Age | Commit message (Collapse) | Author |
|
Previous fix aded bpf_clamp_umax() helper use to re-validate boundaries.
While that works correctly, it introduces more branches, which blows up
past 1 million instructions in no-alu32 variant of strobemeta selftests.
Switching len variable from u32 to u64 also fixes the issue and reduces
the number of validated instructions, so use that instead. Fix this
patch and bpf_clamp_umax() removed, both alu32 and no-alu32 selftests
pass.
Fixes: 0133c20480b1 ("selftests/bpf: Fix strobemeta selftest regression")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211101230118.1273019-1-andrii@kernel.org
|
|
Without it, kernel crashes in map_delete_elem(), as reported
by syzbot.
BUG: kernel NULL pointer dereference, address: 0000000000000000
PGD 72c97067 P4D 72c97067 PUD 1e20c067 PMD 0
Oops: 0010 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 6518 Comm: syz-executor196 Not tainted 5.15.0-rc3-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:0x0
Code: Unable to access opcode bytes at RIP 0xffffffffffffffd6.
RSP: 0018:ffffc90002bafcb8 EFLAGS: 00010246
RAX: dffffc0000000000 RBX: 1ffff92000575f9f RCX: 0000000000000000
RDX: 1ffffffff1327aba RSI: 0000000000000000 RDI: ffff888025a30c00
RBP: ffffc90002baff08 R08: 0000000000000000 R09: 0000000000000001
R10: ffffffff818525d8 R11: 0000000000000000 R12: ffffffff8993d560
R13: ffff888025a30c00 R14: ffff888024bc0000 R15: 0000000000000000
FS: 0000555557491300(0000) GS:ffff8880b9c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffffffffffffd6 CR3: 0000000070189000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
map_delete_elem kernel/bpf/syscall.c:1220 [inline]
__sys_bpf+0x34f1/0x5ee0 kernel/bpf/syscall.c:4606
__do_sys_bpf kernel/bpf/syscall.c:4719 [inline]
__se_sys_bpf kernel/bpf/syscall.c:4717 [inline]
__x64_sys_bpf+0x75/0xb0 kernel/bpf/syscall.c:4717
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
Fixes: 9330986c0300 ("bpf: Add bloom filter map implementation")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211031171353.4092388-1-eric.dumazet@gmail.com
|
|
Joanne Koong says:
====================
There are 3 patches in this patchset:
1/3 - Bloom filter naming fixups (kernel/bpf/bloom_filter.c)
2/3 - Add alignment padding for map_extra, rearrange fields in
bpf_map struct to consolidate holes
3/3 - Bloom filter tests (prog_tests/bloom_filter_map):
Add test for successful userspace calls, some refactoring to
use bpf_create_map instead of bpf_create_map_xattr
v1 -> v2:
* In prog_tests/bloom_filter_map: remove unneeded line break,
also change the inner_map_test to use bpf_create_map instead
of bpf_create_map_xattr.
* Add acked-bys to commit messages
====================
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This patch has two changes:
1) Adds a new function "test_success_cases" to test
successfully creating + adding + looking up a value
in a bloom filter map from the userspace side.
2) Use bpf_create_map instead of bpf_create_map_xattr in
the "test_fail_cases" and test_inner_map to make the
code look cleaner.
Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211029224909.1721024-4-joannekoong@fb.com
|
|
This patch makes 2 changes regarding alignment padding
for the "map_extra" field.
1) In the kernel header, "map_extra" and "btf_value_type_id"
are rearranged to consolidate the hole.
Before:
struct bpf_map {
...
u32 max_entries; /* 36 4 */
u32 map_flags; /* 40 4 */
/* XXX 4 bytes hole, try to pack */
u64 map_extra; /* 48 8 */
int spin_lock_off; /* 56 4 */
int timer_off; /* 60 4 */
/* --- cacheline 1 boundary (64 bytes) --- */
u32 id; /* 64 4 */
int numa_node; /* 68 4 */
...
bool frozen; /* 117 1 */
/* XXX 10 bytes hole, try to pack */
/* --- cacheline 2 boundary (128 bytes) --- */
...
struct work_struct work; /* 144 72 */
/* --- cacheline 3 boundary (192 bytes) was 24 bytes ago --- */
struct mutex freeze_mutex; /* 216 144 */
/* --- cacheline 5 boundary (320 bytes) was 40 bytes ago --- */
u64 writecnt; /* 360 8 */
/* size: 384, cachelines: 6, members: 26 */
/* sum members: 354, holes: 2, sum holes: 14 */
/* padding: 16 */
/* forced alignments: 2, forced holes: 1, sum forced holes: 10 */
} __attribute__((__aligned__(64)));
After:
struct bpf_map {
...
u32 max_entries; /* 36 4 */
u64 map_extra; /* 40 8 */
u32 map_flags; /* 48 4 */
int spin_lock_off; /* 52 4 */
int timer_off; /* 56 4 */
u32 id; /* 60 4 */
/* --- cacheline 1 boundary (64 bytes) --- */
int numa_node; /* 64 4 */
...
bool frozen /* 113 1 */
/* XXX 14 bytes hole, try to pack */
/* --- cacheline 2 boundary (128 bytes) --- */
...
struct work_struct work; /* 144 72 */
/* --- cacheline 3 boundary (192 bytes) was 24 bytes ago --- */
struct mutex freeze_mutex; /* 216 144 */
/* --- cacheline 5 boundary (320 bytes) was 40 bytes ago --- */
u64 writecnt; /* 360 8 */
/* size: 384, cachelines: 6, members: 26 */
/* sum members: 354, holes: 1, sum holes: 14 */
/* padding: 16 */
/* forced alignments: 2, forced holes: 1, sum forced holes: 14 */
} __attribute__((__aligned__(64)));
2) Add alignment padding to the bpf_map_info struct
More details can be found in commit 36f9814a494a ("bpf: fix uapi hole
for 32 bit compat applications")
Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211029224909.1721024-3-joannekoong@fb.com
|
|
This patch has two changes in the kernel bloom filter map
implementation:
1) Change the names of map-ops functions to include the
"bloom_map" prefix.
As Martin pointed out on a previous patchset, having generic
map-ops names may be confusing in tracing and in perf-report.
2) Drop the "& 0xF" when getting nr_hash_funcs, since we
already ascertain that no other bits in map_extra beyond the
first 4 bits can be set.
Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211029224909.1721024-2-joannekoong@fb.com
|
|
Hou Tao says:
====================
Hi,
Currently the test of BPF STRUCT_OPS depends on the specific bpf
implementation (e.g, tcp_congestion_ops), but it can not cover all
basic functionalities (e.g, return value handling), so introduce
a dummy BPF STRUCT_OPS for test purpose.
Instead of loading a userspace-implemeted bpf_dummy_ops map into
kernel and calling the specific function by writing to sysfs provided
by bpf_testmode.ko, only loading bpf_dummy_ops related prog into
kernel and calling these prog by bpf_prog_test_run(). The latter
is more flexible and has no dependency on extra kernel module.
Now the return value handling is supported by test_1(...) ops,
and passing multiple arguments is supported by test_2(...) ops.
If more is needed, test_x(...) ops can be added afterwards.
Comments are always welcome.
Regards,
Hou
Change Log:
v4:
* add Acked-by tags in patch 1~4
* patch 2: remove unncessary comments and update commit message
accordingly
* patch 4: remove unnecessary nr checking in dummy_ops_init_args()
v3: https://www.spinics.net/lists/bpf/msg48303.html
* rebase on bpf-next
* address comments for Martin, mainly include: merge patch 3 &
patch 4 in v2, fix names of btf ctx access check helpers,
handle CONFIG_NET, fix leak in dummy_ops_init_args(), and
simplify bpf_dummy_init()
* patch 4: use a loop to check args in test_dummy_multiple_args()
v2: https://www.spinics.net/lists/bpf/msg47948.html
* rebase on bpf-next
* add test_2(...) ops to test the passing of multiple arguments
* a new patch (patch #2) is added to factor out ctx access helpers
* address comments from Martin & Andrii
v1: https://www.spinics.net/lists/bpf/msg46787.html
RFC: https://www.spinics.net/lists/bpf/msg46117.html
====================
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Running a BPF_PROG_TYPE_STRUCT_OPS prog for dummy_st_ops::test_N()
through bpf_prog_test_run(). Four test cases are added:
(1) attach dummy_st_ops should fail
(2) function return value of bpf_dummy_ops::test_1() is expected
(3) pointer argument of bpf_dummy_ops::test_1() works as expected
(4) multiple arguments passed to bpf_dummy_ops::test_2() are correct
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20211025064025.2567443-5-houtao1@huawei.com
|
|
Currently the test of BPF STRUCT_OPS depends on the specific bpf
implementation of tcp_congestion_ops, but it can not cover all
basic functionalities (e.g, return value handling), so introduce
a dummy BPF STRUCT_OPS for test purpose.
Loading a bpf_dummy_ops implementation from userspace is prohibited,
and its only purpose is to run BPF_PROG_TYPE_STRUCT_OPS program
through bpf(BPF_PROG_TEST_RUN). Now programs for test_1() & test_2()
are supported. The following three cases are exercised in
bpf_dummy_struct_ops_test_run():
(1) test and check the value returned from state arg in test_1(state)
The content of state is copied from userspace pointer and copied back
after calling test_1(state). The user pointer is saved in an u64 array
and the array address is passed through ctx_in.
(2) test and check the return value of test_1(NULL)
Just simulate the case in which an invalid input argument is passed in.
(3) test multiple arguments passing in test_2(state, ...)
5 arguments are passed through ctx_in in form of u64 array. The first
element of array is userspace pointer of state and others 4 arguments
follow.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20211025064025.2567443-4-houtao1@huawei.com
|
|
Factor out two helpers to check the read access of ctx for raw tp
and BTF function. bpf_tracing_ctx_access() is used to check
the read access to argument is valid, and bpf_tracing_btf_ctx_access()
checks whether the btf type of argument is valid besides the checking
of argument read. bpf_tracing_btf_ctx_access() will be used by the
following patch.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20211025064025.2567443-3-houtao1@huawei.com
|
|
Factor out a helper bpf_struct_ops_prepare_trampoline() to prepare
trampoline for BPF_PROG_TYPE_STRUCT_OPS prog. It will be used by
.test_run callback in following patch.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20211025064025.2567443-2-houtao1@huawei.com
|
|
This patch is closely related to commit 6016df8fe874 ("selftests/bpf:
Fix broken riscv build"). When clang includes the system include
directories, but targeting BPF program, __BITS_PER_LONG defaults to
32, unless explicitly set. Work around this problem, by explicitly
setting __BITS_PER_LONG to __riscv_xlen.
Signed-off-by: Björn Töpel <bjorn@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20211028161057.520552-5-bjorn@kernel.org
|
|
Add macros for 64-bit RISC-V PT_REGS to bpf_tracing.h.
Signed-off-by: Björn Töpel <bjorn@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20211028161057.520552-4-bjorn@kernel.org
|
|
Add RISC-V to the HOSTARCH parsing, so that ARCH is "riscv", and not
"riscv32" or "riscv64".
This affects the perf and libbpf builds, so that arch specific
includes are correctly picked up for RISC-V.
Signed-off-by: Björn Töpel <bjorn@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20211028161057.520552-3-bjorn@kernel.org
|
|
Now that BPF programs can be up to 1M instructions, it is not uncommon
that a program requires more than the current 16 iterations to
converge.
Bump it to 32, which is enough for selftests/bpf, and test_bpf.ko.
Signed-off-by: Björn Töpel <bjorn@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20211028161057.520552-2-bjorn@kernel.org
|
|
Add the test to check sockmap with strparser is working well.
Signed-off-by: Liu Jian <liujian56@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20211029141216.211899-3-liujian56@huawei.com
|
|
After "skmsg: lose offset info in sk_psock_skb_ingress", the test case
with ktls failed. This because ktls parser(tls_read_size) return value
is 285 not 256.
The case like this:
tls_sk1 --> redir_sk --> tls_sk2
tls_sk1 sent out 512 bytes data, after tls related processing redir_sk
recved 570 btyes data, and redirect 512 (skb_use_parser) bytes data to
tls_sk2; but tls_sk2 needs 285 * 2 bytes data, receive timeout occurred.
Signed-off-by: Liu Jian <liujian56@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20211029141216.211899-2-liujian56@huawei.com
|
|
If sockmap enable strparser, there are lose offset info in
sk_psock_skb_ingress(). If the length determined by parse_msg function is not
skb->len, the skb will be converted to sk_msg multiple times, and userspace
app will get the data multiple times.
Fix this by get the offset and length from strp_msg. And as Cong suggested,
add one bit in skb->_sk_redir to distinguish enable or disable strparser.
Fixes: 604326b41a6fb ("bpf, sockmap: convert to generic sk_msg interface")
Signed-off-by: Liu Jian <liujian56@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Cong Wang <cong.wang@bytedance.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20211029141216.211899-1-liujian56@huawei.com
|
|
After most recent nightly Clang update strobemeta selftests started
failing with the following error (relevant portion of assembly included):
1624: (85) call bpf_probe_read_user_str#114
1625: (bf) r1 = r0
1626: (18) r2 = 0xfffffffe
1628: (5f) r1 &= r2
1629: (55) if r1 != 0x0 goto pc+7
1630: (07) r9 += 104
1631: (6b) *(u16 *)(r9 +0) = r0
1632: (67) r0 <<= 32
1633: (77) r0 >>= 32
1634: (79) r1 = *(u64 *)(r10 -456)
1635: (0f) r1 += r0
1636: (7b) *(u64 *)(r10 -456) = r1
1637: (79) r1 = *(u64 *)(r10 -368)
1638: (c5) if r1 s< 0x1 goto pc+778
1639: (bf) r6 = r8
1640: (0f) r6 += r7
1641: (b4) w1 = 0
1642: (6b) *(u16 *)(r6 +108) = r1
1643: (79) r3 = *(u64 *)(r10 -352)
1644: (79) r9 = *(u64 *)(r10 -456)
1645: (bf) r1 = r9
1646: (b4) w2 = 1
1647: (85) call bpf_probe_read_user_str#114
R1 unbounded memory access, make sure to bounds check any such access
In the above code r0 and r1 are implicitly related. Clang knows that,
but verifier isn't able to infer this relationship.
Yonghong Song narrowed down this "regression" in code generation to
a recent Clang optimization change ([0]), which for BPF target generates
code pattern that BPF verifier can't handle and loses track of register
boundaries.
This patch works around the issue by adding an BPF assembly-based helper
that helps to prove to the verifier that upper bound of the register is
a given constant by controlling the exact share of generated BPF
instruction sequence. This fixes the immediate issue for strobemeta
selftest.
[0] https://github.com/llvm/llvm-project/commit/acabad9ff6bf13e00305d9d8621ee8eafc1f8b08
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211029182907.166910-1-andrii@kernel.org
|
|
Disabling unprivileged BPF would help prevent unprivileged users from
creating certain conditions required for potential speculative execution
side-channel attacks on unmitigated affected hardware.
A deep dive on such attacks and current mitigations is available here [0].
Sync with what many distros are currently applying already, and disable
unprivileged BPF by default. An admin can enable this at runtime, if
necessary, as described in 08389d888287 ("bpf: Add kconfig knob for
disabling unpriv bpf by default").
[0] "BPF and Spectre: Mitigating transient execution attacks", Daniel Borkmann, eBPF Summit '21
https://ebpf.io/summit-2021-slides/eBPF_Summit_2021-Keynote-Daniel_Borkmann-BPF_and_Spectre.pdf
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/bpf/0ace9ce3f97656d5f62d11093ad7ee81190c3c25.1635535215.git.pawan.kumar.gupta@linux.intel.com
|
|
Make sure to use pclose() to properly close the pipe opened by popen().
Fixes: 81f77fd0deeb ("bpf: add selftest for stackmap with BPF_F_STACK_BUILD_ID")
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Shuah Khan <skhan@linuxfoundation.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20211026143409.42666-1-andrea.righi@canonical.com
|
|
Kumar Kartikeya says:
====================
Patches (1,2,3,6) add typeless and weak ksym support to gen_loader. It is follow
up for the recent kfunc from modules series.
The later patches (7,8) are misc fixes for selftests, and patch 4 for libbpf
where we try to be careful to not end up with fds == 0, as libbpf assumes in
various places that they are greater than 0. Patch 5 fixes up missing O_CLOEXEC
in libbpf.
Changelog:
----------
v4 -> v5
v4: https://lore.kernel.org/bpf/20211020191526.2306852-1-memxor@gmail.com
* Address feedback from Andrii
* Drop use of ensure_good_fd in unneeded call sites
* Add sys_bpf_fd
* Add _lskel suffix to all light skeletons and change all current selftests
* Drop early break in close loop for sk_lookup
* Fix other nits
v3 -> v4
v3: https://lore.kernel.org/bpf/20211014205644.1837280-1-memxor@gmail.com
* Remove gpl_only = true from bpf_kallsyms_lookup_name (Alexei)
* Add bpf_dump_raw_ok check to ensure kptr_restrict isn't bypassed (Alexei)
v2 -> v3
v2: https://lore.kernel.org/bpf/20211013073348.1611155-1-memxor@gmail.com
* Address feedback from Song
* Move ksym logging to separate helper to avoid code duplication
* Move src_reg mask stuff to separate helper
* Fix various other nits, add acks
* __builtin_expect is used instead of likely to as skel_internal.h is
included in isolation.
v1 -> v2
v1: https://lore.kernel.org/bpf/20211006002853.308945-1-memxor@gmail.com
* Remove redundant OOM checks in emit_bpf_kallsyms_lookup_name
* Use designated initializer for sk_lookup fd array (Jakub)
* Do fd check for all fd returning low level APIs (Andrii, Alexei)
* Make Fixes: tag quote commit message, use selftests/bpf prefix (Song, Andrii)
* Split typeless and weak ksym support into separate patches, expand commit
message (Song)
* Fix duplication in selftests stemming from use of LSKELS_EXTRA (Song)
====================
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The allocated ring buffer is never freed, do so in the cleanup path.
Fixes: f446b570ac7e ("bpf/selftests: Update the IMA test to use BPF ring buffer")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20211028063501.2239335-9-memxor@gmail.com
|
|
Similar to the fix in commit:
e31eec77e4ab ("bpf: selftests: Fix fd cleanup in get_branch_snapshot")
We use designated initializer to set fds to -1 without breaking on
future changes to MAX_SERVER constant denoting the array size.
The particular close(0) occurs on non-reuseport tests, so it can be seen
with -n 115/{2,3} but not 115/4. This can cause problems with future
tests if they depend on BTF fd never being acquired as fd 0, breaking
internal libbpf assumptions.
Fixes: 0ab5539f8584 ("selftests/bpf: Tests for BPF_SK_LOOKUP attach point")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20211028063501.2239335-8-memxor@gmail.com
|
|
Also, avoid using CO-RE features, as lskel doesn't support CO-RE, yet.
Include both light and libbpf skeleton in same file to test both of them
together.
In c48e51c8b07a ("bpf: selftests: Add selftests for module kfunc support"),
I added support for generating both lskel and libbpf skel for a BPF
object, however the name parameter for bpftool caused collisions when
included in same file together. This meant that every test needed a
separate file for a libbpf/light skeleton separation instead of
subtests.
Change that by appending a "_lskel" suffix to the name for files using
light skeleton, and convert all existing users.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211028063501.2239335-7-memxor@gmail.com
|
|
There are some instances where we don't use O_CLOEXEC when opening an
fd, fix these up. Otherwise, it is possible that a parallel fork causes
these fds to leak into a child process on execve.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211028063501.2239335-6-memxor@gmail.com
|
|
Add a simple wrapper for passing an fd and getting a new one >= 3 if it
is one of 0, 1, or 2. There are two primary reasons to make this change:
First, libbpf relies on the assumption a certain BPF fd is never 0 (e.g.
most recently noticed in [0]). Second, Alexei pointed out in [1] that
some environments reset stdin, stdout, and stderr if they notice an
invalid fd at these numbers. To protect against both these cases, switch
all internal BPF syscall wrappers in libbpf to always return an fd >= 3.
We only need to modify the syscall wrappers and not other code that
assumes a valid fd by doing >= 0, to avoid pointless churn, and because
it is still a valid assumption. The cost paid is two additional syscalls
if fd is in range [0, 2].
[0]: e31eec77e4ab ("bpf: selftests: Fix fd cleanup in get_branch_snapshot")
[1]: https://lore.kernel.org/bpf/CAADnVQKVKY8o_3aU8Gzke443+uHa-eGoM0h7W4srChMXU1S4Bg@mail.gmail.com
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211028063501.2239335-5-memxor@gmail.com
|
|
This extends existing ksym relocation code to also support relocating
weak ksyms. Care needs to be taken to zero out the src_reg (currently
BPF_PSEUOD_BTF_ID, always set for gen_loader by bpf_object__relocate_data)
when the BTF ID lookup fails at runtime. This is not a problem for
libbpf as it only sets ext->is_set when BTF ID lookup succeeds (and only
proceeds in case of failure if ext->is_weak, leading to src_reg
remaining as 0 for weak unresolved ksym).
A pattern similar to emit_relo_kfunc_btf is followed of first storing
the default values and then jumping over actual stores in case of an
error. For src_reg adjustment, we also need to perform it when copying
the populated instruction, so depending on if copied insn[0].imm is 0 or
not, we decide to jump over the adjustment.
We cannot reach that point unless the ksym was weak and resolved and
zeroed out, as the emit_check_err will cause us to jump to cleanup
label, so we do not need to recheck whether the ksym is weak before
doing the adjustment after copying BTF ID and BTF FD.
This is consistent with how libbpf relocates weak ksym. Logging
statements are added to show the relocation result and aid debugging.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211028063501.2239335-4-memxor@gmail.com
|
|
This uses the bpf_kallsyms_lookup_name helper added in previous patches
to relocate typeless ksyms. The return value ENOENT can be ignored, and
the value written to 'res' can be directly stored to the insn, as it is
overwritten to 0 on lookup failure. For repeating symbols, we can simply
copy the previously populated bpf_insn.
Also, we need to take care to not close fds for typeless ksym_desc, so
reuse the 'off' member's space to add a marker for typeless ksym and use
that to skip them in cleanup_relos.
We add a emit_ksym_relo_log helper that avoids duplicating common
logging instructions between typeless and weak ksym (for future commit).
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211028063501.2239335-3-memxor@gmail.com
|
|
This helper allows us to get the address of a kernel symbol from inside
a BPF_PROG_TYPE_SYSCALL prog (used by gen_loader), so that we can
relocate typeless ksym vars.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20211028063501.2239335-2-memxor@gmail.com
|
|
Joanne Koong says:
====================
This patchset adds a new kind of bpf map: the bloom filter map.
Bloom filters are a space-efficient probabilistic data structure
used to quickly test whether an element exists in a set.
For a brief overview about how bloom filters work,
https://en.wikipedia.org/wiki/Bloom_filter
may be helpful.
One example use-case is an application leveraging a bloom filter
map to determine whether a computationally expensive hashmap
lookup can be avoided. If the element was not found in the bloom
filter map, the hashmap lookup can be skipped.
This patchset includes benchmarks for testing the performance of
the bloom filter for different entry sizes and different number of
hash functions used, as well as comparisons for hashmap lookups
with vs. without the bloom filter.
A high level overview of this patchset is as follows:
1/5 - kernel changes for adding bloom filter map
2/5 - libbpf changes for adding map_extra flags
3/5 - tests for the bloom filter map
4/5 - benchmarks for bloom filter lookup/update throughput and false positive
rate
5/5 - benchmarks for how hashmap lookups perform with vs. without the bloom
filter
v5 -> v6:
* in 1/5: remove "inline" from the hash function, add check in syscall to
fail out in cases where map_extra is not 0 for non-bloom-filter maps,
fix alignment matching issues, move "map_extra flags" comments to inside
the bpf_attr struct, add bpf_map_info map_extra changes here, add map_extra
assignment in bpf_map_get_info_by_fd, change hash value_size to u32 instead of
a u64
* in 2/5: remove bpf_map_info map_extra changes, remove TODO comment about
extending BTF arrays to cover u64s, cast to unsigned long long for %llx when
printing out map_extra flags
* in 3/5: use __type(value, ...) instead of __uint(value_size, ...) for values
and keys
* in 4/5: fix wrong bounds for the index when iterating through random values,
update commit message to include update+lookup benchmark results for 8 byte
and 64-byte value sizes, remove explicit global bool initializaton to false
for hashmap_use_bloom and count_false_hits variables
v4 -> v5:
* Change the "bitset map with bloom filter capabilities" to a bloom filter map
with max_entries signifying the number of unique entries expected in the bloom
filter, remove bitset tests
* Reduce verbiage by changing "bloom_filter" to "bloom", and renaming progs to
more concise names.
* in 2/5: remove "map_extra" from struct definitions that are frozen, create a
"bpf_create_map_params" struct to propagate map_extra to the kernel at map
creation time, change map_extra to __u64
* in 4/5: check pthread condition variable in a loop when generating initial
map data, remove "err" checks where not pragmatic, generate random values
for the hashmap in the setup() instead of in the bpf program, add check_args()
for checking that there aren't more requested entries than possible unique
entries for the specified value size
* in 5/5: Update commit message with updated benchmark data
v3 -> v4:
* Generalize the bloom filter map to be a bitset map with bloom filter
capabilities
* Add map_extra flags; pass in nr_hash_funcs through lower 4 bits of map_extra
for the bitset map
* Add tests for the bitset map (non-bloom filter) functionality
* In the benchmarks, stats are computed only as monotonic increases, and place
stats in a struct instead of as a percpu_array bpf map
v2 -> v3:
* Add libbpf changes for supporting nr_hash_funcs, instead of passing the
number of hash functions through map_flags.
* Separate the hashing logic in kernel/bpf/bloom_filter.c into a helper
function
v1 -> v2:
* Remove libbpf changes, and pass the number of hash functions through
map_flags instead.
* Default to using 5 hash functions if no number of hash functions
is specified.
* Use set_bit instead of spinlocks in the bloom filter bitmap. This
improved the speed significantly. For example, using 5 hash functions
with 100k entries, there was roughly a 35% speed increase.
* Use jhash2 (instead of jhash) for u32-aligned value sizes. This
increased the speed by roughly 5 to 15%. When using jhash2 on value
sizes non-u32 aligned (truncating any remainder bits), there was not
a noticeable difference.
* Add test for using the bloom filter as an inner map.
* Reran the benchmarks, updated the commit messages to correspond to
the new results.
====================
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
filter
This patch adds benchmark tests for comparing the performance of hashmap
lookups without the bloom filter vs. hashmap lookups with the bloom filter.
Checking the bloom filter first for whether the element exists should
overall enable a higher throughput for hashmap lookups, since if the
element does not exist in the bloom filter, we can avoid a costly lookup in
the hashmap.
On average, using 5 hash functions in the bloom filter tended to perform
the best across the widest range of different entry sizes. The benchmark
results using 5 hash functions (running on 8 threads on a machine with one
numa node, and taking the average of 3 runs) were roughly as follows:
value_size = 4 bytes -
10k entries: 30% faster
50k entries: 40% faster
100k entries: 40% faster
500k entres: 70% faster
1 million entries: 90% faster
5 million entries: 140% faster
value_size = 8 bytes -
10k entries: 30% faster
50k entries: 40% faster
100k entries: 50% faster
500k entres: 80% faster
1 million entries: 100% faster
5 million entries: 150% faster
value_size = 16 bytes -
10k entries: 20% faster
50k entries: 30% faster
100k entries: 35% faster
500k entres: 65% faster
1 million entries: 85% faster
5 million entries: 110% faster
value_size = 40 bytes -
10k entries: 5% faster
50k entries: 15% faster
100k entries: 20% faster
500k entres: 65% faster
1 million entries: 75% faster
5 million entries: 120% faster
Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211027234504.30744-6-joannekoong@fb.com
|
|
This patch adds benchmark tests for the throughput (for lookups + updates)
and the false positive rate of bloom filter lookups, as well as some
minor refactoring of the bash script for running the benchmarks.
These benchmarks show that as the number of hash functions increases,
the throughput and the false positive rate of the bloom filter decreases.
>From the benchmark data, the approximate average false-positive rates
are roughly as follows:
1 hash function = ~30%
2 hash functions = ~15%
3 hash functions = ~5%
4 hash functions = ~2.5%
5 hash functions = ~1%
6 hash functions = ~0.5%
7 hash functions = ~0.35%
8 hash functions = ~0.15%
9 hash functions = ~0.1%
10 hash functions = ~0%
For reference data, the benchmarks run on one thread on a machine
with one numa node for 1 to 5 hash functions for 8-byte and 64-byte
values are as follows:
1 hash function:
50k entries
8-byte value
Lookups - 51.1 M/s operations
Updates - 33.6 M/s operations
False positive rate: 24.15%
64-byte value
Lookups - 15.7 M/s operations
Updates - 15.1 M/s operations
False positive rate: 24.2%
100k entries
8-byte value
Lookups - 51.0 M/s operations
Updates - 33.4 M/s operations
False positive rate: 24.04%
64-byte value
Lookups - 15.6 M/s operations
Updates - 14.6 M/s operations
False positive rate: 24.06%
500k entries
8-byte value
Lookups - 50.5 M/s operations
Updates - 33.1 M/s operations
False positive rate: 27.45%
64-byte value
Lookups - 15.6 M/s operations
Updates - 14.2 M/s operations
False positive rate: 27.42%
1 mil entries
8-byte value
Lookups - 49.7 M/s operations
Updates - 32.9 M/s operations
False positive rate: 27.45%
64-byte value
Lookups - 15.4 M/s operations
Updates - 13.7 M/s operations
False positive rate: 27.58%
2.5 mil entries
8-byte value
Lookups - 47.2 M/s operations
Updates - 31.8 M/s operations
False positive rate: 30.94%
64-byte value
Lookups - 15.3 M/s operations
Updates - 13.2 M/s operations
False positive rate: 30.95%
5 mil entries
8-byte value
Lookups - 41.1 M/s operations
Updates - 28.1 M/s operations
False positive rate: 31.01%
64-byte value
Lookups - 13.3 M/s operations
Updates - 11.4 M/s operations
False positive rate: 30.98%
2 hash functions:
50k entries
8-byte value
Lookups - 34.1 M/s operations
Updates - 20.1 M/s operations
False positive rate: 9.13%
64-byte value
Lookups - 8.4 M/s operations
Updates - 7.9 M/s operations
False positive rate: 9.21%
100k entries
8-byte value
Lookups - 33.7 M/s operations
Updates - 18.9 M/s operations
False positive rate: 9.13%
64-byte value
Lookups - 8.4 M/s operations
Updates - 7.7 M/s operations
False positive rate: 9.19%
500k entries
8-byte value
Lookups - 32.7 M/s operations
Updates - 18.1 M/s operations
False positive rate: 12.61%
64-byte value
Lookups - 8.4 M/s operations
Updates - 7.5 M/s operations
False positive rate: 12.61%
1 mil entries
8-byte value
Lookups - 30.6 M/s operations
Updates - 18.9 M/s operations
False positive rate: 12.54%
64-byte value
Lookups - 8.0 M/s operations
Updates - 7.0 M/s operations
False positive rate: 12.52%
2.5 mil entries
8-byte value
Lookups - 25.3 M/s operations
Updates - 16.7 M/s operations
False positive rate: 16.77%
64-byte value
Lookups - 7.9 M/s operations
Updates - 6.5 M/s operations
False positive rate: 16.88%
5 mil entries
8-byte value
Lookups - 20.8 M/s operations
Updates - 14.7 M/s operations
False positive rate: 16.78%
64-byte value
Lookups - 7.0 M/s operations
Updates - 6.0 M/s operations
False positive rate: 16.78%
3 hash functions:
50k entries
8-byte value
Lookups - 25.1 M/s operations
Updates - 14.6 M/s operations
False positive rate: 7.65%
64-byte value
Lookups - 5.8 M/s operations
Updates - 5.5 M/s operations
False positive rate: 7.58%
100k entries
8-byte value
Lookups - 24.7 M/s operations
Updates - 14.1 M/s operations
False positive rate: 7.71%
64-byte value
Lookups - 5.8 M/s operations
Updates - 5.3 M/s operations
False positive rate: 7.62%
500k entries
8-byte value
Lookups - 22.9 M/s operations
Updates - 13.9 M/s operations
False positive rate: 2.62%
64-byte value
Lookups - 5.6 M/s operations
Updates - 4.8 M/s operations
False positive rate: 2.7%
1 mil entries
8-byte value
Lookups - 19.8 M/s operations
Updates - 12.6 M/s operations
False positive rate: 2.60%
64-byte value
Lookups - 5.3 M/s operations
Updates - 4.4 M/s operations
False positive rate: 2.69%
2.5 mil entries
8-byte value
Lookups - 16.2 M/s operations
Updates - 10.7 M/s operations
False positive rate: 4.49%
64-byte value
Lookups - 4.9 M/s operations
Updates - 4.1 M/s operations
False positive rate: 4.41%
5 mil entries
8-byte value
Lookups - 18.8 M/s operations
Updates - 9.2 M/s operations
False positive rate: 4.45%
64-byte value
Lookups - 5.2 M/s operations
Updates - 3.9 M/s operations
False positive rate: 4.54%
4 hash functions:
50k entries
8-byte value
Lookups - 19.7 M/s operations
Updates - 11.1 M/s operations
False positive rate: 1.01%
64-byte value
Lookups - 4.4 M/s operations
Updates - 4.0 M/s operations
False positive rate: 1.00%
100k entries
8-byte value
Lookups - 19.5 M/s operations
Updates - 10.9 M/s operations
False positive rate: 1.00%
64-byte value
Lookups - 4.3 M/s operations
Updates - 3.9 M/s operations
False positive rate: 0.97%
500k entries
8-byte value
Lookups - 18.2 M/s operations
Updates - 10.6 M/s operations
False positive rate: 2.05%
64-byte value
Lookups - 4.3 M/s operations
Updates - 3.7 M/s operations
False positive rate: 2.05%
1 mil entries
8-byte value
Lookups - 15.5 M/s operations
Updates - 9.6 M/s operations
False positive rate: 1.99%
64-byte value
Lookups - 4.0 M/s operations
Updates - 3.4 M/s operations
False positive rate: 1.99%
2.5 mil entries
8-byte value
Lookups - 13.8 M/s operations
Updates - 7.7 M/s operations
False positive rate: 3.91%
64-byte value
Lookups - 3.7 M/s operations
Updates - 3.6 M/s operations
False positive rate: 3.78%
5 mil entries
8-byte value
Lookups - 13.0 M/s operations
Updates - 6.9 M/s operations
False positive rate: 3.93%
64-byte value
Lookups - 3.5 M/s operations
Updates - 3.7 M/s operations
False positive rate: 3.39%
5 hash functions:
50k entries
8-byte value
Lookups - 16.4 M/s operations
Updates - 9.1 M/s operations
False positive rate: 0.78%
64-byte value
Lookups - 3.5 M/s operations
Updates - 3.2 M/s operations
False positive rate: 0.77%
100k entries
8-byte value
Lookups - 16.3 M/s operations
Updates - 9.0 M/s operations
False positive rate: 0.79%
64-byte value
Lookups - 3.5 M/s operations
Updates - 3.2 M/s operations
False positive rate: 0.78%
500k entries
8-byte value
Lookups - 15.1 M/s operations
Updates - 8.8 M/s operations
False positive rate: 1.82%
64-byte value
Lookups - 3.4 M/s operations
Updates - 3.0 M/s operations
False positive rate: 1.78%
1 mil entries
8-byte value
Lookups - 13.2 M/s operations
Updates - 7.8 M/s operations
False positive rate: 1.81%
64-byte value
Lookups - 3.2 M/s operations
Updates - 2.8 M/s operations
False positive rate: 1.80%
2.5 mil entries
8-byte value
Lookups - 10.5 M/s operations
Updates - 5.9 M/s operations
False positive rate: 0.29%
64-byte value
Lookups - 3.2 M/s operations
Updates - 2.4 M/s operations
False positive rate: 0.28%
5 mil entries
8-byte value
Lookups - 9.6 M/s operations
Updates - 5.7 M/s operations
False positive rate: 0.30%
64-byte value
Lookups - 3.2 M/s operations
Updates - 2.7 M/s operations
False positive rate: 0.30%
Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211027234504.30744-5-joannekoong@fb.com
|
|
This patch adds test cases for bpf bloom filter maps. They include tests
checking against invalid operations by userspace, tests for using the
bloom filter map as an inner map, and a bpf program that queries the
bloom filter map for values added by a userspace program.
Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211027234504.30744-4-joannekoong@fb.com
|
|
This patch adds the libbpf infrastructure for supporting a
per-map-type "map_extra" field, whose definition will be
idiosyncratic depending on map type.
For example, for the bloom filter map, the lower 4 bits of
map_extra is used to denote the number of hash functions.
Please note that until libbpf 1.0 is here, the
"bpf_create_map_params" struct is used as a temporary
means for propagating the map_extra field to the kernel.
Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211027234504.30744-3-joannekoong@fb.com
|
|
This patch adds the kernel-side changes for the implementation of
a bpf bloom filter map.
The bloom filter map supports peek (determining whether an element
is present in the map) and push (adding an element to the map)
operations.These operations are exposed to userspace applications
through the already existing syscalls in the following way:
BPF_MAP_LOOKUP_ELEM -> peek
BPF_MAP_UPDATE_ELEM -> push
The bloom filter map does not have keys, only values. In light of
this, the bloom filter map's API matches that of queue stack maps:
user applications use BPF_MAP_LOOKUP_ELEM/BPF_MAP_UPDATE_ELEM
which correspond internally to bpf_map_peek_elem/bpf_map_push_elem,
and bpf programs must use the bpf_map_peek_elem and bpf_map_push_elem
APIs to query or add an element to the bloom filter map. When the
bloom filter map is created, it must be created with a key_size of 0.
For updates, the user will pass in the element to add to the map
as the value, with a NULL key. For lookups, the user will pass in the
element to query in the map as the value, with a NULL key. In the
verifier layer, this requires us to modify the argument type of
a bloom filter's BPF_FUNC_map_peek_elem call to ARG_PTR_TO_MAP_VALUE;
as well, in the syscall layer, we need to copy over the user value
so that in bpf_map_peek_elem, we know which specific value to query.
A few things to please take note of:
* If there are any concurrent lookups + updates, the user is
responsible for synchronizing this to ensure no false negative lookups
occur.
* The number of hashes to use for the bloom filter is configurable from
userspace. If no number is specified, the default used will be 5 hash
functions. The benchmarks later in this patchset can help compare the
performance of using different number of hashes on different entry
sizes. In general, using more hashes decreases both the false positive
rate and the speed of a lookup.
* Deleting an element in the bloom filter map is not supported.
* The bloom filter map may be used as an inner map.
* The "max_entries" size that is specified at map creation time is used
to approximate a reasonable bitmap size for the bloom filter, and is not
otherwise strictly enforced. If the user wishes to insert more entries
into the bloom filter than "max_entries", they may do so but they should
be aware that this may lead to a higher false positive rate.
Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211027234504.30744-2-joannekoong@fb.com
|
|
After commit 9298e63eafea ("bpf/tests: Add exhaustive tests of ALU
operand magnitudes"), when modprobe test_bpf.ko with JIT on mips64,
there exists segment fault due to the following reason:
[...]
ALU64_MOV_X: all register value magnitudes jited:1
Break instruction in kernel code[#1]
[...]
It seems that the related JIT implementations of some test cases
in test_bpf() have problems. At this moment, I do not care about
the segment fault while I just want to verify the test cases of
tail calls.
Based on the above background and motivation, add the following
module parameter test_suite to the test_bpf.ko:
test_suite=<string>: only the specified test suite will be run, the
string can be "test_bpf", "test_tail_calls" or "test_skb_segment".
If test_suite is not specified, but test_id, test_name or test_range
is specified, set 'test_bpf' as the default test suite. This is useful
to only test the corresponding test suite when specifying the valid
test_suite string.
Any invalid test suite will result in -EINVAL being returned and no
tests being run. If the test_suite is not specified or specified as
empty string, it does not change the current logic, all of the test
cases will be run.
Here are some test results:
# dmesg -c
# modprobe test_bpf
# dmesg | grep Summary
test_bpf: Summary: 1009 PASSED, 0 FAILED, [0/997 JIT'ed]
test_bpf: test_tail_calls: Summary: 8 PASSED, 0 FAILED, [0/8 JIT'ed]
test_bpf: test_skb_segment: Summary: 2 PASSED, 0 FAILED
# rmmod test_bpf
# dmesg -c
# modprobe test_bpf test_suite=test_bpf
# dmesg | tail -1
test_bpf: Summary: 1009 PASSED, 0 FAILED, [0/997 JIT'ed]
# rmmod test_bpf
# dmesg -c
# modprobe test_bpf test_suite=test_tail_calls
# dmesg
test_bpf: #0 Tail call leaf jited:0 21 PASS
[...]
test_bpf: #7 Tail call error path, index out of range jited:0 32 PASS
test_bpf: test_tail_calls: Summary: 8 PASSED, 0 FAILED, [0/8 JIT'ed]
# rmmod test_bpf
# dmesg -c
# modprobe test_bpf test_suite=test_skb_segment
# dmesg
test_bpf: #0 gso_with_rx_frags PASS
test_bpf: #1 gso_linear_no_head_frag PASS
test_bpf: test_skb_segment: Summary: 2 PASSED, 0 FAILED
# rmmod test_bpf
# dmesg -c
# modprobe test_bpf test_id=1
# dmesg
test_bpf: test_bpf: set 'test_bpf' as the default test_suite.
test_bpf: #1 TXA jited:0 54 51 50 PASS
test_bpf: Summary: 1 PASSED, 0 FAILED, [0/1 JIT'ed]
# rmmod test_bpf
# dmesg -c
# modprobe test_bpf test_suite=test_bpf test_name=TXA
# dmesg
test_bpf: #1 TXA jited:0 54 50 51 PASS
test_bpf: Summary: 1 PASSED, 0 FAILED, [0/1 JIT'ed]
# rmmod test_bpf
# dmesg -c
# modprobe test_bpf test_suite=test_tail_calls test_range=6,7
# dmesg
test_bpf: #6 Tail call error path, NULL target jited:0 41 PASS
test_bpf: #7 Tail call error path, index out of range jited:0 32 PASS
test_bpf: test_tail_calls: Summary: 2 PASSED, 0 FAILED, [0/2 JIT'ed]
# rmmod test_bpf
# dmesg -c
# modprobe test_bpf test_suite=test_skb_segment test_id=1
# dmesg
test_bpf: #1 gso_linear_no_head_frag PASS
test_bpf: test_skb_segment: Summary: 1 PASSED, 0 FAILED
By the way, the above segment fault has been fixed in the latest bpf-next
tree which contains the mips64 JIT rework.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
Acked-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
Link: https://lore.kernel.org/bpf/1635384321-28128-1-git-send-email-yangtiezhu@loongson.cn
|
|
When a tracing BPF program attempts to read memory without using the
bpf_probe_read() helper, the verifier marks the load instruction with
the BPF_PROBE_MEM flag. Since the riscv JIT does not currently recognize
this flag it falls back to the interpreter.
Add support for BPF_PROBE_MEM, by appending an exception table to the
BPF program. If the load instruction causes a data abort, the fixup
infrastructure finds the exception table and fixes up the fault, by
clearing the destination register and jumping over the faulting
instruction.
A more generic solution would add a "handler" field to the table entry,
like on x86 and s390. The same issue in ARM64 is fixed in 800834285361
("bpf, arm64: Add BPF exception tables").
Signed-off-by: Tong Tiangen <tongtiangen@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Pu Lehui <pulehui@huawei.com>
Tested-by: Björn Töpel <bjorn@kernel.org>
Acked-by: Björn Töpel <bjorn@kernel.org>
Link: https://lore.kernel.org/bpf/20211027111822.3801679-1-tongtiangen@huawei.com
|
|
Yucong Sun says:
====================
Several patches to improve parallel execution mode, updating vmtest.sh
and fixed two previously dropped patches according to feedback.
====================
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
|
|
This patch delete ns_src/ns_dst/ns_redir namespaces before recreating
them, making the test more robust.
Signed-off-by: Yucong Sun <sunyucong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211025223345.2136168-5-fallentree@fb.com
|
|
This patch makes attach_probe uses its own method as attach point,
avoiding conflict with other tests like bpf_cookie.
Signed-off-by: Yucong Sun <sunyucong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211025223345.2136168-4-fallentree@fb.com
|
|
Increase memory to 4G, 8 SMP core with host cpu passthrough. This
make it run faster in parallel mode and more likely to succeed.
Signed-off-by: Yucong Sun <sunyucong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211025223345.2136168-2-fallentree@fb.com
|
|
Eric Dumazet says:
====================
From: Eric Dumazet <edumazet@google.com>
Two first patches fix bugs added in 5.1 and 5.5
Third patch replaces the u64 fields in struct bpf_prog_stats
with u64_stats_t ones to avoid possible sampling errors,
in case of load/store stearing.
====================
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Commit 316580b69d0a ("u64_stats: provide u64_stats_t type")
fixed possible load/store tearing on 64bit arches.
For instance the following C code
stats->nsecs += sched_clock() - start;
Could be rightfully implemented like this by a compiler,
confusing concurrent readers a lot:
stats->nsecs += sched_clock();
// arbitrary delay
stats->nsecs -= start;
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211026214133.3114279-4-eric.dumazet@gmail.com
|
|
It seems update_prog_stats() suffers from same issue fixed
in the prior patch:
As it can run while interrupts are enabled, it could
be re-entered and the u64_stats syncp could be mangled.
Fixes: fec56f5890d9 ("bpf: Introduce BPF trampoline")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211026214133.3114279-3-eric.dumazet@gmail.com
|
|
__bpf_prog_run() can run from non IRQ contexts, meaning
it could be re entered if interrupted.
This calls for the irq safe variant of u64_stats_update_{begin|end},
or risk a deadlock.
This patch is a nop on 64bit arches, fortunately.
syzbot report:
WARNING: inconsistent lock state
5.12.0-rc3-syzkaller #0 Not tainted
--------------------------------
inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage.
udevd/4013 [HC0[0]:SC0[0]:HE1:SE1] takes:
ff7c9dec (&(&pstats->syncp)->seq){+.?.}-{0:0}, at: sk_filter include/linux/filter.h:867 [inline]
ff7c9dec (&(&pstats->syncp)->seq){+.?.}-{0:0}, at: do_one_broadcast net/netlink/af_netlink.c:1468 [inline]
ff7c9dec (&(&pstats->syncp)->seq){+.?.}-{0:0}, at: netlink_broadcast_filtered+0x27c/0x4fc net/netlink/af_netlink.c:1520
{IN-SOFTIRQ-W} state was registered at:
lock_acquire.part.0+0xf0/0x41c kernel/locking/lockdep.c:5510
lock_acquire+0x6c/0x74 kernel/locking/lockdep.c:5483
do_write_seqcount_begin_nested include/linux/seqlock.h:520 [inline]
do_write_seqcount_begin include/linux/seqlock.h:545 [inline]
u64_stats_update_begin include/linux/u64_stats_sync.h:129 [inline]
bpf_prog_run_pin_on_cpu include/linux/filter.h:624 [inline]
bpf_prog_run_clear_cb+0x1bc/0x270 include/linux/filter.h:755
run_filter+0xa0/0x17c net/packet/af_packet.c:2031
packet_rcv+0xc0/0x3e0 net/packet/af_packet.c:2104
dev_queue_xmit_nit+0x2bc/0x39c net/core/dev.c:2387
xmit_one net/core/dev.c:3588 [inline]
dev_hard_start_xmit+0x94/0x518 net/core/dev.c:3609
sch_direct_xmit+0x11c/0x1f0 net/sched/sch_generic.c:313
qdisc_restart net/sched/sch_generic.c:376 [inline]
__qdisc_run+0x194/0x7f8 net/sched/sch_generic.c:384
qdisc_run include/net/pkt_sched.h:136 [inline]
qdisc_run include/net/pkt_sched.h:128 [inline]
__dev_xmit_skb net/core/dev.c:3795 [inline]
__dev_queue_xmit+0x65c/0xf84 net/core/dev.c:4150
dev_queue_xmit+0x14/0x18 net/core/dev.c:4215
neigh_resolve_output net/core/neighbour.c:1491 [inline]
neigh_resolve_output+0x170/0x228 net/core/neighbour.c:1471
neigh_output include/net/neighbour.h:510 [inline]
ip6_finish_output2+0x2e4/0x9fc net/ipv6/ip6_output.c:117
__ip6_finish_output net/ipv6/ip6_output.c:182 [inline]
__ip6_finish_output+0x164/0x3f8 net/ipv6/ip6_output.c:161
ip6_finish_output+0x2c/0xb0 net/ipv6/ip6_output.c:192
NF_HOOK_COND include/linux/netfilter.h:290 [inline]
ip6_output+0x74/0x294 net/ipv6/ip6_output.c:215
dst_output include/net/dst.h:448 [inline]
NF_HOOK include/linux/netfilter.h:301 [inline]
NF_HOOK include/linux/netfilter.h:295 [inline]
mld_sendpack+0x2a8/0x7e4 net/ipv6/mcast.c:1679
mld_send_cr net/ipv6/mcast.c:1975 [inline]
mld_ifc_timer_expire+0x1e8/0x494 net/ipv6/mcast.c:2474
call_timer_fn+0xd0/0x570 kernel/time/timer.c:1431
expire_timers kernel/time/timer.c:1476 [inline]
__run_timers kernel/time/timer.c:1745 [inline]
run_timer_softirq+0x2e4/0x384 kernel/time/timer.c:1758
__do_softirq+0x204/0x7ac kernel/softirq.c:345
do_softirq_own_stack include/asm-generic/softirq_stack.h:10 [inline]
invoke_softirq kernel/softirq.c:228 [inline]
__irq_exit_rcu+0x1d8/0x200 kernel/softirq.c:422
irq_exit+0x10/0x3c kernel/softirq.c:446
__handle_domain_irq+0xb4/0x120 kernel/irq/irqdesc.c:692
handle_domain_irq include/linux/irqdesc.h:176 [inline]
gic_handle_irq+0x84/0xac drivers/irqchip/irq-gic.c:370
__irq_svc+0x5c/0x94 arch/arm/kernel/entry-armv.S:205
debug_smp_processor_id+0x0/0x24 lib/smp_processor_id.c:53
rcu_read_lock_held_common kernel/rcu/update.c:108 [inline]
rcu_read_lock_sched_held+0x24/0x7c kernel/rcu/update.c:123
trace_lock_acquire+0x24c/0x278 include/trace/events/lock.h:13
lock_acquire+0x3c/0x74 kernel/locking/lockdep.c:5481
rcu_lock_acquire include/linux/rcupdate.h:267 [inline]
rcu_read_lock include/linux/rcupdate.h:656 [inline]
avc_has_perm_noaudit+0x6c/0x260 security/selinux/avc.c:1150
selinux_inode_permission+0x140/0x220 security/selinux/hooks.c:3141
security_inode_permission+0x44/0x60 security/security.c:1268
inode_permission.part.0+0x5c/0x13c fs/namei.c:521
inode_permission fs/namei.c:494 [inline]
may_lookup fs/namei.c:1652 [inline]
link_path_walk.part.0+0xd4/0x38c fs/namei.c:2208
link_path_walk fs/namei.c:2189 [inline]
path_lookupat+0x3c/0x1b8 fs/namei.c:2419
filename_lookup+0xa8/0x1a4 fs/namei.c:2453
user_path_at_empty+0x74/0x90 fs/namei.c:2733
do_readlinkat+0x5c/0x12c fs/stat.c:417
__do_sys_readlink fs/stat.c:450 [inline]
sys_readlink+0x24/0x28 fs/stat.c:447
ret_fast_syscall+0x0/0x2c arch/arm/mm/proc-v7.S:64
0x7eaa4974
irq event stamp: 298277
hardirqs last enabled at (298277): [<802000d0>] no_work_pending+0x4/0x34
hardirqs last disabled at (298276): [<8020c9b8>] do_work_pending+0x9c/0x648 arch/arm/kernel/signal.c:676
softirqs last enabled at (298216): [<8020167c>] __do_softirq+0x584/0x7ac kernel/softirq.c:372
softirqs last disabled at (298201): [<8024dff4>] do_softirq_own_stack include/asm-generic/softirq_stack.h:10 [inline]
softirqs last disabled at (298201): [<8024dff4>] invoke_softirq kernel/softirq.c:228 [inline]
softirqs last disabled at (298201): [<8024dff4>] __irq_exit_rcu+0x1d8/0x200 kernel/softirq.c:422
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&(&pstats->syncp)->seq);
<Interrupt>
lock(&(&pstats->syncp)->seq);
*** DEADLOCK ***
1 lock held by udevd/4013:
#0: 82b09c5c (rcu_read_lock){....}-{1:2}, at: sk_filter_trim_cap+0x54/0x434 net/core/filter.c:139
stack backtrace:
CPU: 1 PID: 4013 Comm: udevd Not tainted 5.12.0-rc3-syzkaller #0
Hardware name: ARM-Versatile Express
Backtrace:
[<81802550>] (dump_backtrace) from [<818027c4>] (show_stack+0x18/0x1c arch/arm/kernel/traps.c:252)
r7:00000080 r6:600d0093 r5:00000000 r4:82b58344
[<818027ac>] (show_stack) from [<81809e98>] (__dump_stack lib/dump_stack.c:79 [inline])
[<818027ac>] (show_stack) from [<81809e98>] (dump_stack+0xb8/0xe8 lib/dump_stack.c:120)
[<81809de0>] (dump_stack) from [<81804a00>] (print_usage_bug.part.0+0x228/0x230 kernel/locking/lockdep.c:3806)
r7:86bcb768 r6:81a0326c r5:830f96a8 r4:86bcb0c0
[<818047d8>] (print_usage_bug.part.0) from [<802bb1b8>] (print_usage_bug kernel/locking/lockdep.c:3776 [inline])
[<818047d8>] (print_usage_bug.part.0) from [<802bb1b8>] (valid_state kernel/locking/lockdep.c:3818 [inline])
[<818047d8>] (print_usage_bug.part.0) from [<802bb1b8>] (mark_lock_irq kernel/locking/lockdep.c:4021 [inline])
[<818047d8>] (print_usage_bug.part.0) from [<802bb1b8>] (mark_lock.part.0+0xc34/0x136c kernel/locking/lockdep.c:4478)
r10:83278fe8 r9:82c6d748 r8:00000000 r7:82c6d2d4 r6:00000004 r5:86bcb768
r4:00000006
[<802ba584>] (mark_lock.part.0) from [<802bc644>] (mark_lock kernel/locking/lockdep.c:4442 [inline])
[<802ba584>] (mark_lock.part.0) from [<802bc644>] (mark_usage kernel/locking/lockdep.c:4391 [inline])
[<802ba584>] (mark_lock.part.0) from [<802bc644>] (__lock_acquire+0x9bc/0x3318 kernel/locking/lockdep.c:4854)
r10:86bcb768 r9:86bcb0c0 r8:00000001 r7:00040000 r6:0000075a r5:830f96a8
r4:00000000
[<802bbc88>] (__lock_acquire) from [<802bfb90>] (lock_acquire.part.0+0xf0/0x41c kernel/locking/lockdep.c:5510)
r10:00000000 r9:600d0013 r8:00000000 r7:00000000 r6:828a2680 r5:828a2680
r4:861e5bc8
[<802bfaa0>] (lock_acquire.part.0) from [<802bff28>] (lock_acquire+0x6c/0x74 kernel/locking/lockdep.c:5483)
r10:8146137c r9:00000000 r8:00000001 r7:00000000 r6:00000000 r5:00000000
r4:ff7c9dec
[<802bfebc>] (lock_acquire) from [<81381eb4>] (do_write_seqcount_begin_nested include/linux/seqlock.h:520 [inline])
[<802bfebc>] (lock_acquire) from [<81381eb4>] (do_write_seqcount_begin include/linux/seqlock.h:545 [inline])
[<802bfebc>] (lock_acquire) from [<81381eb4>] (u64_stats_update_begin include/linux/u64_stats_sync.h:129 [inline])
[<802bfebc>] (lock_acquire) from [<81381eb4>] (__bpf_prog_run_save_cb include/linux/filter.h:727 [inline])
[<802bfebc>] (lock_acquire) from [<81381eb4>] (bpf_prog_run_save_cb include/linux/filter.h:741 [inline])
[<802bfebc>] (lock_acquire) from [<81381eb4>] (sk_filter_trim_cap+0x26c/0x434 net/core/filter.c:149)
r10:a4095dd0 r9:ff7c9dd0 r8:e44be000 r7:8146137c r6:00000001 r5:8611ba80
r4:00000000
[<81381c48>] (sk_filter_trim_cap) from [<8146137c>] (sk_filter include/linux/filter.h:867 [inline])
[<81381c48>] (sk_filter_trim_cap) from [<8146137c>] (do_one_broadcast net/netlink/af_netlink.c:1468 [inline])
[<81381c48>] (sk_filter_trim_cap) from [<8146137c>] (netlink_broadcast_filtered+0x27c/0x4fc net/netlink/af_netlink.c:1520)
r10:00000001 r9:833d6b1c r8:00000000 r7:8572f864 r6:8611ba80 r5:8698d800
r4:8572f800
[<81461100>] (netlink_broadcast_filtered) from [<81463e60>] (netlink_broadcast net/netlink/af_netlink.c:1544 [inline])
[<81461100>] (netlink_broadcast_filtered) from [<81463e60>] (netlink_sendmsg+0x3d0/0x478 net/netlink/af_netlink.c:1925)
r10:00000000 r9:00000002 r8:8698d800 r7:000000b7 r6:8611b900 r5:861e5f50
r4:86aa3000
[<81463a90>] (netlink_sendmsg) from [<81321f54>] (sock_sendmsg_nosec net/socket.c:654 [inline])
[<81463a90>] (netlink_sendmsg) from [<81321f54>] (sock_sendmsg+0x3c/0x4c net/socket.c:674)
r10:00000000 r9:861e5dd4 r8:00000000 r7:86570000 r6:00000000 r5:86570000
r4:861e5f50
[<81321f18>] (sock_sendmsg) from [<813234d0>] (____sys_sendmsg+0x230/0x29c net/socket.c:2350)
r5:00000040 r4:861e5f50
[<813232a0>] (____sys_sendmsg) from [<8132549c>] (___sys_sendmsg+0xac/0xe4 net/socket.c:2404)
r10:00000128 r9:861e4000 r8:00000000 r7:00000000 r6:86570000 r5:861e5f50
r4:00000000
[<813253f0>] (___sys_sendmsg) from [<81325684>] (__sys_sendmsg net/socket.c:2433 [inline])
[<813253f0>] (___sys_sendmsg) from [<81325684>] (__do_sys_sendmsg net/socket.c:2442 [inline])
[<813253f0>] (___sys_sendmsg) from [<81325684>] (sys_sendmsg+0x58/0xa0 net/socket.c:2440)
r8:80200224 r7:00000128 r6:00000000 r5:7eaa541c r4:86570000
[<8132562c>] (sys_sendmsg) from [<80200060>] (ret_fast_syscall+0x0/0x2c arch/arm/mm/proc-v7.S:64)
Exception stack(0x861e5fa8 to 0x861e5ff0)
5fa0: 00000000 00000000 0000000c 7eaa541c 00000000 00000000
5fc0: 00000000 00000000 76fbf840 00000128 00000000 0000008f 7eaa541c 000563f8
5fe0: 00056110 7eaa53e0 00036cec 76c9bf44
r6:76fbf840 r5:00000000 r4:00000000
Fixes: 492ecee892c2 ("bpf: enable program stats")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211026214133.3114279-2-eric.dumazet@gmail.com
|
|
Add a flag to `enum libbpf_strict_mode' to disable the global
`bpf_objects_list', preventing race conditions when concurrent threads
call bpf_object__open() or bpf_object__close().
bpf_object__next() will return NULL if this option is set.
Callers may achieve the same workflow by tracking bpf_objects in
application code.
[0] Closes: https://github.com/libbpf/libbpf/issues/293
Signed-off-by: Joe Burton <jevburton@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211026223528.413950-1-jevburton.kernel@gmail.com
|
|
Function in modules could appear in /proc/kallsyms in random order.
ffffffffa02608a0 t bpf_testmod_loop_test
ffffffffa02600c0 t __traceiter_bpf_testmod_test_writable_bare
ffffffffa0263b60 d __tracepoint_bpf_testmod_test_write_bare
ffffffffa02608c0 T bpf_testmod_test_read
ffffffffa0260d08 t __SCT__tp_func_bpf_testmod_test_writable_bare
ffffffffa0263300 d __SCK__tp_func_bpf_testmod_test_read
ffffffffa0260680 T bpf_testmod_test_write
ffffffffa0260860 t bpf_testmod_test_mod_kfunc
Therefore, we cannot reliably use kallsyms_find_next() to find the end of
a function. Replace it with a simple guess (start + 128). This is good
enough for this test.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211022234814.318457-1-songliubraving@fb.com
|
|
Skipping the second half of the test is not enough to silent the warning
in dmesg. Skip the whole test before we can either properly silent the
warning in kernel, or fix LBR snapshot for VM.
Fixes: 025bd7c753aa ("selftests/bpf: Add test for bpf_get_branch_snapshot")
Fixes: aa67fdb46436 ("selftests/bpf: Skip the second half of get_branch_snapshot in vm")
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211026000733.477714-1-songliubraving@fb.com
|
|
Ilya Leoshkevich says:
====================
v2: https://lore.kernel.org/bpf/20211025131214.731972-1-iii@linux.ibm.com/
v2 -> v3: Split the fix from the cleanup (Daniel).
v1: https://lore.kernel.org/bpf/20211021234653.643302-1-iii@linux.ibm.com/
v1 -> v2: Drop bpf_core_calc_field_relo() restructuring, split the
__BYTE_ORDER__ change (Andrii).
Hi,
this series fixes test failures in core_reloc on s390.
Patch 1 fixes an endianness bug with __BYTE_ORDER vs __BYTE_ORDER__.
Patches 2-5 make the rest of the code consistent in that respect.
Patch 6 fixes an endianness issue in test_core_reloc_mods.
Best regards,
Ilya
====================
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
|