Age | Commit message (Collapse) | Author |
|
In arch/arm64/include/uapi/asm/kvm.h, we have
#define KVM_VGIC_V2_CPU_SIZE 0x2000
So the CPU interface address space should cover 8 KByte not 4 KByte.
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Link: https://lore.kernel.org/r/20240623164542.2999626-3-changyuanl@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
The expression `irq_type[n]` may confuse readers to interpret `n`
as the bit position and think of CPU = 1 << 0, SPI = 1 << 1, and
PPI = 1 << 2.
Since arch/arm64/include/uapi/asm/kvm.h already has macro definitions
for the allowed values, this commit uses these symbols to clear up
the ambiguity.
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Link: https://lore.kernel.org/r/20240623164542.2999626-2-changyuanl@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
BDF is the acronym for Bus, Device, Function.
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Link: https://lore.kernel.org/r/20240623164542.2999626-1-changyuanl@google.com
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
|
|
Add documentation topic for Confidential Computing (CoCo) VM support
in Linux guests on Hyper-V.
Signed-off-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Easwar Hariharan <eahariha@linux.microsoft.com>
Link: https://lore.kernel.org/r/20240618165059.10174-1-mhklinux@outlook.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <20240618165059.10174-1-mhklinux@outlook.com>
|
|
Currently, the sev-guest driver uses the vmpck-0 key by default. When an
SVSM is present, the kernel is running at a VMPL other than 0 and the
vmpck-0 key is no longer available. If a specific vmpck key has not be
requested by the user via the vmpck_id module parameter, choose the
vmpck key based on the active VMPL level.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/b88081c5d88263176849df8ea93e90a404619cab.1717600736.git.thomas.lendacky@amd.com
|
|
When a vCPU is interrupted by a signal while running a nested guest,
KVM will exit to userspace with L2 state. However, userspace has no
way to know whether it sees L1 or L2 state (besides calling
KVM_GET_STATS_FD, which does not have a stable ABI).
This causes multiple problems:
The simplest one is L2 state corruption when userspace marks the sregs
as dirty. See this mailing list thread [1] for a complete discussion.
Another problem is that if userspace decides to continue by emulating
instructions, it will unknowingly emulate with L2 state as if L1
doesn't exist, which can be considered a weird guest escape.
Introduce a new flag, KVM_RUN_X86_GUEST_MODE, in the kvm_run data
structure, which is set when the vCPU exited while running a nested
guest. Also introduce a new capability, KVM_CAP_X86_GUEST_MODE, to
advertise the functionality to userspace.
[1] https://lore.kernel.org/kvm/20240416123558.212040-1-julian.stecklina@cyberus-technology.de/T/#m280aadcb2e10ae02c191a7dc4ed4b711a74b1f55
Signed-off-by: Thomas Prescher <thomas.prescher@cyberus-technology.de>
Signed-off-by: Julian Stecklina <julian.stecklina@cyberus-technology.de>
Link: https://lore.kernel.org/r/20240508132502.184428-1-julian.stecklina@cyberus-technology.de
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Improve the description for the KVM_CAP_X86_BUS_LOCK_EXIT capability to
fix a few typos and grammar issues, and to clarify the purpose of the
capability.
Signed-off-by: Carlos López <clopez@suse.de>
Link: https://lore.kernel.org/r/20240424105616.29596-1-clopez@suse.de
[sean: massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
The patch adds a one-reg register identifier which can be used to
read and set the virtual HASHPKEYR for the guest during enter/exit
with KVM_REG_PPC_HASHPKEYR. The specific SPR KVM API documentation
too updated.
Signed-off-by: Shivaprasad G Bhat <sbhat@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/171759285547.1480.12374595786792346073.stgit@linux.ibm.com
|
|
The patch adds a one-reg register identifier which can be used to
read and set the virtual HASHKEYR for the guest during enter/exit
with KVM_REG_PPC_HASHKEYR. The specific SPR KVM API documentation
too updated.
Signed-off-by: Shivaprasad G Bhat <sbhat@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/171759283170.1480.12904332463112769129.stgit@linux.ibm.com
|
|
The patch adds a one-reg register identifier which can be used to
read and set the DEXCR for the guest during enter/exit with
KVM_REG_PPC_DEXCR. The specific SPR KVM API documentation
too updated.
Signed-off-by: Shivaprasad G Bhat <sbhat@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/171759279613.1480.12873911783530175699.stgit@linux.ibm.com
|
|
Drop KVM's emulation of CR0.CD=1 on Intel CPUs now that KVM no longer
honors guest MTRR memtypes, as forcing UC memory for VMs with
non-coherent DMA only makes sense if the guest is using something other
than PAT to configure the memtype for the DMA region.
Furthermore, KVM has forced WB memory for CR0.CD=1 since commit
fb279950ba02 ("KVM: vmx: obey KVM_QUIRK_CD_NW_CLEARED"), and no known
VMM in existence disables KVM_X86_QUIRK_CD_NW_CLEARED, let alone does
so with non-coherent DMA.
Lastly, commit fb279950ba02 ("KVM: vmx: obey KVM_QUIRK_CD_NW_CLEARED") was
from the same author as commit b18d5431acc7 ("KVM: x86: fix CR0.CD
virtualization"), and followed by a mere month. I.e. forcing UC memory
was likely the result of code inspection or perhaps misdiagnosed failures,
and not the necessitate by a concrete use case.
Update KVM's documentation to note that KVM_X86_QUIRK_CD_NW_CLEARED is now
AMD-only, and to take an erratum for lack of CR0.CD virtualization on
Intel.
Tested-by: Xiangfei Ma <xiangfeix.ma@intel.com>
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Link: https://lore.kernel.org/r/20240309010929.1403984-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Remove KVM's support for virtualizing guest MTRR memtypes, as full MTRR
adds no value, negatively impacts guest performance, and is a maintenance
burden due to it's complexity and oddities.
KVM's approach to virtualizating MTRRs make no sense, at all. KVM *only*
honors guest MTRR memtypes if EPT is enabled *and* the guest has a device
that may perform non-coherent DMA access. From a hardware virtualization
perspective of guest MTRRs, there is _nothing_ special about EPT. Legacy
shadowing paging doesn't magically account for guest MTRRs, nor does NPT.
Unwinding and deciphering KVM's murky history, the MTRR virtualization
code appears to be the result of misdiagnosed issues when EPT + VT-d with
passthrough devices was enabled years and years ago. And importantly, the
underlying bugs that were fudged around by honoring guest MTRR memtypes
have since been fixed (though rather poorly in some cases).
The zapping GFNs logic in the MTRR virtualization code came from:
commit efdfe536d8c643391e19d5726b072f82964bfbdb
Author: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Date: Wed May 13 14:42:27 2015 +0800
KVM: MMU: fix MTRR update
Currently, whenever guest MTRR registers are changed
kvm_mmu_reset_context is called to switch to the new root shadow page
table, however, it's useless since:
1) the cache type is not cached into shadow page's attribute so that
the original root shadow page will be reused
2) the cache type is set on the last spte, that means we should sync
the last sptes when MTRR is changed
This patch fixs this issue by drop all the spte in the gfn range which
is being updated by MTRR
which was a fix for:
commit 0bed3b568b68e5835ef5da888a372b9beabf7544
Author: Sheng Yang <sheng@linux.intel.com>
AuthorDate: Thu Oct 9 16:01:54 2008 +0800
Commit: Avi Kivity <avi@redhat.com>
CommitDate: Wed Dec 31 16:51:44 2008 +0200
KVM: Improve MTRR structure
As well as reset mmu context when set MTRR.
which was part of a "MTRR/PAT support for EPT" series that also added:
+ if (mt_mask) {
+ mt_mask = get_memory_type(vcpu, gfn) <<
+ kvm_x86_ops->get_mt_mask_shift();
+ spte |= mt_mask;
+ }
where get_memory_type() was a truly gnarly helper to retrieve the guest
MTRR memtype for a given memtype. And *very* subtly, at the time of that
change, KVM *always* set VMX_EPT_IGMT_BIT,
kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
VMX_EPT_WRITABLE_MASK |
VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT |
VMX_EPT_IGMT_BIT);
which came in via:
commit 928d4bf747e9c290b690ff515d8f81e8ee226d97
Author: Sheng Yang <sheng@linux.intel.com>
AuthorDate: Thu Nov 6 14:55:45 2008 +0800
Commit: Avi Kivity <avi@redhat.com>
CommitDate: Tue Nov 11 21:00:37 2008 +0200
KVM: VMX: Set IGMT bit in EPT entry
There is a potential issue that, when guest using pagetable without vmexit when
EPT enabled, guest would use PAT/PCD/PWT bits to index PAT msr for it's memory,
which would be inconsistent with host side and would cause host MCE due to
inconsistent cache attribute.
The patch set IGMT bit in EPT entry to ignore guest PAT and use WB as default
memory type to protect host (notice that all memory mapped by KVM should be WB).
Note the CommitDates! The AuthorDates strongly suggests Sheng Yang added
the whole "ignoreIGMT things as a bug fix for issues that were detected
during EPT + VT-d + passthrough enabling, but it was applied earlier
because it was a generic fix.
Jumping back to 0bed3b568b68 ("KVM: Improve MTRR structure"), the other
relevant code, or rather lack thereof, is the handling of *host* MMIO.
That fix came in a bit later, but given the author and timing, it's safe
to say it was all part of the same EPT+VT-d enabling mess.
commit 2aaf69dcee864f4fb6402638dd2f263324ac839f
Author: Sheng Yang <sheng@linux.intel.com>
AuthorDate: Wed Jan 21 16:52:16 2009 +0800
Commit: Avi Kivity <avi@redhat.com>
CommitDate: Sun Feb 15 02:47:37 2009 +0200
KVM: MMU: Map device MMIO as UC in EPT
Software are not allow to access device MMIO using cacheable memory type, the
patch limit MMIO region with UC and WC(guest can select WC using PAT and
PCD/PWT).
In addition to the host MMIO and IGMT issues, KVM's MTRR virtualization
was obviously never tested on NPT until much later, which lends further
credence to the theory/argument that this was all the result of
misdiagnosed issues.
Discussion from the EPT+MTRR enabling thread[*] more or less confirms that
Sheng Yang was trying to resolve issues with passthrough MMIO.
* Sheng Yang
: Do you mean host(qemu) would access this memory and if we set it to guest
: MTRR, host access would be broken? We would cover this in our shadow MTRR
: patch, for we encountered this in video ram when doing some experiment with
: VGA assignment.
And in the same thread, there's also what appears to be confirmation of
Intel running into issues with Windows XP related to a guest device driver
mapping DMA with WC in the PAT.
* Avi Kavity
: Sheng Yang wrote:
: > Yes... But it's easy to do with assigned devices' mmio, but what if guest
: > specific some non-mmio memory's memory type? E.g. we have met one issue in
: > Xen, that a assigned-device's XP driver specific one memory region as buffer,
: > and modify the memory type then do DMA.
: >
: > Only map MMIO space can be first step, but I guess we can modify assigned
: > memory region memory type follow guest's?
: >
:
: With ept/npt, we can't, since the memory type is in the guest's
: pagetable entries, and these are not accessible.
[*] https://lore.kernel.org/all/1223539317-32379-1-git-send-email-sheng@linux.intel.com
So, for the most part, what likely happened is that 15 years ago, a few
engineers (a) fixed a #MC problem by ignoring guest PAT and (b) initially
"fixed" passthrough device MMIO by emulating *guest* MTRRs. Except for
the below case, everything since then has been a result of those two
intertwined changes.
The one exception, which is actually yet more confirmation of all of the
above, is the revert of Paolo's attempt at "full" virtualization of guest
MTRRs:
commit 606decd67049217684e3cb5a54104d51ddd4ef35
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Thu Oct 1 13:12:47 2015 +0200
Revert "KVM: x86: apply guest MTRR virtualization on host reserved pages"
This reverts commit fd717f11015f673487ffc826e59b2bad69d20fe5.
It was reported to cause Machine Check Exceptions (bug 104091).
...
commit fd717f11015f673487ffc826e59b2bad69d20fe5
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Tue Jul 7 14:38:13 2015 +0200
KVM: x86: apply guest MTRR virtualization on host reserved pages
Currently guest MTRR is avoided if kvm_is_reserved_pfn returns true.
However, the guest could prefer a different page type than UC for
such pages. A good example is that pass-throughed VGA frame buffer is
not always UC as host expected.
This patch enables full use of virtual guest MTRRs.
I.e. Paolo tried to add back KVM's behavior before "Map device MMIO as UC
in EPT" and got the same result: machine checks, likely due to the guest
MTRRs not being trustworthy/sane at all times.
Note, Paolo also tried to enable MTRR virtualization on SVM+NPT, but that
too got reverted. Unfortunately, it doesn't appear that anyone ever found
a smoking gun, i.e. exactly why emulating guest MTRRs via NPT PAT caused
extremely slow boot times doesn't appear to have a definitive root cause.
commit fc07e76ac7ffa3afd621a1c3858a503386a14281
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Thu Oct 1 13:20:22 2015 +0200
Revert "KVM: SVM: use NPT page attributes"
This reverts commit 3c2e7f7de3240216042b61073803b61b9b3cfb22.
Initializing the mapping from MTRR to PAT values was reported to
fail nondeterministically, and it also caused extremely slow boot
(due to caching getting disabled---bug 103321) with assigned devices.
...
commit 3c2e7f7de3240216042b61073803b61b9b3cfb22
Author: Paolo Bonzini <pbonzini@redhat.com>
Date: Tue Jul 7 14:32:17 2015 +0200
KVM: SVM: use NPT page attributes
Right now, NPT page attributes are not used, and the final page
attribute depends solely on gPAT (which however is not synced
correctly), the guest MTRRs and the guest page attributes.
However, we can do better by mimicking what is done for VMX.
In the absence of PCI passthrough, the guest PAT can be ignored
and the page attributes can be just WB. If passthrough is being
used, instead, keep respecting the guest PAT, and emulate the guest
MTRRs through the PAT field of the nested page tables.
The only snag is that WP memory cannot be emulated correctly,
because Linux's default PAT setting only includes the other types.
In short, honoring guest MTRRs for VMX was initially a workaround of
sorts for KVM ignoring guest PAT *and* for KVM not forcing UC for host
MMIO. And while there *are* known cases where honoring guest MTRRs is
desirable, e.g. passthrough VGA frame buffers, the desired behavior in
that case is to get WC instead of UC, i.e. at this point it's for
performance, not correctness.
Furthermore, the complete absence of MTRR virtualization on NPT and
shadow paging proves that, while KVM theoretically can do better, it's
by no means necessary for correctnesss.
Lastly, since kernels mostly rely on firmware to do MTRR setup, and the
host typically provides guest firmware, honoring guest MTRRs is effectively
honoring *host* userspace memtypes, which is also backwards. I.e. it
would be far better for host userspace to communicate its desired memtype
directly to KVM (or perhaps indirectly via VMAs in the host kernel), not
through guest MTRRs.
Tested-by: Xiangfei Ma <xiangfeix.ma@intel.com>
Tested-by: Yongwei Ma <yongwei.ma@intel.com>
Link: https://lore.kernel.org/r/20240309010929.1403984-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Add KVM_CAP_X86_APIC_BUS_CYCLES_NS capability to configure the APIC
bus clock frequency for APIC timer emulation.
Allow KVM_ENABLE_CAPABILITY(KVM_CAP_X86_APIC_BUS_CYCLES_NS) to set the
frequency in nanoseconds. When using this capability, the user space
VMM should configure CPUID leaf 0x15 to advertise the frequency.
Vishal reported that the TDX guest kernel expects a 25MHz APIC bus
frequency but ends up getting interrupts at a significantly higher rate.
The TDX architecture hard-codes the core crystal clock frequency to
25MHz and mandates exposing it via CPUID leaf 0x15. The TDX architecture
does not allow the VMM to override the value.
In addition, per Intel SDM:
"The APIC timer frequency will be the processor’s bus clock or core
crystal clock frequency (when TSC/core crystal clock ratio is
enumerated in CPUID leaf 0x15) divided by the value specified in
the divide configuration register."
The resulting 25MHz APIC bus frequency conflicts with the KVM hardcoded
APIC bus frequency of 1GHz.
The KVM doesn't enumerate CPUID leaf 0x15 to the guest unless the user
space VMM sets it using KVM_SET_CPUID. If the CPUID leaf 0x15 is
enumerated, the guest kernel uses it as the APIC bus frequency. If not,
the guest kernel measures the frequency based on other known timers like
the ACPI timer or the legacy PIT. As reported by Vishal the TDX guest
kernel expects a 25MHz timer frequency but gets timer interrupt more
frequently due to the 1GHz frequency used by KVM.
To ensure that the guest doesn't have a conflicting view of the APIC bus
frequency, allow the userspace to tell KVM to use the same frequency that
TDX mandates instead of the default 1Ghz.
Reported-by: Vishal Annapurve <vannapurve@google.com>
Closes: https://lore.kernel.org/lkml/20231006011255.4163884-1-vannapurve@google.com
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/6748a4c12269e756f0c48680da8ccc5367c31ce7.1714081726.git.reinette.chatre@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Pull base x86 KVM support for running SEV-SNP guests from Michael Roth:
* add some basic infrastructure and introduces a new KVM_X86_SNP_VM
vm_type to handle differences versus the existing KVM_X86_SEV_VM and
KVM_X86_SEV_ES_VM types.
* implement the KVM API to handle the creation of a cryptographic
launch context, encrypt/measure the initial image into guest memory,
and finalize it before launching it.
* implement handling for various guest-generated events such as page
state changes, onlining of additional vCPUs, etc.
* implement the gmem/mmu hooks needed to prepare gmem-allocated pages
before mapping them into guest private memory ranges as well as
cleaning them up prior to returning them to the host for use as
normal memory. Because those cleanup hooks supplant certain
activities like issuing WBINVDs during KVM MMU invalidations, avoid
duplicating that work to avoid unecessary overhead.
This merge leaves out support support for attestation guest requests
and for loading the signing keys to be used for attestation requests.
|
|
The documentation for KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM doesn't use the
correct keyword formatting, which breaks rendering on
https://www.kernel.org/doc/html/latest/virt/kvm/api.html.
Signed-off-by: Julian Stecklina <julian.stecklina@cyberus-technology.de>
Link: https://lore.kernel.org/r/20240520143220.340737-1-julian.stecklina@cyberus-technology.de
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Update KVM's halt-polling documentation to correclty reflect that KVM has
4 relevant module params, not 3 params.
Co-developed-by: Rajendran Jaishankar <jaishankar.rajendran@intel.com>
Signed-off-by: Rajendran Jaishankar <jaishankar.rajendran@intel.com>
Signed-off-by: Parshuram Sangle <parshuram.sangle@intel.com>
Link: https://lore.kernel.org/r/20231102154628.2120-3-parshuram.sangle@intel.com
[sean: drop unrelated and misleading doc update]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Default halt_poll_ns_shrink value of 0 always resets polling interval
to 0 on an un-successful poll where vcpu wakeup is not received. This is
mostly to avoid pointless polling for more number of shorter intervals. But
disabled shrink assumes vcpu wakeup is less likely to be received in
subsequent shorter polling intervals. Another side effect of 0 shrink value
is that, even on a successful poll if total block time was greater than
current polling interval, the polling interval starts over from 0 instead
of shrinking by a factor.
Enabling shrink with value of 2 allows the polling interval to gradually
decrement in case of un-successful poll events as well. This gives a fair
chance for successful polling events in subsequent polling intervals rather
than resetting it to 0 and starting over from grow_start.
Below kvm stat log snippet shows interleaved growth and shrinking of
polling interval:
87162647182125: kvm_halt_poll_ns: vcpu 0: halt_poll_ns 10000 (grow 0)
87162647637763: kvm_halt_poll_ns: vcpu 0: halt_poll_ns 20000 (grow 10000)
87162649627943: kvm_halt_poll_ns: vcpu 0: halt_poll_ns 40000 (grow 20000)
87162650892407: kvm_halt_poll_ns: vcpu 0: halt_poll_ns 20000 (shrink 40000)
87162651540378: kvm_halt_poll_ns: vcpu 0: halt_poll_ns 40000 (grow 20000)
87162652276768: kvm_halt_poll_ns: vcpu 0: halt_poll_ns 20000 (shrink 40000)
87162652515037: kvm_halt_poll_ns: vcpu 0: halt_poll_ns 40000 (grow 20000)
87162653383787: kvm_halt_poll_ns: vcpu 0: halt_poll_ns 20000 (shrink 40000)
87162653627670: kvm_halt_poll_ns: vcpu 0: halt_poll_ns 10000 (shrink 20000)
87162653796321: kvm_halt_poll_ns: vcpu 0: halt_poll_ns 20000 (grow 10000)
87162656171645: kvm_halt_poll_ns: vcpu 0: halt_poll_ns 10000 (shrink 20000)
87162661607487: kvm_halt_poll_ns: vcpu 0: halt_poll_ns 0 (shrink 10000)
Having both grow and shrink enabled creates a balance in polling interval
growth and shrink behavior. Tests show improved successful polling attempt
ratio which contribute to VM performance. Power penalty is quite negligible
as shrunk polling intervals create bursts of very short durations.
Performance assessment results show 3-6% improvements in CPU+GPU, Memory
and Storage Android VM workloads whereas 5-9% improvement in average FPS of
gaming VM workloads.
Power penalty is below 1% where host OS is either idle or running a
native workload having 2 VMs enabled. CPU/GPU intensive gaming workloads
as well do not show any increased power overhead with shrink enabled.
Co-developed-by: Rajendran Jaishankar <jaishankar.rajendran@intel.com>
Signed-off-by: Rajendran Jaishankar <jaishankar.rajendran@intel.com>
Signed-off-by: Parshuram Sangle <parshuram.sangle@intel.com>
Link: https://lore.kernel.org/r/20231102154628.2120-2-parshuram.sangle@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Current documentation does not describe how Linux handles the synthetic
interrupt controller (synic) that Hyper-V provides to guest VMs, nor how
VMBus or timer interrupts are handled. Add text describing the synic and
reorganize existing text to make this more clear.
Signed-off-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Easwar Hariharan <eahariha@linux.microsoft.com>
Reviewed-by: Bagas Sanjaya <bagasdotme@gmail.com>
Link: https://lore.kernel.org/r/20240511133818.19649-2-mhklinux@outlook.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <20240511133818.19649-2-mhklinux@outlook.com>
|
|
Update spelling from "VMbus" to "VMBus" to match Hyper-V product
documentation. Also correct typo: "SNP-SEV" should be "SEV-SNP".
Signed-off-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Easwar Hariharan <eahariha@linux.microsoft.com>
Reviewed-by: Bagas Sanjaya <bagasdotme@gmail.com>
Link: https://lore.kernel.org/r/20240511133818.19649-1-mhklinux@outlook.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <20240511133818.19649-1-mhklinux@outlook.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
- Enable BPF Kernel Functions (kfuncs) in the powerpc BPF JIT.
- Allow per-process DEXCR (Dynamic Execution Control Register) settings
via prctl, notably NPHIE which controls hashst/hashchk for ROP
protection.
- Install powerpc selftests in sub-directories. Note this changes the
way run_kselftest.sh needs to be invoked for powerpc selftests.
- Change fadump (Firmware Assisted Dump) to better handle memory
add/remove.
- Add support for passing additional parameters to the fadump kernel.
- Add support for updating the kdump image on CPU/memory add/remove
events.
- Other small features, cleanups and fixes.
Thanks to Andrew Donnellan, Andy Shevchenko, Aneesh Kumar K.V, Arnd
Bergmann, Benjamin Gray, Bjorn Helgaas, Christian Zigotzky, Christophe
Jaillet, Christophe Leroy, Colin Ian King, Cédric Le Goater, Dr. David
Alan Gilbert, Erhard Furtner, Frank Li, GUO Zihua, Ganesh Goudar, Geoff
Levand, Ghanshyam Agrawal, Greg Kurz, Hari Bathini, Joel Stanley, Justin
Stitt, Kunwu Chan, Li Yang, Lidong Zhong, Madhavan Srinivasan, Mahesh
Salgaonkar, Masahiro Yamada, Matthias Schiffer, Naresh Kamboju, Nathan
Chancellor, Nathan Lynch, Naveen N Rao, Nicholas Miehlbradt, Ran Wang,
Randy Dunlap, Ritesh Harjani, Sachin Sant, Shirisha Ganta, Shrikanth
Hegde, Sourabh Jain, Stephen Rothwell, sundar, Thorsten Blum, Vaibhav
Jain, Xiaowei Bao, Yang Li, and Zhao Chenhui.
* tag 'powerpc-6.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (85 commits)
powerpc/fadump: Fix section mismatch warning
powerpc/85xx: fix compile error without CONFIG_CRASH_DUMP
powerpc/fadump: update documentation about bootargs_append
powerpc/fadump: pass additional parameters when fadump is active
powerpc/fadump: setup additional parameters for dump capture kernel
powerpc/pseries/fadump: add support for multiple boot memory regions
selftests/powerpc/dexcr: Fix spelling mistake "predicition" -> "prediction"
KVM: PPC: Book3S HV nestedv2: Fix an error handling path in gs_msg_ops_kvmhv_nestedv2_config_fill_info()
KVM: PPC: Fix documentation for ppc mmu caps
KVM: PPC: code cleanup for kvmppc_book3s_irqprio_deliver
KVM: PPC: Book3S HV nestedv2: Cancel pending DEC exception
powerpc/xmon: Check cpu id in commands "c#", "dp#" and "dx#"
powerpc/code-patching: Use dedicated memory routines for patching
powerpc/code-patching: Test patch_instructions() during boot
powerpc64/kasan: Pass virtual addresses to kasan_init_phys_region()
powerpc: rename SPRN_HID2 define to SPRN_HID2_750FX
powerpc: Fix typos
powerpc/eeh: Fix spelling of the word "auxillary" and update comment
macintosh/ams: Fix unused variable warning
powerpc/Makefile: Remove bits related to the previous use of -mcmodel=large
...
|
|
Add a KVM_SEV_SNP_LAUNCH_FINISH command to finalize the cryptographic
launch digest which stores the measurement of the guest at launch time.
Also extend the existing SNP firmware data structures to support
disabling the use of Versioned Chip Endorsement Keys (VCEK) by guests as
part of this command.
While finalizing the launch flow, the code also issues the LAUNCH_UPDATE
SNP firmware commands to encrypt/measure the initial VMSA pages for each
configured vCPU, which requires setting the RMP entries for those pages
to private, so also add handling to clean up the RMP entries for these
pages whening freeing vCPUs during shutdown.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Harald Hoyer <harald@profian.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <20240501085210.2213060-8-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
A key aspect of a launching an SNP guest is initializing it with a
known/measured payload which is then encrypted into guest memory as
pre-validated private pages and then measured into the cryptographic
launch context created with KVM_SEV_SNP_LAUNCH_START so that the guest
can attest itself after booting.
Since all private pages are provided by guest_memfd, make use of the
kvm_gmem_populate() interface to handle this. The general flow is that
guest_memfd will handle allocating the pages associated with the GPA
ranges being initialized by each particular call of
KVM_SEV_SNP_LAUNCH_UPDATE, copying data from userspace into those pages,
and then the post_populate callback will do the work of setting the
RMP entries for these pages to private and issuing the SNP firmware
calls to encrypt/measure them.
For more information see the SEV-SNP specification.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <20240501085210.2213060-7-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM_SEV_SNP_LAUNCH_START begins the launch process for an SEV-SNP guest.
The command initializes a cryptographic digest context used to construct
the measurement of the guest. Other commands can then at that point be
used to load/encrypt data into the guest's initial launch image.
For more information see the SEV-SNP specification.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <20240501085210.2213060-6-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM cleanups for 6.10:
- Misc cleanups extracted from the "exit on missing userspace mapping" series,
which has been put on hold in anticipation of a "KVM Userfault" approach,
which should provide a superset of functionality.
- Remove kvm_make_all_cpus_request_except(), which got added to hack around an
AVIC bug, and then became dead code when a more robust fix came along.
- Fix a goof in the KVM_CREATE_GUEST_MEMFD documentation.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for Linux 6.10
- Move a lot of state that was previously stored on a per vcpu
basis into a per-CPU area, because it is only pertinent to the
host while the vcpu is loaded. This results in better state
tracking, and a smaller vcpu structure.
- Add full handling of the ERET/ERETAA/ERETAB instructions in
nested virtualisation. The last two instructions also require
emulating part of the pointer authentication extension.
As a result, the trap handling of pointer authentication has
been greattly simplified.
- Turn the global (and not very scalable) LPI translation cache
into a per-ITS, scalable cache, making non directly injected
LPIs much cheaper to make visible to the vcpu.
- A batch of pKVM patches, mostly fixes and cleanups, as the
upstreaming process seems to be resuming. Fingers crossed!
- Allocate PPIs and SGIs outside of the vcpu structure, allowing
for smaller EL2 mapping and some flexibility in implementing
more or less than 32 private IRQs.
- Purge stale mpidr_data if a vcpu is created after the MPIDR
map has been created.
- Preserve vcpu-specific ID registers across a vcpu reset.
- Various minor cleanups and improvements.
|
|
The GHCB protocol version may be different from one guest to the next.
Add a field to track it for each KVM instance and extend KVM_SEV_INIT2
to allow it to be configured by userspace.
Now that all SEV-ES support for GHCB protocol version 2 is in place, go
ahead and default to it when creating SEV-ES guests through the new
KVM_SEV_INIT2 interface. Keep the older KVM_SEV_ES_INIT interface
restricted to GHCB protocol version 1.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-ID: <20240501071048.2208265-5-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The documentation mentions KVM_CAP_PPC_RADIX_MMU, but the defines in the
kvm headers spell it KVM_CAP_PPC_MMU_RADIX. Similarly with
KVM_CAP_PPC_MMU_HASH_V3.
Fixes: c92701322711 ("KVM: PPC: Book3S HV: Add userspace interfaces for POWER9 MMU")
Signed-off-by: Joel Stanley <joel@jms.id.au>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230411061446.26324-1-joel@jms.id.au
|
|
The KVM_CREATE_GUEST_MEMFD ioctl returns a file descriptor, and is
documented as such in the description. However, the "Returns" field
in the documentation states that the ioctl returns 0 on success.
Update this to match the description.
Signed-off-by: Carlos López <clopez@suse.de>
Fixes: a7800aa80ea4 ("KVM: Add KVM_CREATE_GUEST_MEMFD ioctl() for guest-specific backing memory")
Link: https://lore.kernel.org/r/20240424103317.28522-1-clopez@suse.de
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
* kvm-arm64/pkvm-6.10: (25 commits)
: .
: At last, a bunch of pKVM patches, courtesy of Fuad Tabba.
: From the cover letter:
:
: "This series is a bit of a bombay-mix of patches we've been
: carrying. There's no one overarching theme, but they do improve
: the code by fixing existing bugs in pKVM, refactoring code to
: make it more readable and easier to re-use for pKVM, or adding
: functionality to the existing pKVM code upstream."
: .
KVM: arm64: Force injection of a data abort on NISV MMIO exit
KVM: arm64: Restrict supported capabilities for protected VMs
KVM: arm64: Refactor setting the return value in kvm_vm_ioctl_enable_cap()
KVM: arm64: Document the KVM/arm64-specific calls in hypercalls.rst
KVM: arm64: Rename firmware pseudo-register documentation file
KVM: arm64: Reformat/beautify PTP hypercall documentation
KVM: arm64: Clarify rationale for ZCR_EL1 value restored on guest exit
KVM: arm64: Introduce and use predicates that check for protected VMs
KVM: arm64: Add is_pkvm_initialized() helper
KVM: arm64: Simplify vgic-v3 hypercalls
KVM: arm64: Move setting the page as dirty out of the critical section
KVM: arm64: Change kvm_handle_mmio_return() return polarity
KVM: arm64: Fix comment for __pkvm_vcpu_init_traps()
KVM: arm64: Prevent kmemleak from accessing .hyp.data
KVM: arm64: Do not map the host fpsimd state to hyp in pKVM
KVM: arm64: Rename __tlb_switch_to_{guest,host}() in VHE
KVM: arm64: Support TLB invalidation in guest context
KVM: arm64: Avoid BBM when changing only s/w bits in Stage-2 PTE
KVM: arm64: Check for PTE validity when checking for executable/cacheable
KVM: arm64: Avoid BUG-ing from the host abort path
...
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
If a vcpu exits for a data abort with an invalid syndrome, the
expectations are that userspace has a chance to save the day if
it has requested to see such exits.
However, this is completely futile in the case of a protected VM,
as none of the state is available. In this particular case, inject
a data abort directly into the vcpu, consistent with what userspace
could do.
This also helps with pKVM, which discards all syndrome information when
forwarding data aborts that are not known to be MMIO.
Finally, document this tweak to the API.
Signed-off-by: Fuad Tabba <tabba@google.com>
Acked-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20240423150538.2103045-31-tabba@google.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
KVM/arm64 makes use of the SMCCC "Vendor Specific Hypervisor Service
Call Range" to expose KVM-specific hypercalls to guests in a
discoverable and extensible fashion.
Document the existence of this interface and the discovery hypercall.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Acked-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20240423150538.2103045-28-tabba@google.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
In preparation for describing the guest view of KVM/arm64 hypercalls in
hypercalls.rst, move the existing contents of the file concerning the
firmware pseudo-registers elsewhere.
Cc: Raghavendra Rao Ananta <rananta@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Acked-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20240423150538.2103045-27-tabba@google.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
The PTP hypercall documentation doesn't produce the best-looking table
when formatting in HTML as all of the return value definitions end up
on the same line.
Reformat the PTP hypercall documentation to follow the formatting used
by hypercalls.rst.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Acked-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20240423150538.2103045-26-tabba@google.com
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
The idea that no parameter would ever be necessary when enabling SEV or
SEV-ES for a VM was decidedly optimistic. In fact, in some sense it's
already a parameter whether SEV or SEV-ES is desired. Another possible
source of variability is the desired set of VMSA features, as that affects
the measurement of the VM's initial state and cannot be changed
arbitrarily by the hypervisor.
Create a new sub-operation for KVM_MEMORY_ENCRYPT_OP that can take a struct,
and put the new op to work by including the VMSA features as a field of the
struct. The existing KVM_SEV_INIT and KVM_SEV_ES_INIT use the full set of
supported VMSA features for backwards compatibility.
The struct also includes the usual bells and whistles for future
extensibility: a flags field that must be zero for now, and some padding
at the end.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-13-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-11-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Compute the set of features to be stored in the VMSA when KVM is
initialized; move it from there into kvm_sev_info when SEV is initialized,
and then into the initial VMSA.
The new variable can then be used to return the set of supported features
to userspace, via the KVM_GET_DEVICE_ATTR ioctl.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-ID: <20240404121327.3107131-6-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Explain that it operates on the VM file descriptor, and also clarify how
detection of SEV operates on old kernels predating commit 2da1ed62d55c
("KVM: SVM: document KVM_MEM_ENCRYPT_OP, let userspace detect if SEV
is available").
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The description of firmware is included part under the "SEV Key Management"
header, part under the KVM_SEV_INIT ioctl. Put these two bits together and
and rename "SEV Key Management" to what it actually is, namely a description
of the KVM_MEMORY_ENCRYPT_OP API.
Reviewed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
HEAD
Guest-side KVM async #PF ABI cleanup for 6.9
Delete kvm_vcpu_pv_apf_data.enabled to fix a goof in KVM's async #PF ABI where
the enabled field pushes the size of "struct kvm_vcpu_pv_apf_data" from 64 to
68 bytes, i.e. beyond a single cache line.
The enabled field is purely a guest-side flag that Linux-as-a-guest uses to
track whether or not the guest has enabled async #PF support. The actual flag
that is passed to the host, i.e. to KVM proper, is a single bit in a synthetic
MSR, MSR_KVM_ASYNC_PF_EN, i.e. is in a location completely unrelated to the
shared kvm_vcpu_pv_apf_data structure.
Simply drop the the field and use a dedicated guest-side per-CPU variable to
fix the ABI, as opposed to fixing the documentation to match reality. KVM has
never consumed kvm_vcpu_pv_apf_data.enabled, so the odds of the ABI change
breaking anything are extremely low.
|
|
Pull kvm updates from Paolo Bonzini:
"S390:
- Changes to FPU handling came in via the main s390 pull request
- Only deliver to the guest the SCLP events that userspace has
requested
- More virtual vs physical address fixes (only a cleanup since
virtual and physical address spaces are currently the same)
- Fix selftests undefined behavior
x86:
- Fix a restriction that the guest can't program a PMU event whose
encoding matches an architectural event that isn't included in the
guest CPUID. The enumeration of an architectural event only says
that if a CPU supports an architectural event, then the event can
be programmed *using the architectural encoding*. The enumeration
does NOT say anything about the encoding when the CPU doesn't
report support the event *in general*. It might support it, and it
might support it using the same encoding that made it into the
architectural PMU spec
- Fix a variety of bugs in KVM's emulation of RDPMC (more details on
individual commits) and add a selftest to verify KVM correctly
emulates RDMPC, counter availability, and a variety of other
PMC-related behaviors that depend on guest CPUID and therefore are
easier to validate with selftests than with custom guests (aka
kvm-unit-tests)
- Zero out PMU state on AMD if the virtual PMU is disabled, it does
not cause any bug but it wastes time in various cases where KVM
would check if a PMC event needs to be synthesized
- Optimize triggering of emulated events, with a nice ~10%
performance improvement in VM-Exit microbenchmarks when a vPMU is
exposed to the guest
- Tighten the check for "PMI in guest" to reduce false positives if
an NMI arrives in the host while KVM is handling an IRQ VM-Exit
- Fix a bug where KVM would report stale/bogus exit qualification
information when exiting to userspace with an internal error exit
code
- Add a VMX flag in /proc/cpuinfo to report 5-level EPT support
- Rework TDP MMU root unload, free, and alloc to run with mmu_lock
held for read, e.g. to avoid serializing vCPUs when userspace
deletes a memslot
- Tear down TDP MMU page tables at 4KiB granularity (used to be
1GiB). KVM doesn't support yielding in the middle of processing a
zap, and 1GiB granularity resulted in multi-millisecond lags that
are quite impolite for CONFIG_PREEMPT kernels
- Allocate write-tracking metadata on-demand to avoid the memory
overhead when a kernel is built with i915 virtualization support
but the workloads use neither shadow paging nor i915 virtualization
- Explicitly initialize a variety of on-stack variables in the
emulator that triggered KMSAN false positives
- Fix the debugregs ABI for 32-bit KVM
- Rework the "force immediate exit" code so that vendor code
ultimately decides how and when to force the exit, which allowed
some optimization for both Intel and AMD
- Fix a long-standing bug where kvm_has_noapic_vcpu could be left
elevated if vCPU creation ultimately failed, causing extra
unnecessary work
- Cleanup the logic for checking if the currently loaded vCPU is
in-kernel
- Harden against underflowing the active mmu_notifier invalidation
count, so that "bad" invalidations (usually due to bugs elsehwere
in the kernel) are detected earlier and are less likely to hang the
kernel
x86 Xen emulation:
- Overlay pages can now be cached based on host virtual address,
instead of guest physical addresses. This removes the need to
reconfigure and invalidate the cache if the guest changes the gpa
but the underlying host virtual address remains the same
- When possible, use a single host TSC value when computing the
deadline for Xen timers in order to improve the accuracy of the
timer emulation
- Inject pending upcall events when the vCPU software-enables its
APIC to fix a bug where an upcall can be lost (and to follow Xen's
behavior)
- Fall back to the slow path instead of warning if "fast" IRQ
delivery of Xen events fails, e.g. if the guest has aliased xAPIC
IDs
RISC-V:
- Support exception and interrupt handling in selftests
- New self test for RISC-V architectural timer (Sstc extension)
- New extension support (Ztso, Zacas)
- Support userspace emulation of random number seed CSRs
ARM:
- Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
- Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
- Conversion of KVM's representation of LPIs to an xarray, utilized
to address serialization some of the serialization on the LPI
injection path
- Support for _architectural_ VHE-only systems, advertised through
the absence of FEAT_E2H0 in the CPU's ID register
- Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
LoongArch:
- Set reserved bits as zero in CPUCFG
- Start SW timer only when vcpu is blocking
- Do not restart SW timer when it is expired
- Remove unnecessary CSR register saving during enter guest
- Misc cleanups and fixes as usual
Generic:
- Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically
always true on all architectures except MIPS (where Kconfig
determines the available depending on CPU capabilities). It is
replaced either by an architecture-dependent symbol for MIPS, and
IS_ENABLED(CONFIG_KVM) everywhere else
- Factor common "select" statements in common code instead of
requiring each architecture to specify it
- Remove thoroughly obsolete APIs from the uapi headers
- Move architecture-dependent stuff to uapi/asm/kvm.h
- Always flush the async page fault workqueue when a work item is
being removed, especially during vCPU destruction, to ensure that
there are no workers running in KVM code when all references to
KVM-the-module are gone, i.e. to prevent a very unlikely
use-after-free if kvm.ko is unloaded
- Grab a reference to the VM's mm_struct in the async #PF worker
itself instead of gifting the worker a reference, so that there's
no need to remember to *conditionally* clean up after the worker
Selftests:
- Reduce boilerplate especially when utilize selftest TAP
infrastructure
- Add basic smoke tests for SEV and SEV-ES, along with a pile of
library support for handling private/encrypted/protected memory
- Fix benign bugs where tests neglect to close() guest_memfd files"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
selftests: kvm: remove meaningless assignments in Makefiles
KVM: riscv: selftests: Add Zacas extension to get-reg-list test
RISC-V: KVM: Allow Zacas extension for Guest/VM
KVM: riscv: selftests: Add Ztso extension to get-reg-list test
RISC-V: KVM: Allow Ztso extension for Guest/VM
RISC-V: KVM: Forward SEED CSR access to user space
KVM: riscv: selftests: Add sstc timer test
KVM: riscv: selftests: Change vcpu_has_ext to a common function
KVM: riscv: selftests: Add guest helper to get vcpu id
KVM: riscv: selftests: Add exception handling support
LoongArch: KVM: Remove unnecessary CSR register saving during enter guest
LoongArch: KVM: Do not restart SW timer when it is expired
LoongArch: KVM: Start SW timer only when vcpu is blocking
LoongArch: KVM: Set reserved bits as zero in CPUCFG
KVM: selftests: Explicitly close guest_memfd files in some gmem tests
KVM: x86/xen: fix recursive deadlock in timer injection
KVM: pfncache: simplify locking and make more self-contained
KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery
KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled
KVM: x86/xen: improve accuracy of Xen timers
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV updates from Borislav Petkov:
- Add the x86 part of the SEV-SNP host support.
This will allow the kernel to be used as a KVM hypervisor capable of
running SNP (Secure Nested Paging) guests. Roughly speaking, SEV-SNP
is the ultimate goal of the AMD confidential computing side,
providing the most comprehensive confidential computing environment
up to date.
This is the x86 part and there is a KVM part which did not get ready
in time for the merge window so latter will be forthcoming in the
next cycle.
- Rework the early code's position-dependent SEV variable references in
order to allow building the kernel with clang and -fPIE/-fPIC and
-mcmodel=kernel
- The usual set of fixes, cleanups and improvements all over the place
* tag 'x86_sev_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/sev: Disable KMSAN for memory encryption TUs
x86/sev: Dump SEV_STATUS
crypto: ccp - Have it depend on AMD_IOMMU
iommu/amd: Fix failure return from snp_lookup_rmpentry()
x86/sev: Fix position dependent variable references in startup code
crypto: ccp: Make snp_range_list static
x86/Kconfig: Remove CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT
Documentation: virt: Fix up pre-formatted text block for SEV ioctls
crypto: ccp: Add the SNP_SET_CONFIG command
crypto: ccp: Add the SNP_COMMIT command
crypto: ccp: Add the SNP_PLATFORM_STATUS command
x86/cpufeatures: Enable/unmask SEV-SNP CPU feature
KVM: SEV: Make AVIC backing, VMSA and VMCB memory allocation SNP safe
crypto: ccp: Add panic notifier for SEV/SNP firmware shutdown on kdump
iommu/amd: Clean up RMP entries for IOMMU pages during SNP shutdown
crypto: ccp: Handle legacy SEV commands when SNP is enabled
crypto: ccp: Handle non-volatile INIT_EX data when SNP is enabled
crypto: ccp: Handle the legacy TMR allocation when SNP is enabled
x86/sev: Introduce an SNP leaked pages list
crypto: ccp: Provide an API to issue SEV and SNP commands
...
|
|
KVM Xen and pfncache changes for 6.9:
- Rip out the half-baked support for using gfn_to_pfn caches to manage pages
that are "mapped" into guests via physical addresses.
- Add support for using gfn_to_pfn caches with only a host virtual address,
i.e. to bypass the "gfn" stage of the cache. The primary use case is
overlay pages, where the guest may change the gfn used to reference the
overlay page, but the backing hva+pfn remains the same.
- Add an ioctl() to allow mapping Xen's shared_info page using an hva instead
of a gpa, so that userspace doesn't need to reconfigure and invalidate the
cache/mapping if the guest changes the gpa (but userspace keeps the resolved
hva the same).
- When possible, use a single host TSC value when computing the deadline for
Xen timers in order to improve the accuracy of the timer emulation.
- Inject pending upcall events when the vCPU software-enables its APIC to fix
a bug where an upcall can be lost (and to follow Xen's behavior).
- Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
events fails, e.g. if the guest has aliased xAPIC IDs.
- Extend gfn_to_pfn_cache's mutex to cover (de)activation (in addition to
refresh), and drop a now-redundant acquisition of xen_lock (that was
protecting the shared_info cache) to fix a deadlock due to recursively
acquiring xen_lock.
|
|
Pull kvm fixes from Paolo Bonzini:
"KVM GUEST_MEMFD fixes for 6.8:
- Make KVM_MEM_GUEST_MEMFD mutually exclusive with KVM_MEM_READONLY
to avoid creating an inconsistent ABI (KVM_MEM_GUEST_MEMFD is not
writable from userspace, so there would be no way to write to a
read-only guest_memfd).
- Update documentation for KVM_SW_PROTECTED_VM to make it abundantly
clear that such VMs are purely for development and testing.
- Limit KVM_SW_PROTECTED_VM guests to the TDP MMU, as the long term
plan is to support confidential VMs with deterministic private
memory (SNP and TDX) only in the TDP MMU.
- Fix a bug in a GUEST_MEMFD dirty logging test that caused false
passes.
x86 fixes:
- Fix missing marking of a guest page as dirty when emulating an
atomic access.
- Check for mmu_notifier invalidation events before faulting in the
pfn, and before acquiring mmu_lock, to avoid unnecessary work and
lock contention with preemptible kernels (including
CONFIG_PREEMPT_DYNAMIC in non-preemptible mode).
- Disable AMD DebugSwap by default, it breaks VMSA signing and will
be re-enabled with a better VM creation API in 6.10.
- Do the cache flush of converted pages in svm_register_enc_region()
before dropping kvm->lock, to avoid a race with unregistering of
the same region and the consequent use-after-free issue"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
SEV: disable SEV-ES DebugSwap by default
KVM: x86/mmu: Retry fault before acquiring mmu_lock if mapping is changing
KVM: SVM: Flush pages under kvm->lock to fix UAF in svm_register_enc_region()
KVM: selftests: Add a testcase to verify GUEST_MEMFD and READONLY are exclusive
KVM: selftests: Create GUEST_MEMFD for relevant invalid flags testcases
KVM: x86/mmu: Restrict KVM_SW_PROTECTED_VM to the TDP MMU
KVM: x86: Update KVM_SW_PROTECTED_VM docs to make it clear they're a WIP
KVM: Make KVM_MEM_GUEST_MEMFD mutually exclusive with KVM_MEM_READONLY
KVM: x86: Mark target gfn of emulated atomic instruction as dirty
|
|
Add documentation topic for PCI pass-thru devices in Linux guests
on Hyper-V and for the associated PCI controller driver (pci-hyperv.c).
Signed-off-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Easwar Hariharan <eahariha@linux.microsoft.com>
Link: https://lore.kernel.org/r/20240222200710.305259-1-mhklinux@outlook.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <20240222200710.305259-1-mhklinux@outlook.com>
|
|
Rewrite the help message for KVM_SW_PROTECTED_VM to make it clear that
software-protected VMs are a development and testing vehicle for
guest_memfd(), and that attempting to use KVM_SW_PROTECTED_VM for anything
remotely resembling a "real" VM will fail. E.g. any memory accesses from
KVM will incorrectly access shared memory, nested TDP is wildly broken,
and so on and so forth.
Update KVM's API documentation with similar warnings to discourage anyone
from attempting to run anything but selftests with KVM_X86_SW_PROTECTED_VM.
Fixes: 89ea60c2c7b5 ("KVM: x86: Add support for "protected VMs" that can utilize private memory")
Link: https://lore.kernel.org/r/20240222190612.2942589-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
If the guest does not explicitly set the GPA of vcpu_info structure in
memory then, for guests with 32 vCPUs or fewer, the vcpu_info embedded
in the shared_info page may be used. As described in a previous commit,
the shared_info page is an overlay at a fixed HVA within the VMM, so in
this case it also more optimal to activate the vcpu_info cache with a
fixed HVA to avoid unnecessary invalidation if the guest memory layout
is modified.
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20240215152916.1158-14-paul@xen.org
[sean: use kvm_gpc_is_{gpa,hva}_active()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
The shared_info page is not guest memory as such. It is a dedicated page
allocated by the VMM and overlaid onto guest memory in a GFN chosen by the
guest and specified in the XENMEM_add_to_physmap hypercall. The guest may
even request that shared_info be moved from one GFN to another by
re-issuing that hypercall, but the HVA is never going to change.
Because the shared_info page is an overlay the memory slots need to be
updated in response to the hypercall. However, memory slot adjustment is
not atomic and, whilst all vCPUs are paused, there is still the possibility
that events may be delivered (which requires the shared_info page to be
updated) whilst the shared_info GPA is absent. The HVA is never absent
though, so it makes much more sense to use that as the basis for the
kernel's mapping.
Hence add a new KVM_XEN_ATTR_TYPE_SHARED_INFO_HVA attribute type for this
purpose and a KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA flag to advertize its
availability. Don't actually advertize it yet though. That will be done in
a subsequent patch, which will also add tests for the new attribute type.
Also update the KVM API documentation with the new attribute and also fix
it up to consistently refer to 'shared_info' (with the underscore).
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20240215152916.1158-13-paul@xen.org
[sean: store "hva" as a user pointer, use kvm_gpc_is_{gpa,hva}_active()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Fix some incorrect statement of MSR_KVM_ASYNC_PF_EN documentation and
state clearly the token in 'struct kvm_vcpu_pv_apf_data' of 'page ready'
event is matchted with the token in CR2 in 'page not present' event.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20231025055914.1201792-3-xiaoyao.li@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Refer to commit fd10cde9294f ("KVM paravirt: Add async PF initialization
to PV guest") and commit 344d9588a9df ("KVM: Add PV MSR to enable
asynchronous page faults delivery"). It turns out that at the time when
asyncpf was introduced, the purpose was defining the shared PV data 'struct
kvm_vcpu_pv_apf_data' with the size of 64 bytes. However, it made a mistake
and defined the size to 68 bytes, which failed to make fit in a cache line
and made the code inconsistent with the documentation.
Below justification quoted from Sean[*]
KVM (the host side) has *never* read kvm_vcpu_pv_apf_data.enabled, and
the documentation clearly states that enabling is based solely on the
bit in the synthetic MSR.
So rather than update the documentation, fix the goof by removing the
enabled filed and use the separate percpu variable instread.
KVM-as-a-host obviously doesn't enforce anything or consume the size,
and changing the header will only affect guests that are rebuilt against
the new header, so there's no chance of ABI breakage between KVM and its
guests. The only possible breakage is if some other hypervisor is
emulating KVM's async #PF (LOL) and relies on the guest to set
kvm_vcpu_pv_apf_data.enabled. But (a) I highly doubt such a hypervisor
exists, (b) that would arguably be a violation of KVM's "spec", and
(c) the worst case scenario is that the guest would simply lose async
#PF functionality.
[*] https://lore.kernel.org/all/ZS7ERnnRqs8Fl0ZF@google.com/T/#u
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20231025055914.1201792-2-xiaoyao.li@intel.com
[sean: use true/false instead of 1/0 for booleans]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
A missing newline after "::" resulted in the htmldocs build failing to
recognize the start of a pre-formatted block of text, resulting in
kernel/linux/Documentation/virt/coco/sev-guest.rst:75: WARNING: Inline emphasis start-string without end-string.
kernel/linux/Documentation/virt/coco/sev-guest.rst:78: WARNING: Inline emphasis start-string without end-string.
kernel/linux/Documentation/virt/coco/sev-guest.rst:81: WARNING: Inline emphasis start-string without end-string.
kernel/linux/Documentation/virt/coco/sev-guest.rst:83: WARNING: Definition list ends without a blank line; unexpected unindent.
Fix it.
Fixes: f5db8841ebe5 ("crypto: ccp: Add the SNP_PLATFORM_STATUS command")
Closes: https://lore.kernel.org/linux-next/20240202145932.31c62fd6@canb.auug.org.au/
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240202160544.2297320-1-michael.roth@amd.com
|