Age | Commit message (Collapse) | Author |
|
This patch leverages the alternative mechanism to dynamically optimize
bitops (including __ffs, __fls, ffs, fls) with Zbb instructions. When
Zbb ext is not supported by the runtime CPU, legacy implementation is
used. If Zbb is supported, then the optimized variants will be selected
via alternative patching.
The legacy bitops support is taken from the generic C implementation as
fallback.
If the parameter is a build-time constant, we leverage compiler builtin to
calculate the result directly, this approach is inspired by x86 bitops
implementation.
EFI stub runs before the kernel, so alternative mechanism should not be
used there, this patch introduces a macro NO_ALTERNATIVE for this purpose.
Signed-off-by: Xiao Wang <xiao.w.wang@intel.com>
Reviewed-by: Charlie Jenkins <charlie@rivosinc.com>
Link: https://lore.kernel.org/r/20231031064553.2319688-3-xiao.w.wang@intel.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
Pull tty and serial updates from Greg KH:
"Here is the big set of tty/serial driver changes for 6.7-rc1. Included
in here are:
- console/vgacon cleanups and removals from Arnd
- tty core and n_tty cleanups from Jiri
- lots of 8250 driver updates and cleanups
- sc16is7xx serial driver updates
- dt binding updates
- first set of port lock wrapers from Thomas for the printk fixes
coming in future releases
- other small serial and tty core cleanups and updates
All of these have been in linux-next for a while with no reported
issues"
* tag 'tty-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (193 commits)
serdev: Replace custom code with device_match_acpi_handle()
serdev: Simplify devm_serdev_device_open() function
serdev: Make use of device_set_node()
tty: n_gsm: add copyright Siemens Mobility GmbH
tty: n_gsm: fix race condition in status line change on dead connections
serial: core: Fix runtime PM handling for pending tx
vgacon: fix mips/sibyte build regression
dt-bindings: serial: drop unsupported samsung bindings
tty: serial: samsung: drop earlycon support for unsupported platforms
tty: 8250: Add note for PX-835
tty: 8250: Fix IS-200 PCI ID comment
tty: 8250: Add Brainboxes Oxford Semiconductor-based quirks
tty: 8250: Add support for Intashield IX cards
tty: 8250: Add support for additional Brainboxes PX cards
tty: 8250: Fix up PX-803/PX-857
tty: 8250: Fix port count of PX-257
tty: 8250: Add support for Intashield IS-100
tty: 8250: Add support for Brainboxes UP cards
tty: 8250: Add support for additional Brainboxes UC cards
tty: 8250: Remove UC-257 and UC-431
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 boot updates from Ingo Molnar:
- Rework PE header generation, primarily to generate a modern, 4k
aligned kernel image view with narrower W^X permissions.
- Further refine init-lifetime annotations
- Misc cleanups & fixes
* tag 'x86-boot-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/boot: efistub: Assign global boot_params variable
x86/boot: Rename conflicting 'boot_params' pointer to 'boot_params_ptr'
x86/head/64: Move the __head definition to <asm/init.h>
x86/head/64: Add missing __head annotation to startup_64_load_idt()
x86/head/64: Mark 'startup_gdt[]' and 'startup_gdt_descr' as __initdata
x86/boot: Harmonize the style of array-type parameter for fixup_pointer() calls
x86/boot: Fix incorrect startup_gdt_descr.size
x86/boot: Compile boot code with -std=gnu11 too
x86/boot: Increase section and file alignment to 4k/512
x86/boot: Split off PE/COFF .data section
x86/boot: Drop PE/COFF .reloc section
x86/boot: Construct PE/COFF .text section from assembler
x86/boot: Derive file size from _edata symbol
x86/boot: Define setup size in linker script
x86/boot: Set EFI handover offset directly in header asm
x86/boot: Grab kernel_info offset from zoffset header directly
x86/boot: Drop references to startup_64
x86/boot: Drop redundant code setting the root device
x86/boot: Omit compression buffer from PE/COFF image memory footprint
x86/boot: Remove the 'bugger off' message
...
|
|
|
|
Now that the x86 EFI stub calls into some APIs exposed by the
decompressor (e.g., kaslr_get_random_long()), it is necessary to ensure
that the global boot_params variable is set correctly before doing so.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-kernel@vger.kernel.org
|
|
After the vga console no longer relies on global screen_info, there are
only two remaining use cases:
- on the x86 architecture, it is used for multiple boot methods
(bzImage, EFI, Xen, kexec) to commucate the initial VGA or framebuffer
settings to a number of device drivers.
- on other architectures, it is only used as part of the EFI stub,
and only for the three sysfb framebuffers (simpledrm, simplefb, efifb).
Remove the duplicate data structure definitions by moving it into the
efi-init.c file that sets it up initially for the EFI case, leaving x86
as an exception that retains its own definition for non-EFI boots.
The added #ifdefs here are optional, I added them to further limit the
reach of screen_info to configurations that have at least one of the
users enabled.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Javier Martinez Canillas <javierm@redhat.com>
Acked-by: Helge Deller <deller@gmx.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20231017093947.3627976-1-arnd@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Now that the x86 EFI stub calls into some APIs exposed by the
decompressor (e.g., kaslr_get_random_long()), it is necessary to ensure
that the global boot_params variable is set correctly before doing so.
Note that the decompressor and the kernel proper carry conflicting
declarations for the global variable 'boot_params' so refer to it via an
alias to work around this.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
setup_e820() is executed after UEFI's ExitBootService has been called.
This causes the firmware to throw an exception because the Console IO
protocol is supposed to work only during boot service environment. As
per UEFI 2.9, section 12.1:
"This protocol is used to handle input and output of text-based
information intended for the system user during the operation of code
in the boot services environment."
So drop the diagnostic warning from this function. We might add back a
warning that is issued later when initializing the kernel itself.
Signed-off-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
The native EFI entrypoint does not take a struct boot_params from the
loader, but instead, it constructs one from scratch, using the setup
header data placed at the start of the image.
This setup header is placed in a way that permits legacy loaders to
manipulate the contents (i.e., to pass the kernel command line or the
address and size of an initial ramdisk), but EFI boot does not use it in
that way - it only copies the contents that were placed there at build
time, but EFI loaders will not (and should not) manipulate the setup
header to configure the boot. (Commit 63bf28ceb3ebbe76 "efi: x86: Wipe
setup_data on pure EFI boot" deals with some of the fallout of using
setup_data in a way that breaks EFI boot.)
Given that none of the non-zero values that are copied from the setup
header into the EFI stub's struct boot_params are relevant to the boot
now that the EFI stub no longer enters via the legacy decompressor, the
copy can be omitted altogether.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230912090051.4014114-19-ardb@google.com
|
|
Now that the EFI stub always zero inits its BSS section upon entry,
there is no longer a need to place the BSS symbols carried by the stub
into the .data section.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230912090051.4014114-18-ardb@google.com
|
|
Kyril reports that crashkernels fail to work on confidential VMs that
rely on the unaccepted memory table, and this appears to be caused by
the fact that it is not considered part of the set of firmware tables
that the crashkernel needs to map.
This is an oversight, and a result of the use of the EFI_LOADER_DATA
memory type for this table. The correct memory type to use for any
firmware table is EFI_ACPI_RECLAIM_MEMORY (including ones created by the
EFI stub), even though the name suggests that is it specific to ACPI.
ACPI reclaim means that the memory is used by the firmware to expose
information to the operating system, but that the memory region has no
special significance to the firmware itself, and the OS is free to
reclaim the memory and use it as ordinary memory if it is not interested
in the contents, or if it has already consumed them. In Linux, this
memory is never reclaimed, but it is always covered by the kernel direct
map and generally made accessible as ordinary memory.
On x86, ACPI reclaim memory is translated into E820_ACPI, which the
kexec logic already recognizes as memory that the crashkernel may need
to to access, and so it will be mapped and accessible to the booting
crash kernel.
Fixes: 745e3ed85f71 ("efi/libstub: Implement support for unaccepted memory")
Reported-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
Alexandre Ghiti <alexghiti@rivosinc.com> says:
The following KASLR implementation allows to randomize the kernel mapping:
- virtually: we expect the bootloader to provide a seed in the device-tree
- physically: only implemented in the EFI stub, it relies on the firmware to
provide a seed using EFI_RNG_PROTOCOL. arm64 has a similar implementation
hence the patch 3 factorizes KASLR related functions for riscv to take
advantage.
The new virtual kernel location is limited by the early page table that only
has one PUD and with the PMD alignment constraint, the kernel can only take
< 512 positions.
* b4-shazam-merge:
riscv: libstub: Implement KASLR by using generic functions
libstub: Fix compilation warning for rv32
arm64: libstub: Move KASLR handling functions to kaslr.c
riscv: Dump out kernel offset information on panic
riscv: Introduce virtual kernel mapping KASLR
Link: https://lore.kernel.org/r/20230722123850.634544-1-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
|
|
We can now use arm64 functions to handle the move of the kernel physical
mapping: if KASLR is enabled, we will try to get a random seed from the
firmware, if not possible, the kernel will be moved to a location that
suits its alignment constraints.
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Tested-by: Conor Dooley <conor.dooley@microchip.com>
Tested-by: Song Shuai <songshuaishuai@tinylab.org>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lore.kernel.org/r/20230722123850.634544-6-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
|
|
Fix the following warning which appears when compiled for rv32 by using
unsigned long type instead of u64.
../drivers/firmware/efi/libstub/efi-stub-helper.c: In function 'efi_kaslr_relocate_kernel':
../drivers/firmware/efi/libstub/efi-stub-helper.c:846:28: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
846 | (u64)_end < EFI_ALLOC_LIMIT) {
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Conor Dooley <conor.dooley@microchip.com>
Tested-by: Song Shuai <songshuaishuai@tinylab.org>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lore.kernel.org/r/20230722123850.634544-5-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
|
|
This prepares for riscv to use the same functions to handle the pĥysical
kernel move when KASLR is enabled.
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Conor Dooley <conor.dooley@microchip.com>
Tested-by: Song Shuai <songshuaishuai@tinylab.org>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Tested-by: Sami Tolvanen <samitolvanen@google.com>
Link: https://lore.kernel.org/r/20230722123850.634544-4-alexghiti@rivosinc.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
|
|
Pull drm updates from Dave Airlie:
"The drm core grew a new generic gpu virtual address manager, and new
execution locking helpers. These are used by nouveau now to provide
uAPI support for the userspace Vulkan driver. AMD had a bunch of new
IP core support, loads of refactoring around fbdev, but mostly just
the usual amount of stuff across the board.
core:
- fix gfp flags in drmm_kmalloc
gpuva:
- add new generic GPU VA manager (for nouveau initially)
syncobj:
- add new DRM_IOCTL_SYNCOBJ_EVENTFD ioctl
dma-buf:
- acquire resv lock for mmap() in exporters
- support dma-buf self import automatically
- docs fixes
backlight:
- fix fbdev interactions
atomic:
- improve logging
prime:
- remove struct gem_prim_mmap plus driver updates
gem:
- drm_exec: add locking over multiple GEM objects
- fix lockdep checking
fbdev:
- make fbdev userspace interfaces optional
- use linux device instead of fbdev device
- use deferred i/o helper macros in various drivers
- Make FB core selectable without drivers
- Remove obsolete flags FBINFO_DEFAULT and FBINFO_FLAG_DEFAULT
- Add helper macros and Kconfig tokens for DMA-allocated framebuffer
ttm:
- support init_on_free
- swapout fixes
panel:
- panel-edp: Support AUO B116XAB01.4
- Support Visionox R66451 plus DT bindings
- ld9040:
- Backlight support
- magic improved
- Kconfig fix
- Convert to of_device_get_match_data()
- Fix Kconfig dependencies
- simple:
- Set bpc value to fix warning
- Set connector type for AUO T215HVN01
- Support Innolux G156HCE-L01 plus DT bindings
- ili9881: Support TDO TL050HDV35 LCD panel plus DT bindings
- startek: Support KD070FHFID015 MIPI-DSI panel plus DT bindings
- sitronix-st7789v:
- Support Inanbo T28CP45TN89 plus DT bindings
- Support EDT ET028013DMA plus DT bindings
- Various cleanups
- edp: Add timings for N140HCA-EAC
- Allow panels and touchscreens to power sequence together
- Fix Innolux G156HCE-L01 LVDS clock
bridge:
- debugfs for chains support
- dw-hdmi:
- Improve support for YUV420 bus format
- CEC suspend/resume
- update EDID on HDMI detect
- dw-mipi-dsi: Fix enable/disable of DSI controller
- lt9611uxc: Use MODULE_FIRMWARE()
- ps8640: Remove broken EDID code
- samsung-dsim: Fix command transfer
- tc358764:
- Handle HS/VS polarity
- Use BIT() macro
- Various cleanups
- adv7511: Fix low refresh rate
- anx7625:
- Switch to macros instead of hardcoded values
- locking fixes
- tc358767: fix hardware delays
- sitronix-st7789v:
- Support panel orientation
- Support rotation property
- Add support for Jasonic JT240MHQS-HWT-EK-E3 plus DT bindings
amdgpu:
- SDMA 6.1.0 support
- HDP 6.1 support
- SMUIO 14.0 support
- PSP 14.0 support
- IH 6.1 support
- Lots of checkpatch cleanups
- GFX 9.4.3 updates
- Add USB PD and IFWI flashing documentation
- GPUVM updates
- RAS fixes
- DRR fixes
- FAMS fixes
- Virtual display fixes
- Soft IH fixes
- SMU13 fixes
- Rework PSP firmware loading for other IPs
- Kernel doc fixes
- DCN 3.0.1 fixes
- LTTPR fixes
- DP MST fixes
- DCN 3.1.6 fixes
- SMU 13.x fixes
- PSP 13.x fixes
- SubVP fixes
- GC 9.4.3 fixes
- Display bandwidth calculation fixes
- VCN4 secure submission fixes
- Allow building DC on RISC-V
- Add visible FB info to bo_print_info
- HBR3 fixes
- GFX9 MCBP fix
- GMC10 vmhub index fix
- GMC11 vmhub index fix
- Create a new doorbell manager
- SR-IOV fixes
- initial freesync panel replay support
- revert zpos properly until igt regression is fixeed
- use TTM to manage doorbell BAR
- Expose both current and average power via hwmon if supported
amdkfd:
- Cleanup CRIU dma-buf handling
- Use KIQ to unmap HIQ
- GFX 9.4.3 debugger updates
- GFX 9.4.2 debugger fixes
- Enable cooperative groups fof gfx11
- SVM fixes
- Convert older APUs to use dGPU path like newer APUs
- Drop IOMMUv2 path as it is no longer used
- TBA fix for aldebaran
i915:
- ICL+ DSI modeset sequence
- HDCP improvements
- MTL display fixes and cleanups
- HSW/BDW PSR1 restored
- Init DDI ports in VBT order
- General display refactors
- Start using plane scale factor for relative data rate
- Use shmem for dpt objects
- Expose RPS thresholds in sysfs
- Apply GuC SLPC min frequency softlimit correctly
- Extend Wa_14015795083 to TGL, RKL, DG1 and ADL
- Fix a VMA UAF for multi-gt platform
- Do not use stolen on MTL due to HW bug
- Check HuC and GuC version compatibility on MTL
- avoid infinite GPU waits due to premature release of request memory
- Fixes and updates for GSC memory allocation
- Display SDVO fixes
- Take stolen handling out of FBC code
- Make i915_coherent_map_type GT-centric
- Simplify shmem_create_from_object map_type
msm:
- SM6125 MDSS support
- DPU: SM6125 DPU support
- DSI: runtime PM support, burst mode support
- DSI PHY: SM6125 support in 14nm DSI PHY driver
- GPU: prepare for a7xx
- fix a690 firmware
- disable relocs on a6xx and newer
radeon:
- Lots of checkpatch cleanups
ast:
- improve device-model detection
- Represent BMV as virtual connector
- Report DP connection status
nouveau:
- add new exec/bind interface to support Vulkan
- document some getparam ioctls
- improve VRAM detection
- various fixes/cleanups
- workraound DPCD issues
ivpu:
- MMU updates
- debugfs support
- Support vpu4
virtio:
- add sync object support
atmel-hlcdc:
- Support inverted pixclock polarity
etnaviv:
- runtime PM cleanups
- hang handling fixes
exynos:
- use fbdev DMA helpers
- fix possible NULL ptr dereference
komeda:
- always attach encoder
omapdrm:
- use fbdev DMA helpers
ingenic:
- kconfig regmap fixes
loongson:
- support display controller
mediatek:
- Small mtk-dpi cleanups
- DisplayPort: support eDP and aux-bus
- Fix coverity issues
- Fix potential memory leak if vmap() fail
mgag200:
- minor fixes
mxsfb:
- support disabling overlay planes
panfrost:
- fix sync in IRQ handling
ssd130x:
- Support per-controller default resolution plus DT bindings
- Reduce memory-allocation overhead
- Improve intermediate buffer size computation
- Fix allocation of temporary buffers
- Fix pitch computation
- Fix shadow plane allocation
tegra:
- use fbdev DMA helpers
- Convert to devm_platform_ioremap_resource()
- support bridge/connector
- enable PM
tidss:
- Support TI AM625 plus DT bindings
- Implement new connector model plus driver updates
vkms:
- improve write back support
- docs fixes
- support gamma LUT
zynqmp-dpsub:
- misc fixes"
* tag 'drm-next-2023-08-30' of git://anongit.freedesktop.org/drm/drm: (1327 commits)
drm/gpuva_mgr: remove unused prev pointer in __drm_gpuva_sm_map()
drm/tests/drm_kunit_helpers: Place correct function name in the comment header
drm/nouveau: uapi: don't pass NO_PREFETCH flag implicitly
drm/nouveau: uvmm: fix unset region pointer on remap
drm/nouveau: sched: avoid job races between entities
drm/i915: Fix HPD polling, reenabling the output poll work as needed
drm: Add an HPD poll helper to reschedule the poll work
drm/i915: Fix TLB-Invalidation seqno store
drm/ttm/tests: Fix type conversion in ttm_pool_test
drm/msm/a6xx: Bail out early if setting GPU OOB fails
drm/msm/a6xx: Move LLC accessors to the common header
drm/msm/a6xx: Introduce a6xx_llc_read
drm/ttm/tests: Require MMU when testing
drm/panel: simple: Fix Innolux G156HCE-L01 LVDS clock
Revert "Revert "drm/amdgpu/display: change pipe policy for DCN 2.0""
drm/amdgpu: Add memory vendor information
drm/amd: flush any delayed gfxoff on suspend entry
drm/amdgpu: skip fence GFX interrupts disable/enable for S0ix
drm/amdgpu: Remove gfxoff check in GFX v9.4.3
drm/amd/pm: Update pci link speed for smu v13.0.6
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI updates from Ard Biesheuvel:
"This primarily covers some cleanup work on the EFI runtime wrappers,
which are shared between all EFI architectures except Itanium, and
which provide some level of isolation to prevent faults occurring in
the firmware code (which runs at the same privilege level as the
kernel) from bringing down the system.
Beyond that, there is a fix that did not make it into v6.5, and some
doc fixes and dead code cleanup.
- one bugfix for x86 mixed mode that did not make it into v6.5
- first pass of cleanup for the EFI runtime wrappers
- some cosmetic touchups"
* tag 'efi-next-for-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi:
x86/efistub: Fix PCI ROM preservation in mixed mode
efi/runtime-wrappers: Clean up white space and add __init annotation
acpi/prmt: Use EFI runtime sandbox to invoke PRM handlers
efi/runtime-wrappers: Don't duplicate setup/teardown code
efi/runtime-wrappers: Remove duplicated macro for service returning void
efi/runtime-wrapper: Move workqueue manipulation out of line
efi/runtime-wrappers: Use type safe encapsulation of call arguments
efi/riscv: Move EFI runtime call setup/teardown helpers out of line
efi/arm64: Move EFI runtime call setup/teardown helpers out of line
efi/riscv: libstub: Fix comment about absolute relocation
efi: memmap: Remove kernel-doc warnings
efi: Remove unused extern declaration efi_lookup_mapped_addr()
|
|
|
|
preserve_pci_rom_image() was accessing the romsize field in
efi_pci_io_protocol_t directly instead of using the efi_table_attr()
helper. This prevents the ROM image from being saved correctly during a
mixed mode boot.
Fixes: 2c3625cb9fa2 ("efi/x86: Fold __setup_efi_pci32() and __setup_efi_pci64() into one function")
Signed-off-by: Mikel Rychliski <mikel@mikelr.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
The bare metal decompressor code was never really intended to run in a
hosted environment such as the EFI boot services, and does a few things
that are becoming problematic in the context of EFI boot now that the
logo requirements are getting tighter: EFI executables will no longer be
allowed to consist of a single executable section that is mapped with
read, write and execute permissions if they are intended for use in a
context where Secure Boot is enabled (and where Microsoft's set of
certificates is used, i.e., every x86 PC built to run Windows).
To avoid stepping on reserved memory before having inspected the E820
tables, and to ensure the correct placement when running a kernel build
that is non-relocatable, the bare metal decompressor moves its own
executable image to the end of the allocation that was reserved for it,
in order to perform the decompression in place. This means the region in
question requires both write and execute permissions, which either need
to be given upfront (which EFI will no longer permit), or need to be
applied on demand using the existing page fault handling framework.
However, the physical placement of the kernel is usually randomized
anyway, and even if it isn't, a dedicated decompression output buffer
can be allocated anywhere in memory using EFI APIs when still running in
the boot services, given that EFI support already implies a relocatable
kernel. This means that decompression in place is never necessary, nor
is moving the compressed image from one end to the other.
Since EFI already maps all of memory 1:1, it is also unnecessary to
create new page tables or handle page faults when decompressing the
kernel. That means there is also no need to replace the special
exception handlers for SEV. Generally, there is little need to do
any of the things that the decompressor does beyond
- initialize SEV encryption, if needed,
- perform the 4/5 level paging switch, if needed,
- decompress the kernel
- relocate the kernel
So do all of this from the EFI stub code, and avoid the bare metal
decompressor altogether.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-24-ardb@kernel.org
|
|
Before refactoring the EFI stub boot flow to avoid the legacy bare metal
decompressor, duplicate the SNP feature check in the EFI stub before
handing over to the kernel proper.
The SNP feature check can be performed while running under the EFI boot
services, which means it can force the boot to fail gracefully and
return an error to the bootloader if the loaded kernel does not
implement support for all the features that the hypervisor enabled.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-23-ardb@kernel.org
|
|
x86 will need to limit the kernel memory allocation to the lowest 512
MiB of memory, to match the behavior of the existing bare metal KASLR
physical randomization logic. So in preparation for that, add a limit
parameter to efi_random_alloc() and wire it up.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-22-ardb@kernel.org
|
|
Currently, the EFI stub relies on DXE services in some cases to clear
non-execute restrictions from page allocations that need to be
executable. This is dodgy, because DXE services are not specified by
UEFI but by PI, and they are not intended for consumption by OS loaders.
However, no alternative existed at the time.
Now, there is a new UEFI protocol that should be used instead, so if it
exists, prefer it over the DXE services calls.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-18-ardb@kernel.org
|
|
In preparation for updating the EFI stub boot flow to avoid the bare
metal decompressor code altogether, implement the support code for
switching between 4 and 5 levels of paging before jumping to the kernel
proper.
Reuse the newly refactored trampoline that the bare metal decompressor
uses, but relies on EFI APIs to allocate 32-bit addressable memory and
remap it with the appropriate permissions. Given that the bare metal
decompressor will no longer call into the trampoline if the number of
paging levels is already set correctly, it is no longer needed to remove
NX restrictions from the memory range where this trampoline may end up.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20230807162720.545787-17-ardb@kernel.org
|
|
The so-called EFI handover protocol is value-add from the distros that
permits a loader to simply copy a PE kernel image into memory and call
an alternative entrypoint that is described by an embedded boot_params
structure.
Most implementations of this protocol do not bother to check the PE
header for minimum alignment, section placement, etc, and therefore also
don't clear the image's BSS, or even allocate enough memory for it.
Allocating more memory on the fly is rather difficult, but at least
clear the BSS region explicitly when entering in this manner, so that
the EFI stub code does not get confused by global variables that were
not zero-initialized correctly.
When booting in mixed mode, this BSS clearing must occur before any
global state is created, so clear it in the 32-bit asm entry point.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-7-ardb@kernel.org
|
|
Now that the EFI entry code in assembler is only used by the optional
and deprecated EFI handover protocol, and given that the EFI stub C code
no longer returns to it, most of it can simply be dropped.
While at it, clarify the symbol naming, by merging efi_main() and
efi_stub_entry(), making the latter the shared entry point for all
different boot modes that enter via the EFI stub.
The efi32_stub_entry() and efi64_stub_entry() names are referenced
explicitly by the tooling that populates the setup header, so these must
be retained, but can be emitted as aliases of efi_stub_entry() where
appropriate.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-5-ardb@kernel.org
|
|
Instead of returning to the calling code in assembler that does nothing
more than perform an indirect call with the boot_params pointer in
register ESI/RSI, perform the jump directly from the EFI stub C code.
This will allow the asm entrypoint code to be dropped entirely in
subsequent patches.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-4-ardb@kernel.org
|
|
We don't want absolute symbols references in the stub, so fix the double
negation in the comment.
Signed-off-by: Xiao Wang <xiao.w.wang@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
git://anongit.freedesktop.org/drm/drm-misc into drm-next
drm-misc-next for v6.6:
UAPI Changes:
* fbdev:
* Make fbdev userspace interfaces optional; only leaves the
framebuffer console active
* prime:
* Support dma-buf self-import for all drivers automatically: improves
support for many userspace compositors
Cross-subsystem Changes:
* backlight:
* Fix interaction with fbdev in several drivers
* base: Convert struct platform.remove to return void; part of a larger,
tree-wide effort
* dma-buf: Acquire reservation lock for mmap() in exporters; part
of an on-going effort to simplify locking around dma-bufs
* fbdev:
* Use Linux device instead of fbdev device in many places
* Use deferred-I/O helper macros in various drivers
* i2c: Convert struct i2c from .probe_new to .probe; part of a larger,
tree-wide effort
* video:
* Avoid including <linux/screen_info.h>
Core Changes:
* atomic:
* Improve logging
* prime:
* Remove struct drm_driver.gem_prime_mmap plus driver updates: all
drivers now implement this callback with drm_gem_prime_mmap()
* gem:
* Support execution contexts: provides locking over multiple GEM
objects
* ttm:
* Support init_on_free
* Swapout fixes
Driver Changes:
* accel:
* ivpu: MMU updates; Support debugfs
* ast:
* Improve device-model detection
* Cleanups
* bridge:
* dw-hdmi: Improve support for YUV420 bus format
* dw-mipi-dsi: Fix enable/disable of DSI controller
* lt9611uxc: Use MODULE_FIRMWARE()
* ps8640: Remove broken EDID code
* samsung-dsim: Fix command transfer
* tc358764: Handle HS/VS polarity; Use BIT() macro; Various cleanups
* Cleanups
* ingenic:
* Kconfig REGMAP fixes
* loongson:
* Support display controller
* mgag200:
* Minor fixes
* mxsfb:
* Support disabling overlay planes
* nouveau:
* Improve VRAM detection
* Various fixes and cleanups
* panel:
* panel-edp: Support AUO B116XAB01.4
* Support Visionox R66451 plus DT bindings
* Cleanups
* ssd130x:
* Support per-controller default resolution plus DT bindings
* Reduce memory-allocation overhead
* Cleanups
* tidss:
* Support TI AM625 plus DT bindings
* Implement new connector model plus driver updates
* vkms
* Improve write-back support
* Documentation fixes
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
From: Thomas Zimmermann <tzimmermann@suse.de>
Link: https://patchwork.freedesktop.org/patch/msgid/20230713090830.GA23281@linux-uq9g
|
|
The header file <linux/efi.h> does not need anything from
<linux/screen_info.h>. Declare struct screen_info and remove
the include statements. Update a number of source files that
require struct screen_info's definition.
v2:
* update loongarch (Jingfeng)
Signed-off-by: Thomas Zimmermann <tzimmermann@suse.de>
Reviewed-by: Javier Martinez Canillas <javierm@redhat.com>
Reviewed-by: Sui Jingfeng <suijingfeng@loongson.cn>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Link: https://patchwork.freedesktop.org/patch/msgid/20230706104852.27451-2-tzimmermann@suse.de
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI updates from Ard Biesheuvel:
"Although some more stuff is brewing, the EFI changes that are ready
for mainline are few this cycle:
- improve the PCI DMA paranoia logic in the EFI stub
- some constification changes
- add statfs support to efivarfs
- allow user space to enumerate updatable firmware resources without
CAP_SYS_ADMIN"
* tag 'efi-next-for-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi:
efi/libstub: Disable PCI DMA before grabbing the EFI memory map
efi/esrt: Allow ESRT access without CAP_SYS_ADMIN
efivarfs: expose used and total size
efi: make kobj_type structure constant
efi: x86: make kobj_type structure constant
|
|
Currently, the EFI stub will disable PCI DMA as the very last thing it
does before calling ExitBootServices(), to avoid interfering with the
firmware's normal operation as much as possible.
However, the stub will invoke DisconnectController() on all endpoints
downstream of the PCI bridges it disables, and this may affect the
layout of the EFI memory map, making it substantially more likely that
ExitBootServices() will fail the first time around, and that the EFI
memory map needs to be reloaded.
This, in turn, increases the likelihood that the slack space we
allocated is insufficient (and we can no longer allocate memory via boot
services after having called ExitBootServices() once), causing the
second call to GetMemoryMap (and therefore the boot) to fail. This makes
the PCI DMA disable feature a bit more fragile than it already is, so
let's make it more robust, by allocating the space for the EFI memory
map after disabling PCI DMA.
Fixes: 4444f8541dad16fe ("efi: Allow disabling PCI busmastering on bridges during boot")
Reported-by: Glenn Washburn <development@efficientek.com>
Acked-by: Matthew Garrett <mjg59@srcf.ucam.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
The UEFI v2.9 specification includes a new memory type to be used in
environments where the OS must accept memory that is provided from its
host. Before the introduction of this memory type, all memory was
accepted eagerly in the firmware. In order for the firmware to safely
stop accepting memory on the OS's behalf, the OS must affirmatively
indicate support to the firmware. This is only a problem for AMD
SEV-SNP, since Linux has had support for it since 5.19. The other
technology that can make use of unaccepted memory, Intel TDX, does not
yet have Linux support, so it can strictly require unaccepted memory
support as a dependency of CONFIG_TDX and not require communication with
the firmware.
Enabling unaccepted memory requires calling a 0-argument enablement
protocol before ExitBootServices. This call is only made if the kernel
is compiled with UNACCEPTED_MEMORY=y
This protocol will be removed after the end of life of the first LTS
that includes it, in order to give firmware implementations an
expiration date for it. When the protocol is removed, firmware will
strictly infer that a SEV-SNP VM is running an OS that supports the
unaccepted memory type. At the earliest convenience, when unaccepted
memory support is added to Linux, SEV-SNP may take strict dependence in
it. After the firmware removes support for the protocol, this should be
reverted.
[tl: address some checkscript warnings]
Signed-off-by: Dionna Glaze <dionnaglaze@google.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/0d5f3d9a20b5cf361945b7ab1263c36586a78a42.1686063086.git.thomas.lendacky@amd.com
|
|
UEFI Specification version 2.9 introduces the concept of memory
acceptance: Some Virtual Machine platforms, such as Intel TDX or AMD
SEV-SNP, requiring memory to be accepted before it can be used by the
guest. Accepting happens via a protocol specific for the Virtual
Machine platform.
Accepting memory is costly and it makes VMM allocate memory for the
accepted guest physical address range. It's better to postpone memory
acceptance until memory is needed. It lowers boot time and reduces
memory overhead.
The kernel needs to know what memory has been accepted. Firmware
communicates this information via memory map: a new memory type --
EFI_UNACCEPTED_MEMORY -- indicates such memory.
Range-based tracking works fine for firmware, but it gets bulky for
the kernel: e820 (or whatever the arch uses) has to be modified on every
page acceptance. It leads to table fragmentation and there's a limited
number of entries in the e820 table.
Another option is to mark such memory as usable in e820 and track if the
range has been accepted in a bitmap. One bit in the bitmap represents a
naturally aligned power-2-sized region of address space -- unit.
For x86, unit size is 2MiB: 4k of the bitmap is enough to track 64GiB or
physical address space.
In the worst-case scenario -- a huge hole in the middle of the
address space -- It needs 256MiB to handle 4PiB of the address
space.
Any unaccepted memory that is not aligned to unit_size gets accepted
upfront.
The bitmap is allocated and constructed in the EFI stub and passed down
to the kernel via EFI configuration table. allocate_e820() allocates the
bitmap if unaccepted memory is present, according to the size of
unaccepted region.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20230606142637.5171-4-kirill.shutemov@linux.intel.com
|
|
Currently allocate_e820() is only interested in the size of map and size
of memory descriptor to determine how many e820 entries the kernel
needs.
UEFI Specification version 2.9 introduces a new memory type --
unaccepted memory. To track unaccepted memory, the kernel needs to
allocate a bitmap. The size of the bitmap is dependent on the maximum
physical address present in the system. A full memory map is required to
find the maximum address.
Modify allocate_e820() to get a full memory map.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20230606142637.5171-3-kirill.shutemov@linux.intel.com
|
|
The cper.c file needs to include an extra header, and efi_zboot_entry
needs an extern declaration to avoid these 'make W=1' warnings:
drivers/firmware/efi/libstub/zboot.c:65:1: error: no previous prototype for 'efi_zboot_entry' [-Werror=missing-prototypes]
drivers/firmware/efi/efi.c:176:16: error: no previous prototype for 'efi_attr_is_visible' [-Werror=missing-prototypes]
drivers/firmware/efi/cper.c:626:6: error: no previous prototype for 'cper_estatus_print' [-Werror=missing-prototypes]
drivers/firmware/efi/cper.c:649:5: error: no previous prototype for 'cper_estatus_check_header' [-Werror=missing-prototypes]
drivers/firmware/efi/cper.c:662:5: error: no previous prototype for 'cper_estatus_check' [-Werror=missing-prototypes]
To make this easier, move the cper specific declarations to
include/linux/cper.h.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
The Make variable containing the objcopy flags may be constructed from
the output of build tools operating on build artifacts, and these may
not exist when doing a make clean.
So avoid evaluating them eagerly, to prevent spurious build warnings.
Suggested-by: Pedro Falcato <pedro.falcato@gmail.com>
Tested-by: Alan Bartlett <ajb@elrepo.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
Instead of relying on a dodgy dd hack to copy the image code size from
the uncompressed image's PE header to the end of the compressed image,
let's grab the code size from the symbol that is injected into the ELF
object by the Kbuild rules that generate the compressed payload.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
|
|
The EFI zboot code is not built as part of the kernel proper, like the
ordinary EFI stub, but still needs access to symbols that are defined
only internally in the kernel, and are left unexposed deliberately to
avoid creating ABI inadvertently that we're stuck with later.
So capture the kernel code size of the kernel image, and inject it as an
ELF symbol into the object that contains the compressed payload, where
it will be accessible to zboot code that needs it.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
|
|
Add some plumbing to the zboot EFI header generation to set the newly
introduced DllCharacteristicsEx flag associated with forward edge CFI
enforcement instructions (BTI on arm64, IBT on x86)
x86 does not currently uses the zboot infrastructure, so let's wire it
up only for arm64.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
We don't really care about the size of the decompressed image - what
matters is how much space needs to be allocated for the image to
execute, and this includes space for BSS that is not part of the
loadable image and so it is not accounted for in the decompressed size.
So let's add some zero padding to the end of the image: this compresses
well, and it ensures that BSS is accounted for, and as a bonus, it will
be zeroed before launching the image.
Since all architectures that implement support for EFI zboot carry this
value in the header in the same location, we can just grab it from the
binary that is being compressed.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
UEFI heavily relies on so-called protocols, which are essentially
tables populated with pointers to executable code, and these are invoked
indirectly using BR or BLR instructions.
This makes the EFI execution context vulnerable to attacks on forward
edge control flow, and so it would help if we could enable hardware
enforcement (BTI) on CPUs that implement it.
So let's no longer disable BTI codegen for the EFI stub, and set the
newly introduced PE/COFF header flag when the kernel is built with BTI
landing pads.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
|
|
Since Linux-6.3, LoongArch supports PIE kernel now, so let's reintroduce
efi_relocate_kernel() to relocate the core kernel.
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
The logic in efi_random_alloc() will iterate over the memory map twice,
once to count the number of candidate slots, and another time to locate
the chosen slot after randomization.
If there is insufficient memory to do the allocation, the second loop
will run to completion without actually having located a slot, but we
currently return EFI_SUCCESS in this case, as we fail to initialize
status to the appropriate error value of EFI_OUT_OF_RESOURCES.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
In some cases, we expose the kernel's struct screen_info to the EFI stub
directly, so it gets populated before even entering the kernel. This
means the early console is available as soon as the early param parsing
happens, which is nice. It also means we need two different ways to pass
this information, as this trick only works if the EFI stub is baked into
the core kernel image, which is not always the case.
Huacai reports that the preparatory refactoring that was needed to
implement this alternative method for zboot resulted in a non-functional
efifb earlycon for other cases as well, due to the reordering of the
kernel image relocation with the population of the screen_info struct,
and the latter now takes place after copying the image to its new
location, which means we copy the old, uninitialized state.
So let's ensure that the same-image version of alloc_screen_info()
produces the correct screen_info pointer, by taking the displacement of
the loaded image into account.
Reported-by: Huacai Chen <chenhuacai@loongson.cn>
Tested-by: Huacai Chen <chenhuacai@loongson.cn>
Link: https://lore.kernel.org/linux-efi/20230310021749.921041-1-chenhuacai@loongson.cn/
Fixes: 42c8ea3dca094ab8 ("efi: libstub: Factor out EFI stub entrypoint into separate file")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
Avoid needlessly rebuilding the compressed image by adding the file
'vmlinuz' to the 'targets' Kbuild make variable.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
We no longer use the recsize argument for locating the string table in
an SMBIOS record, so we can drop it from the internal API.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
Instead of using the SMBIOS type 1 record 'family' field, which is often
modified by OEMs, use the type 4 'processor ID' and 'processor version'
fields, which are set to a small set of probe-able values on all known
Ampere EFI systems in the field.
Fixes: 550b33cfd4452968 ("arm64: efi: Force the use of ...")
Tested-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
The type 1 SMBIOS record happens to always be the same size, but there
are other record types which have been augmented over time, and so we
should really use the length field in the header to decide where the
string table starts.
Fixes: 550b33cfd4452968 ("arm64: efi: Force the use of ...")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|
After relocating the executable image, use the EFI memory attributes
protocol to remap the code and data regions with the appropriate
permissions.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|