1240211-1-liujian56@huawei.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
|
|
Follow the advice of the Documentation/filesystems/sysfs.rst and show()
should only use sysfs_emit() or sysfs_emit_at() when formatting the
value to be returned to user space.
Signed-off-by: ye xingchen <ye.xingchen@zte.com.cn>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The nicvf_probe() won't destroy workqueue when register_netdev()
failed. Add destroy_workqueue err handle case to fix this issue.
Fixes: 2ecbe4f4a027 ("net: thunderx: replace global nicvf_rx_mode_wq work queue for all VFs to private for each of them.")
Signed-off-by: Yongqiang Liu <liuyongqiang13@huawei.com>
Reviewed-by: Pavan Chebbi <pavan.chebbi@broadcom.com>
Link: https://lore.kernel.org/r/20221203094125.602812-1-liuyongqiang13@huawei.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
|
|
The skb is delivered to napi_gro_receive() which may free it, after calling this,
dereferencing skb may trigger use-after-free.
Fixes: 1c59eb678cbd ("ravb: Fillup ravb_rx_gbeth() stub")
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Link: https://lore.kernel.org/r/20221203092941.10880-1-yuehaibing@huawei.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
|
|
The mchp_sparx5_probe() won't destroy workqueue created by
create_singlethread_workqueue() in sparx5_start() when later
inits failed. Add destroy_workqueue in the cleanup_ports case,
also add it in mchp_sparx5_remove()
Fixes: b37a1bae742f ("net: sparx5: add mactable support")
Signed-off-by: Qiheng Lin <linqiheng@huawei.com>
Link: https://lore.kernel.org/r/20221203070259.19560-1-linqiheng@huawei.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
|
|
Although the type I ERSPAN is based on the barebones IP + GRE
encapsulation and no extra ERSPAN header. Report erspan version on GRE
interface looks unreasonable. Fix this by separating the erspan and gre
fill info.
IPv6 GRE does not have this info as IPv6 only supports erspan version
1 and 2.
Reported-by: Jianlin Shi <jishi@redhat.com>
Fixes: f989d546a2d5 ("erspan: Add type I version 0 support.")
Signed-off-by: Hangbin Liu <liuhangbin@gmail.com>
Acked-by: William Tu <u9012063@gmail.com>
Link: https://lore.kernel.org/r/20221203032858.3130339-1-liuhangbin@gmail.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
|
|
When failed to alloc ipc_mux->ul_adb.pp_qlt in ipc_mux_init(), ipc_mux
is not released.
Fixes: 1f52d7b62285 ("net: wwan: iosm: Enable M.2 7360 WWAN card support")
Signed-off-by: Zhengchao Shao <shaozhengchao@huawei.com>
Reviewed-by: M Chetan Kumar <m.chetan.kumar@intel.com>
Link: https://lore.kernel.org/r/20221203020903.383235-1-shaozhengchao@huawei.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
|
|
After calling napi_complete_done(), the NAPIF_STATE_SCHED bit may be
cleared, and another CPU can start napi thread and access per-CQ variable,
cq->work_done. If the other thread (for example, from busy_poll) sets
it to a value >= budget, this thread will continue to run when it should
stop, and cause memory corruption and panic.
To fix this issue, save the per-CQ work_done variable in a local variable
before napi_complete_done(), so it won't be corrupted by a possible
concurrent thread after napi_complete_done().
Also, add a flag bit to advertise to the NIC firmware: the NAPI work_done
variable race is fixed, so the driver is able to reliably support features
like busy_poll.
Cc: stable@vger.kernel.org
Fixes: e1b5683ff62e ("net: mana: Move NAPI from EQ to CQ")
Signed-off-by: Haiyang Zhang <haiyangz@microsoft.com>
Link: https://lore.kernel.org/r/1670010190-28595-1-git-send-email-haiyangz@microsoft.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
|
|
In dt-binding snps,dwmac.yaml, some properties under "snps,axi-config"
node are named without "axi_" prefix, but the driver expects the
prefix. Since the dt-binding has been there for a long time, we'd
better make driver match the binding for compatibility.
Fixes: afea03656add ("stmmac: rework DMA bus setting and introduce new platform AXI structure")
Signed-off-by: Jisheng Zhang <jszhang@kernel.org>
Link: https://lore.kernel.org/r/20221202161739.2203-1-jszhang@kernel.org
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
|
|
The node returned by of_get_parent() with refcount incremented,
of_node_put() needs be called when finish using it. So add it in the
end of of_pinctrl_get().
Fixes: 936ee2675eee ("gpio/rockchip: add driver for rockchip gpio")
Signed-off-by: Wang Yufen <wangyufen@huawei.com>
Signed-off-by: Bartosz Golaszewski <bartosz.golaszewski@linaro.org>
|
|
A device might have a core quirk for NVME_QUIRK_IGNORE_DEV_SUBNQN
(such as Samsung X5) but it would still give a:
"missing or invalid SUBNQN field"
warning as core quirks are filled after calling nvme_init_subnqn. Fill
ctrl->quirks from struct core_quirks before calling nvme_init_subsystem
to fix this.
Tested on a Samsung X5.
Fixes: ab9e00cc72fa ("nvme: track subsystems")
Signed-off-by: Pankaj Raghav <p.raghav@samsung.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
While running under CONFIG_FORTIFY_SOURCE=y, syzkaller reported:
memcpy: detected field-spanning write (size 129) of single field "target->sensf_res" at net/nfc/nci/ntf.c:260 (size 18)
This appears to be a legitimate lack of bounds checking in
nci_add_new_protocol(). Add the missing checks.
Reported-by: syzbot+210e196cef4711b65139@syzkaller.appspotmail.com
Link: https://lore.kernel.org/lkml/0000000000001c590f05ee7b3ff4@google.com
Fixes: 019c4fbaa790 ("NFC: Add NCI multiple targets support")
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Link: https://lore.kernel.org/r/20221202214410.never.693-kees@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
PCI/IMS works like PCI/MSI-X in the remapping. Just add the feature flag,
but only when on real hardware.
Virtualized IOMMUs need additional support.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232327.140571546@linutronix.de
|
|
PCI/IMS works like PCI/MSI-X in the remapping. Just add the feature flag,
but only when on real hardware.
Virtualized IOMMUs need additional support, e.g. for PASID.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232327.081482253@linutronix.de
|
|
Enable IMS in the domain init and allocation mapping code, but do not
enable it on the vector domain as discussed in various threads on LKML.
The interrupt remap domains can expand this setting like they do with
PCI multi MSI.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232327.022658817@linutronix.de
|
|
Single vector allocation which allocates the next free index in the IMS
space. The free function releases.
All allocated vectors are released also via pci_free_vectors() which is
also releasing MSI/MSI-X vectors.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.961711347@linutronix.de
|
|
IMS (Interrupt Message Store) is a new specification which allows
implementation specific storage of MSI messages contrary to the
strict standard specified MSI and MSI-X message stores.
This requires new device specific interrupt domains to handle the
implementation defined storage which can be an array in device memory or
host/guest memory which is shared with hardware queues.
Add a function to create IMS domains for PCI devices. IMS domains are using
the new per device domain mechanism and are configured by the device driver
via a template. IMS domains are created as secondary device domains so they
work side on side with MSI[-X] on the same device.
The IMS domains have a few constraints:
- The index space is managed by the core code.
Device memory based IMS provides a storage array with a fixed size
which obviously requires an index. But there is no association between
index and functionality so the core can randomly allocate an index in
the array.
System memory based IMS does not have the concept of an index as the
storage is somewhere in memory. In that case the index is purely
software based to keep track of the allocations.
- There is no requirement for consecutive index ranges
This is currently a limitation of the MSI core and can be implemented
if there is a justified use case by changing the internal storage from
xarray to maple_tree. For now it's single vector allocation.
- The interrupt chip must provide the following callbacks:
- irq_mask()
- irq_unmask()
- irq_write_msi_msg()
- The interrupt chip must provide the following optional callbacks
when the irq_mask(), irq_unmask() and irq_write_msi_msg() callbacks
cannot operate directly on hardware, e.g. in the case that the
interrupt message store is in queue memory:
- irq_bus_lock()
- irq_bus_unlock()
These callbacks are invoked from preemptible task context and are
allowed to sleep. In this case the mandatory callbacks above just
store the information. The irq_bus_unlock() callback is supposed to
make the change effective before returning.
- Interrupt affinity setting is handled by the underlying parent
interrupt domain and communicated to the IMS domain via
irq_write_msi_msg(). IMS domains cannot have a irq_set_affinity()
callback. That's a reasonable restriction similar to the PCI/MSI
device domain implementations.
The domain is automatically destroyed when the PCI device is removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.904316841@linutronix.de
|
|
Provide the necessary constants for PCI/IMS support:
- A new bus token for MSI irqdomain identification
- A MSI feature flag for the MSI irqdomains to signal support
- A secondary domain id
The latter expands the device internal domain pointer storage array from 1
to 2 entries. That extra pointer is mostly unused today, but the
alternative solutions would not be free either and would introduce more
complexity all over the place. Trade the 8bytes for simplicity.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.846169830@linutronix.de
|
|
x86 MSI irqdomains can handle MSI-X allocation post MSI-X enable just out
of the box - on the vector domain and on the remapping domains,
Add the feature flag to the supported feature list
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.787373104@linutronix.de
|
|
MSI-X vectors can be allocated after the initial MSI-X enablement, but this
needs explicit support of the underlying interrupt domains.
Provide a function to query the ability and functions to allocate/free
individual vectors post-enable.
The allocation can either request a specific index in the MSI-X table or
with the index argument MSI_ANY_INDEX it allocates the next free vector.
The return value is a struct msi_map which on success contains both index
and the Linux interrupt number. In case of failure index is negative and
the Linux interrupt number is 0.
The allocation function is for a single MSI-X index at a time as that's
sufficient for the most urgent use case VFIO to get rid of the 'disable
MSI-X, reallocate, enable-MSI-X' cycle which is prone to lost interrupts
and redirections to the legacy and obviously unhandled INTx.
As single index allocation is also sufficient for the use cases Jason
Gunthorpe pointed out: Allocation of a MSI-X or IMS vector for a network
queue. See Link below.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/all/20211126232735.547996838@linutronix.de
Link: https://lore.kernel.org/r/20221124232326.731233614@linutronix.de
|
|
The setup of MSI descriptors for PCI/MSI-X interrupts depends partially on
the MSI index for which the descriptor is initialized.
Dynamic MSI-X vector allocation post MSI-X enablement allows to allocate
vectors at a given index or at any free index in the available table
range. The latter requires that the descriptor is initialized after the
MSI core has chosen an index.
Implement the prepare_desc() op in the PCI/MSI-X specific msi_domain_ops
which is invoked before the core interrupt descriptor and the associated
Linux interrupt number is allocated.
That callback is also provided for the upcoming PCI/IMS implementations so
the implementation specific interrupt domain can do their domain specific
initialization of the MSI descriptors.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.673658806@linutronix.de
|
|
The upcoming mechanism to allocate MSI-X vectors after enabling MSI-X needs
to share some of the MSI-X descriptor setup.
The regular descriptor setup on enable has the following code flow:
1) Allocate descriptor
2) Setup descriptor with PCI specific data
3) Insert descriptor
4) Allocate interrupts which in turn scans the inserted
descriptors
This cannot be easily changed because the PCI/MSI code needs to handle the
legacy architecture specific allocation model and the irq domain model
where quite some domains have the assumption that the above flow is how it
works.
Ideally the code flow should look like this:
1) Invoke allocation at the MSI core
2) MSI core allocates descriptor
3) MSI core calls back into the irq domain which fills in
the domain specific parts
This could be done for underlying parent MSI domains which support
post-enable allocation/free but that would create significantly different
code pathes for MSI/MSI-X enable.
Though for dynamic allocation which wants to share the allocation code with
the upcoming PCI/IMS support it's the right thing to do.
Split the MSI-X descriptor setup into the preallocation part which just sets
the index and fills in the horrible hack of virtual IRQs and the real PCI
specific MSI-X setup part which solely depends on the index in the
descriptor. This allows to provide a common dynamic allocation interface at
the MSI core level for both PCI/MSI-X and PCI/IMS.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.616292598@linutronix.de
|
|
Provide a new MSI feature flag in preparation for dynamic MSIX allocation
after the initial MSI-X enable has been done.
This needs to be an explicit MSI interrupt domain feature because quite
some implementations (both interrupt domains and legacy allocation mode)
have clear expectations that the allocation code is only invoked when MSI-X
is about to be enabled. They either talk to hypervisors or do some other
work and are not prepared to be invoked on an already MSI-X enabled device.
This is also explicit MSI-X only because rewriting the size of the MSI
entries is only possible when disabling MSI which in turn might cause lost
interrupts on the device.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.558843119@linutronix.de
|
|
For supporting post MSI-X enable allocations and for the upcoming PCI/IMS
support a separate interface is required which allows not only the
allocation of a specific index, but also the allocation of any, i.e. the
next free index. The latter is especially required for IMS because IMS
completely does away with index to functionality mappings which are
often found in MSI/MSI-X implementation.
But even with MSI-X there are devices where only the first few indices have
a fixed functionality and the rest is freely assignable by software,
e.g. to queues.
msi_domain_alloc_irq_at() is also different from the range based interfaces
as it always enforces that the MSI descriptor is allocated by the core code
and not preallocated by the caller like the PCI/MSI[-X] enable code path
does.
msi_domain_alloc_irq_at() can be invoked with the index argument set to
MSI_ANY_INDEX which makes the core code pick the next free index. The irq
domain can provide a prepare_desc() operation callback in it's
msi_domain_ops to do domain specific post allocation initialization before
the actual Linux interrupt and the associated interrupt descriptor and
hierarchy alloccations are conducted.
The function also takes an optional @icookie argument which is of type
union msi_instance_cookie. This cookie is not used by the core code and is
stored in the allocated msi_desc::data::icookie. The meaning of the cookie
is completely implementation defined. In case of IMS this might be a PASID
or a pointer to a device queue, but for the MSI core it's opaque and not
used in any way.
The function returns a struct msi_map which on success contains the
allocated index number and the Linux interrupt number so the caller can
spare the index to Linux interrupt number lookup.
On failure map::index contains the error code and map::virq is 0.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.501359457@linutronix.de
|
|
The existing MSI domain ops msi_prepare() and set_desc() turned out to be
unsuitable for implementing IMS support.
msi_prepare() does not operate on the MSI descriptors. set_desc() lacks
an irq_domain pointer and has a completely different purpose.
Introduce a prepare_desc() op which allows IMS implementations to amend an
MSI descriptor which was allocated by the core code, e.g. by adjusting the
iomem base or adding some data based on the allocated index. This is way
better than requiring that all IMS domain implementations preallocate the
MSI descriptor and then allocate the interrupt.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.444560717@linutronix.de
|
|
The upcoming support for PCI/IMS requires to store some information related
to the message handling in the MSI descriptor, e.g. PASID or a pointer to a
queue.
Provide a generic storage struct which maps over the existing PCI specific
storage which means the size of struct msi_desc is not getting bigger.
This storage struct has two elements:
1) msi_domain_cookie
2) msi_instance_cookie
The domain cookie is going to be used to store domain specific information,
e.g. iobase pointer, data pointer.
The instance cookie is going to be handed in when allocating an interrupt
on an IMS domain so the irq chip callbacks of the IMS domain have the
necessary per vector information available. It also comes in handy when
cleaning up the platform MSI code for wire to MSI bridges which need to
hand down the type information to the underlying interrupt domain.
For the core code the cookies are opaque and meaningless. It just stores
the instance cookie during an allocation through the upcoming interfaces
for IMS and wire to MSI brigdes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.385036043@linutronix.de
|
|
A simple struct to hold a MSI index / Linux interrupt number pair. It will
be returned from the dynamic vector allocation function and handed back to
the corresponding free() function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.326410494@linutronix.de
|
|
and related code which is not longer required now that the interrupt remap
code has been converted to MSI parent domains.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.267353814@linutronix.de
|
|
Remove the global PCI/MSI irqdomain implementation and provide the required
MSI parent ops so the PCI/MSI code can detect the new parent and setup per
device domains.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.209212272@linutronix.de
|
|
Remove the global PCI/MSI irqdomain implementation and provide the required
MSI parent ops so the PCI/MSI code can detect the new parent and setup per
device domains.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.151226317@linutronix.de
|
|
The check for special MSI domains like VMD which prevents the interrupt
remapping code to overwrite device::msi::domain is not longer required and
has been replaced by an x86 specific version which is aware of MSI parent
domains.
Remove it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.093093200@linutronix.de
|
|
Enable MSI parent domain support in the x86 vector domain and fixup the
checks in the iommu implementations to check whether device::msi::domain is
the default MSI parent domain. That keeps the existing logic to protect
e.g. devices behind VMD working.
The interrupt remap PCI/MSI code still works because the underlying vector
domain still provides the same functionality.
None of the other x86 PCI/MSI, e.g. XEN and HyperV, implementations are
affected either. They still work the same way both at the low level and the
PCI/MSI implementations they provide.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232326.034672592@linutronix.de
|
|
Provide a template and the necessary callbacks to create PCI/MSI and
PCI/MSI-X domains.
The domains are created when MSI or MSI-X is enabled. The domain's lifetime
is either the device lifetime or in case that e.g. MSI-X was tried first
and failed, then the MSI-X domain is removed and a MSI domain is created as
both are mutually exclusive and reside in the default domain ID slot of the
per device domain pointer array.
Also expand pci_msi_domain_supports() to handle feature checks correctly
even in the case that the per device domain was not yet created by checking
the features supported by the MSI parent.
Add the necessary setup calls into the MSI and MSI-X enable code path.
These setup calls are backwards compatible. They return success when there
is no parent domain found, which means the existing global domains or the
legacy allocation path keep just working.
Co-developed-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232325.975388241@linutronix.de
|
|
Provide new bus tokens for the upcoming per device PCI/MSI and PCI/MSIX
interrupt domains.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232325.917219885@linutronix.de
|
|
The upcoming per device MSI domains will create different domains for MSI
and MSI-X. Split the write message function into MSI and MSI-X helpers so
they can be used by those new domain functions seperately.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232325.857982142@linutronix.de
|
|
Per device domains provide the real domain size to the core code. This
allows range checking on insertion of MSI descriptors and also paves the
way for dynamic index allocations which are required e.g. for IMS. This
avoids external mechanisms like bitmaps on the device side and just
utilizes the core internal MSI descriptor storxe for it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232325.798556374@linutronix.de
|
|
proc_skip_spaces() seems to think it is working on C strings, and ends
up being just a wrapper around skip_spaces() with a really odd calling
convention.
Instead of basing it on skip_spaces(), it should have looked more like
proc_skip_char(), which really is the exact same function (except it
skips a particular character, rather than whitespace). So use that as
inspiration, odd coding and all.
Now the calling convention actually makes sense and works for the
intended purpose.
Reported-and-tested-by: Kyle Zeng <zengyhkyle@gmail.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
proc_get_long() is passed a size_t, but then assigns it to an 'int'
variable for the length. Let's not do that, even if our IO paths are
limited to MAX_RW_COUNT (exactly because of these kinds of type errors).
So do the proper test in the rigth type.
Reported-by: Kyle Zeng <zengyhkyle@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When SEV is enabled gmr's and mob's are explicitly disabled because
the encrypted system memory can not be used by the hypervisor.
The driver was disabling GMR's but the presentation code, which depends
on GMR's, wasn't honoring it which lead to black screen on hosts
with SEV enabled.
Make sure screen objects presentation is not used when guest memory
regions have been disabled to fix presentation on SEV enabled hosts.
Fixes: 3b0d6458c705 ("drm/vmwgfx: Refuse DMA operation when SEV encryption is active")
Cc: <stable@vger.kernel.org> # v5.7+
Signed-off-by: Zack Rusin <zackr@vmware.com>
Reported-by: Nicholas Hunt <nhunt@vmware.com>
Reviewed-by: Martin Krastev <krastevm@vmware.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20221201175341.491884-1-zack@kde.org
|
|
When __do_semtimedop() goes to sleep because it has to wait for a
semaphore value becoming zero or becoming bigger than some threshold, it
links the on-stack sem_queue to the sem_array, then goes to sleep
without holding a reference on the sem_array.
When __do_semtimedop() comes back out of sleep, one of two things must
happen:
a) We prove that the on-stack sem_queue has been disconnected from the
(possibly freed) sem_array, making it safe to return from the stack
frame that the sem_queue exists in.
b) We stabilize our reference to the sem_array, lock the sem_array, and
detach the sem_queue from the sem_array ourselves.
sem_array has RCU lifetime, so for case (b), the reference can be
stabilized inside an RCU read-side critical section by locklessly
checking whether the sem_queue is still connected to the sem_array.
However, the current code does the lockless check on sem_queue before
starting an RCU read-side critical section, so the result of the
lockless check immediately becomes useless.
Fix it by doing rcu_read_lock() before the lockless check. Now RCU
ensures that if we observe the object being on our queue, the object
can't be freed until rcu_read_unlock().
This bug is only hittable on kernel builds with full preemption support
(either CONFIG_PREEMPT or PREEMPT_DYNAMIC with preempt=full).
Fixes: 370b262c896e ("ipc/sem: avoid idr tree lookup for interrupted semop")
Cc: stable@vger.kernel.org
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Provide an interface to match a per device domain bus token. This allows to
query which type of domain is installed for a particular domain id. Will be
used for PCI to avoid frequent create/remove cycles for the MSI resp. MSI-X
domains.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232325.738047902@linutronix.de
|
|
Now that all prerequsites are in place, provide the actual interfaces for
creating and removing per device interrupt domains.
MSI device interrupt domains are created from the provided
msi_domain_template which is duplicated so that it can be modified for the
particular device.
The name of the domain and the name of the interrupt chip are composed by
"$(PREFIX)$(CHIPNAME)-$(DEVNAME)"
$PREFIX: The optional prefix provided by the underlying MSI parent domain
via msi_parent_ops::prefix.
$CHIPNAME: The name of the irq_chip in the template
$DEVNAME: The name of the device
The domain is further initialized through a MSI parent domain callback which
fills in the required functionality for the parent domain or domains further
down the hierarchy. This initialization can fail, e.g. when the requested
feature or MSI domain type cannot be supported.
The domain pointer is stored in the pointer array inside of msi_device_data
which is attached to the domain.
The domain can be removed via the API or left for disposal via devres when
the device is torn down. The API removal is useful e.g. for PCI to have
seperate domains for MSI and MSI-X, which are mutually exclusive and always
occupy the default domain id slot.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232325.678838546@linutronix.de
|
|
Per device domains require the device pointer of the device which
instantiated the domain for some purposes. Add the pointer to struct
irq_domain. It will be used in the next step which provides the
infrastructure to create per device MSI domains.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232325.618807601@linutronix.de
|
|
Split the functionality of msi_create_irq_domain() so it can
be reused for creating per device irq domains.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232325.559086358@linutronix.de
|
|
To allow proper range checking especially for dynamic allocations add a
size field to struct msi_domain_info. If the field is 0 then the size is
unknown or unlimited (up to MSI_MAX_INDEX) to provide backwards
compability.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232325.501144862@linutronix.de
|
|
Provide struct msi_domain_template which contains a bundle of struct
irq_chip, struct msi_domain_ops and struct msi_domain_info and a name
field.
This template is used by MSI device domain implementations to provide the
domain specific functionality, feature bits etc.
When a MSI domain is created the template is duplicated in the core code
so that it can be modified per instance. That means templates can be
marked const at the MSI device domain code.
The template is a bundle to avoid several allocations and duplications
of the involved structures.
The name field is used to construct the final domain and chip name via:
$PREFIX$NAME-$DEVNAME
where prefix is the optional prefix of the MSI parent domain, $NAME is the
provided name in template::chip and the device name so that the domain
is properly identified. On x86 this results for PCI/MSI in:
PCI-MSI-0000:3d:00.1 or IR-PCI-MSIX-0000:3d:00.1
depending on the domain type and the availability of remapping.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221124232325.442499757@linutronix.de
|