Age | Commit message (Collapse) | Author |
|
Adds AT and MBIM ports to the port proxy infrastructure.
The initialization method is responsible for creating the corresponding
ports using the WWAN framework infrastructure. The implemented WWAN port
operations are start, stop, and TX.
Signed-off-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Co-developed-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Loic Poulain <loic.poulain@linaro.org>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Control Port implements driver control messages such as modem-host
handshaking, controls port enumeration, and handles exception messages.
The handshaking process between the driver and the modem happens during
the init sequence. The process involves the exchange of a list of
supported runtime features to make sure that modem and host are ready
to provide proper feature lists including port enumeration. Further
features can be enabled and controlled in this handshaking process.
Signed-off-by: Haijun Liu <haijun.liu@mediatek.com>
Signed-off-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Co-developed-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Loic Poulain <loic.poulain@linaro.org>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Port-proxy provides a common interface to interact with different types
of ports. Ports export their configuration via `struct t7xx_port` and
operate as defined by `struct port_ops`.
Signed-off-by: Haijun Liu <haijun.liu@mediatek.com>
Co-developed-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Signed-off-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Co-developed-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Loic Poulain <loic.poulain@linaro.org>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Registers the t7xx device driver with the kernel. Setup all the core
components: PCIe layer, Modem Host Cross Core Interface (MHCCIF),
modem control operations, modem state machine, and build
infrastructure.
* PCIe layer code implements driver probe and removal.
* MHCCIF provides interrupt channels to communicate events
such as handshake, PM and port enumeration.
* Modem control implements the entry point for modem init,
reset and exit.
* The modem status monitor is a state machine used by modem control
to complete initialization and stop. It is used also to propagate
exception events reported by other components.
Signed-off-by: Haijun Liu <haijun.liu@mediatek.com>
Signed-off-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Co-developed-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Loic Poulain <loic.poulain@linaro.org>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Cross Layer DMA (CLDMA) Hardware interface (HIF) enables the control
path of Host-Modem data transfers. CLDMA HIF layer provides a common
interface to the Port Layer.
CLDMA manages 8 independent RX/TX physical channels with data flow
control in HW queues. CLDMA uses ring buffers of General Packet
Descriptors (GPD) for TX/RX. GPDs can represent multiple or single
data buffers (DB).
CLDMA HIF initializes GPD rings, registers ISR handlers for CLDMA
interrupts, and initializes CLDMA HW registers.
CLDMA TX flow:
1. Port Layer write
2. Get DB address
3. Configure GPD
4. Triggering processing via HW register write
CLDMA RX flow:
1. CLDMA HW sends a RX "done" to host
2. Driver starts thread to safely read GPD
3. DB is sent to Port layer
4. Create a new buffer for GPD ring
Note: This patch does not enable compilation since it has dependencies
such as t7xx_pcie_mac_clear_int()/t7xx_pcie_mac_set_int() and
struct t7xx_pci_dev which are added by the core patch.
Signed-off-by: Haijun Liu <haijun.liu@mediatek.com>
Signed-off-by: Chandrashekar Devegowda <chandrashekar.devegowda@intel.com>
Co-developed-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Signed-off-by: Ricardo Martinez <ricardo.martinez@linux.intel.com>
Reviewed-by: Loic Poulain <loic.poulain@linaro.org>
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Reviewed-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|