summaryrefslogtreecommitdiff
path: root/include/linux
AgeCommit message (Collapse)Author
2025-05-14mmc: rename mmc_can_gpio_ro() to mmc_host_can_gpio_ro()Wolfram Sang
mmc_can_* functions sometimes relate to the card and sometimes to the host. Make it obvious by renaming this function to include 'host'. Signed-off-by: Wolfram Sang <wsa+renesas@sang-engineering.com> Link: https://lore.kernel.org/r/20250401095847.29271-12-wsa+renesas@sang-engineering.com Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2025-05-14mmc: rename mmc_can_gpio_cd() to mmc_host_can_gpio_cd()Wolfram Sang
mmc_can_* functions sometimes relate to the card and sometimes to the host. Make it obvious by renaming this function to include 'host'. Signed-off-by: Wolfram Sang <wsa+renesas@sang-engineering.com> Link: https://lore.kernel.org/r/20250401095847.29271-11-wsa+renesas@sang-engineering.com Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2025-05-14mmc: Add quirk to disable DDR50 tuningErick Shepherd
Adds the MMC_QUIRK_NO_UHS_DDR50_TUNING quirk and updates mmc_execute_tuning() to return 0 if that quirk is set. This fixes an issue on certain Swissbit SD cards that do not support DDR50 tuning where tuning requests caused I/O errors to be thrown. Signed-off-by: Erick Shepherd <erick.shepherd@ni.com> Acked-by: Adrian Hunter <adrian.hunter@intel.com> Link: https://lore.kernel.org/r/20250331221337.1414534-1-erick.shepherd@ni.com Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2025-05-14sched,livepatch: Untangle cond_resched() and live-patchingPeter Zijlstra
With the goal of deprecating / removing VOLUNTARY preempt, live-patch needs to stop relying on cond_resched() to make forward progress. Instead, rely on schedule() with TASK_FREEZABLE set. Just like live-patching, the freezer needs to be able to stop tasks in a safe / known state. [bigeasy: use likely() in __klp_sched_try_switch() and update comments] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Petr Mladek <pmladek@suse.com> Tested-by: Petr Mladek <pmladek@suse.com> Tested-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Miroslav Benes <mbenes@suse.cz> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Link: https://lore.kernel.org/r/20250509113659.wkP_HJ5z@linutronix.de
2025-05-14genirq/msi: Move prepare() call to per-device allocationMarc Zyngier
The current device MSI infrastructure is subtly broken, as it will issue an .msi_prepare() callback into the MSI controller driver every time it needs to allocate an MSI. That's pretty wrong, as the contract (or unwarranted assumption, depending who you ask) between the MSI controller and the core code is that .msi_prepare() is called exactly once per device. This leads to some subtle breakage in some MSI controller drivers, as it gives the impression that there are multiple endpoints sharing a bus identifier (RID in PCI parlance, DID for GICv3+). It implies that whatever allocation the ITS driver (for example) has done on behalf of these devices cannot be undone, as there is no way to track the shared state. This is particularly bad for wire-MSI devices, for which .msi_prepare() is called for each input line. To address this issue, move the call to .msi_prepare() to take place at the point of irq domain allocation, which is the only place that makes sense. The msi_alloc_info_t structure is made part of the msi_domain_template, so that its life-cycle is that of the domain as well. Finally, the msi_info::alloc_data field is made to point at this allocation tracking structure, ensuring that it is carried around the block. This is all pretty straightforward, except for the non-device-MSI leftovers, which still have to call .msi_prepare() at the old spot. One day... Signed-off-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20250513163144.2215824-4-maz@kernel.org
2025-05-14genirq/msi: Add .msi_teardown() callback as the reverse of .msi_prepare()Marc Zyngier
While the MSI ops do have a .msi_prepare() callback that is responsible for setting up the relevant (usually per-device) allocation, there is no callback reversing this setup. For this purpose, add .msi_teardown() callback. In order to avoid breaking the ITS driver that suffers from related issues, do not call the callback just yet. Signed-off-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20250513163144.2215824-2-maz@kernel.org
2025-05-13lib/crc16: unexport crc16_table and crc16_byte()Eric Biggers
Now that neither crc16_table nor crc16_byte() is used outside lib/crc16.c, fold them into lib/crc16.c. Acked-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20250513022115.39109-3-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2025-05-13bpf: Add support for __prog argument suffix to pass in prog->auxKumar Kartikeya Dwivedi
Instead of hardcoding the list of kfuncs that need prog->aux passed to them with a combination of fixup_kfunc_call adjustment + __ign suffix, combine both in __prog suffix, which ignores the argument passed in, and fixes it up to the prog->aux. This allows kfuncs to have the prog->aux passed into them without having to touch the verifier. Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20250513142812.1021591-1-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2025-05-13net: phy: remove stub for mdiobus_register_board_infoHeiner Kallweit
The functionality of mdiobus_register_board_info() typically isn't optional for the caller. Therefore remove the stub. Note: Currently we have only one caller of mdiobus_register_board_info(), in a DSA/PHYLINK context. Therefore CONFIG_MDIO_DEVICE is selected anyway. Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com> Link: https://patch.msgid.link/410a2222-c4e8-45b0-9091-d49674caeb00@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2025-05-13mm: remove obsolete pgd_offset_gate()Feng Lee
Remove pgd_offset_gate() completely and simply make the single caller use pgd_offset(). It appears that the gate area resides in the kernel-mapped segment exclusively on IA64. Therefore, removing pgd_offset_k is safe since IA64 is now obsolete. Link: https://lkml.kernel.org/r/tencent_503130C3CD56569191396268CF4D12F09A06@qq.com Signed-off-by: Feng Lee <379943137@qq.com> Reviewed-by: Barry Song <baohua@kernel.org> Acked-by: David Hildenbrand <david@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: bibo mao <maobibo@loongson.cn> Cc: Ingo Molnar <mingo@kernel.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Lance Yang <lance.yang@linux.dev> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-13mm: introduce new .mmap_prepare() file callbackLorenzo Stoakes
Patch series "eliminate mmap() retry merge, add .mmap_prepare hook", v2. During the mmap() of a file-backed mapping, we invoke the underlying driver file's mmap() callback in order to perform driver/file system initialisation of the underlying VMA. This has been a source of issues in the past, including a significant security concern relating to unwinding of error state discovered by Jann Horn, as fixed in commit 5de195060b2e ("mm: resolve faulty mmap_region() error path behaviour") which performed the recent, significant, rework of mmap() as a whole. However, we have had a fly in the ointment remain - drivers have a great deal of freedom in the .mmap() hook to manipulate VMA state (as well as page table state). This can be problematic, as we can no longer reason sensibly about VMA state once the call is complete (the ability to do - anything - here does rather interfere with that). In addition, callers may choose to do odd or unusual things which might interfere with subsequent steps in the mmap() process, and it may do so and then raise an error, requiring very careful unwinding of state about which we can make no assumptions. Rather than providing such an open-ended interface, this series provides an alternative, far more restrictive one - we expose a whitelist of fields which can be adjusted by the driver, along with immutable state upon which the driver can make such decisions: struct vm_area_desc { /* Immutable state. */ struct mm_struct *mm; unsigned long start; unsigned long end; /* Mutable fields. Populated with initial state. */ pgoff_t pgoff; struct file *file; vm_flags_t vm_flags; pgprot_t page_prot; /* Write-only fields. */ const struct vm_operations_struct *vm_ops; void *private_data; }; The mmap logic then updates the state used to either merge with a VMA or establish a new VMA based upon this logic. This is achieved via new file hook .mmap_prepare(), which is, importantly, invoked very early on in the mmap() process. If an error arises, we can very simply abort the operation with very little unwinding of state required. The existing logic contains another, related, peccadillo - since the .mmap() callback might do anything, it may also cause a previously unmergeable VMA to become mergeable with adjacent VMAs. Right now the logic will retry a merge like this only if the driver changes VMA flags, and changes them in such a way that a merge might succeed (that is, the flags are not 'special', that is do not contain any of the flags specified in VM_SPECIAL). This has also been the source of a great deal of pain - it's hard to reason about an .mmap() callback that might do - anything - but it's also hard to reason about setting up a VMA and writing to the maple tree, only to do it again utilising a great deal of shared state. Since .mmap_prepare() sets fields before the first merge is even attempted, the use of this callback obviates the need for this retry merge logic. A driver may only specify .mmap_prepare() or the deprecated .mmap() callback. In future we may add futher callbacks beyond .mmap_prepare() to faciliate all use cass as we convert drivers. In researching this change, I examined every .mmap() callback, and discovered only a very few that set VMA state in such a way that a. the VMA flags changed and b. this would be mergeable. In the majority of cases, it turns out that drivers are mapping kernel memory and thus ultimately set VM_PFNMAP, VM_MIXEDMAP, or other unmergeable VM_SPECIAL flags. Of those that remain I identified a number of cases which are only applicable in DAX, setting the VM_HUGEPAGE flag: * dax_mmap() * erofs_file_mmap() * ext4_file_mmap() * xfs_file_mmap() For this remerge to not occur and to impact users, each of these cases would require a user to mmap() files using DAX, in parts, immediately adjacent to one another. This is a very unlikely usecase and so it does not appear to be worthwhile to adjust this functionality accordingly. We can, however, very quickly do so if needed by simply adding an .mmap_prepare() callback to these as required. There are two further non-DAX cases I idenitfied: * orangefs_file_mmap() - Clears VM_RAND_READ if set, replacing with VM_SEQ_READ. * usb_stream_hwdep_mmap() - Sets VM_DONTDUMP. Both of these cases again seem very unlikely to be mmap()'d immediately adjacent to one another in a fashion that would result in a merge. Finally, we are left with a viable case: * secretmem_mmap() - Set VM_LOCKED, VM_DONTDUMP. This is viable enough that the mm selftests trigger the logic as a matter of course. Therefore, this series replace the .secretmem_mmap() hook with .secret_mmap_prepare(). This patch (of 3): Provide a means by which drivers can specify which fields of those permitted to be changed should be altered to prior to mmap()'ing a range (which may either result from a merge or from mapping an entirely new VMA). Doing so is substantially safer than the existing .mmap() calback which provides unrestricted access to the part-constructed VMA and permits drivers and file systems to do 'creative' things which makes it hard to reason about the state of the VMA after the function returns. The existing .mmap() callback's freedom has caused a great deal of issues, especially in error handling, as unwinding the mmap() state has proven to be non-trivial and caused significant issues in the past, for instance those addressed in commit 5de195060b2e ("mm: resolve faulty mmap_region() error path behaviour"). It also necessitates a second attempt at merge once the .mmap() callback has completed, which has caused issues in the past, is awkward, adds overhead and is difficult to reason about. The .mmap_prepare() callback eliminates this requirement, as we can update fields prior to even attempting the first merge. It is safer, as we heavily restrict what can actually be modified, and being invoked very early in the mmap() process, error handling can be performed safely with very little unwinding of state required. The .mmap_prepare() and deprecated .mmap() callbacks are mutually exclusive, so we permit only one to be invoked at a time. Update vma userland test stubs to account for changes. Link: https://lkml.kernel.org/r/cover.1746792520.git.lorenzo.stoakes@oracle.com Link: https://lkml.kernel.org/r/adb36a7c4affd7393b2fc4b54cc5cfe211e41f71.1746792520.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christian Brauner <brauner@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-13PM: sleep: Introduce pm_sleep_transition_in_progress()Rafael J. Wysocki
The "suspend in progress" check in device_wakeup_enable() does not cover hibernation, but arguably it should do that, so introduce pm_sleep_transition_in_progress() covering transitions during both system suspend and hibernation to use in there and use it also in pm_debug_messages_should_print(). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Mario Limonciello <mario.limonciello@amd.com> Link: https://patch.msgid.link/7820474.EvYhyI6sBW@rjwysocki.net [ rjw: Move the new function definition under CONFIG_PM_SLEEP ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2025-05-13blk-throttle: Introduce flag "BIO_TG_BPS_THROTTLED"Zizhi Wo
Subsequent patches will split the single queue into separate bps and iops queues. To prevent IO that has already passed through the bps queue at a single tg level from being counted toward bps wait time again, we introduce "BIO_TG_BPS_THROTTLED" flag. Since throttle and QoS operate at different levels, we reuse the value as "BIO_QOS_THROTTLED". We set this flag when charge bps and clear it when charge iops, as the bio will move to the upper-level tg or be dispatched. This patch does not involve functional changes. Signed-off-by: Zizhi Wo <wozizhi@huawei.com> Reviewed-by: Yu Kuai <yukuai3@huawei.com> Signed-off-by: Zizhi Wo <wozizhi@huaweicloud.com> Link: https://lore.kernel.org/r/20250506020935.655574-5-wozizhi@huaweicloud.com Signed-off-by: Jens Axboe <axboe@kernel.dk>
2025-05-13tick/nohz: Remove unused tick_nohz_full_add_cpus_to()Alex Shi
This function isn't used anywhere. Remove it. Signed-off-by: Alex Shi <alexs@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/all/20250410092423.9831-1-alexs@kernel.org
2025-05-13Merge tag 'ib-mfd-gpio-nvmem-v6.16' of ↵Bartosz Golaszewski
git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd into gpio/for-next Immutable branch between MFD, GPIO and NVMEM due for the v6.16 merge window
2025-05-13Merge Energy Model management code changes for 6.16Rafael J. Wysocki
2025-05-13PM: EM: Introduce em_adjust_cpu_capacity()Rafael J. Wysocki
Add a function for updating the Energy Model for a CPU after its capacity has changed, which subsequently will be used by the intel_pstate driver. An EM_PERF_DOMAIN_ARTIFICIAL check is added to em_recalc_and_update() to prevent it from calling em_compute_costs() for an "artificial" perf domain with a NULL cb parameter which would cause it to crash. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Lukasz Luba <lukasz.luba@arm.com> Tested-by: Christian Loehle <christian.loehle@arm.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://patch.msgid.link/3637203.iIbC2pHGDl@rjwysocki.net
2025-05-13PM: sleep: Introduce pm_suspend_in_progress()Rafael J. Wysocki
Introduce pm_suspend_in_progress() to be used for checking if a system- wide suspend or resume transition is in progress, instead of comparing pm_suspend_target_state directly to PM_SUSPEND_ON, and use it where applicable. No intentional functional impact. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Acked-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Reviewed-by: Raag Jadav <raag.jadav@intel.com> Reviewed-by: Mario Limonciello <mario.limonciello@amd.com> Link: https://patch.msgid.link/2020901.PYKUYFuaPT@rjwysocki.net
2025-05-13Merge branch 'for-next' of ↵Leon Romanovsky
https://git.kernel.org/pub/scm/linux/kernel/git/tnguy/linux into wip/leon-for-next Tony Nguyen says: ==================== Prepare for Intel IPU E2000 (GEN3) This is the first part in introducing RDMA support for idpf. ---------------------------------------------------------------- Tatyana Nikolova says: To align with review comments, the patch series introducing RDMA RoCEv2 support for the Intel Infrastructure Processing Unit (IPU) E2000 line of products is going to be submitted in three parts: 1. Modify ice to use specific and common IIDC definitions and pass a core device info to irdma. 2. Add RDMA support to idpf and modify idpf to use specific and common IIDC definitions and pass a core device info to irdma. 3. Add RDMA RoCEv2 support for the E2000 products, referred to as GEN3 to irdma. This first part is a 5 patch series based on the original "iidc/ice/irdma: Update IDC to support multiple consumers" patch to allow for multiple CORE PCI drivers, using the auxbus. Patches: 1) Move header file to new name for clarity and replace ice specific DSCP define with a kernel equivalent one in irdma 2) Unify naming convention 3) Separate header file into common and driver specific info 4) Replace ice specific DSCP define with a kernel equivalent one in ice 5) Implement core device info struct and update drivers to use it ---------------------------------------------------------------- v1: https://lore.kernel.org/20250505212037.2092288-1-anthony.l.nguyen@intel.com IWL reviews: [v5] https://lore.kernel.org/20250416021549.606-1-tatyana.e.nikolova@intel.com [v4] https://lore.kernel.org/20250225050428.2166-1-tatyana.e.nikolova@intel.com [v3] https://lore.kernel.org/20250207194931.1569-1-tatyana.e.nikolova@intel.com [v2] https://lore.kernel.org/20240824031924.421-1-tatyana.e.nikolova@intel.com [v1] https://lore.kernel.org/20240724233917.704-1-tatyana.e.nikolova@intel.com * 'for-next' of https://git.kernel.org/pub/scm/linux/kernel/git/tnguy/linux: iidc/ice/irdma: Update IDC to support multiple consumers ice: Replace ice specific DSCP mapping num with a kernel define iidc/ice/irdma: Break iidc.h into two headers iidc/ice/irdma: Rename to iidc_* convention iidc/ice/irdma: Rename IDC header file ==================== Link: https://patch.msgid.link/20250509200712.2911060-1-anthony.l.nguyen@intel.com Signed-off-by: Leon Romanovsky <leon@kernel.org>
2025-05-13net: enable driver support for netmem TXMina Almasry
Drivers need to make sure not to pass netmem dma-addrs to the dma-mapping API in order to support netmem TX. Add helpers and netmem_dma_*() helpers that enables special handling of netmem dma-addrs that drivers can use. Document in netmem.rst what drivers need to do to support netmem TX. Signed-off-by: Mina Almasry <almasrymina@google.com> Acked-by: Stanislav Fomichev <sdf@fomichev.me> Link: https://patch.msgid.link/20250508004830.4100853-7-almasrymina@google.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2025-05-13net: devmem: Implement TX pathMina Almasry
Augment dmabuf binding to be able to handle TX. Additional to all the RX binding, we also create tx_vec needed for the TX path. Provide API for sendmsg to be able to send dmabufs bound to this device: - Provide a new dmabuf_tx_cmsg which includes the dmabuf to send from. - MSG_ZEROCOPY with SCM_DEVMEM_DMABUF cmsg indicates send from dma-buf. Devmem is uncopyable, so piggyback off the existing MSG_ZEROCOPY implementation, while disabling instances where MSG_ZEROCOPY falls back to copying. We additionally pipe the binding down to the new zerocopy_fill_skb_from_devmem which fills a TX skb with net_iov netmems instead of the traditional page netmems. We also special case skb_frag_dma_map to return the dma-address of these dmabuf net_iovs instead of attempting to map pages. The TX path may release the dmabuf in a context where we cannot wait. This happens when the user unbinds a TX dmabuf while there are still references to its netmems in the TX path. In that case, the netmems will be put_netmem'd from a context where we can't unmap the dmabuf, Resolve this by making __net_devmem_dmabuf_binding_free schedule_work'd. Based on work by Stanislav Fomichev <sdf@fomichev.me>. A lot of the meat of the implementation came from devmem TCP RFC v1[1], which included the TX path, but Stan did all the rebasing on top of netmem/net_iov. Cc: Stanislav Fomichev <sdf@fomichev.me> Signed-off-by: Kaiyuan Zhang <kaiyuanz@google.com> Signed-off-by: Mina Almasry <almasrymina@google.com> Acked-by: Stanislav Fomichev <sdf@fomichev.me> Link: https://patch.msgid.link/20250508004830.4100853-5-almasrymina@google.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2025-05-13net: add get_netmem/put_netmem supportMina Almasry
Currently net_iovs support only pp ref counts, and do not support a page ref equivalent. This is fine for the RX path as net_iovs are used exclusively with the pp and only pp refcounting is needed there. The TX path however does not use pp ref counts, thus, support for get_page/put_page equivalent is needed for netmem. Support get_netmem/put_netmem. Check the type of the netmem before passing it to page or net_iov specific code to obtain a page ref equivalent. For dmabuf net_iovs, we obtain a ref on the underlying binding. This ensures the entire binding doesn't disappear until all the net_iovs have been put_netmem'ed. We do not need to track the refcount of individual dmabuf net_iovs as we don't allocate/free them from a pool similar to what the buddy allocator does for pages. This code is written to be extensible by other net_iov implementers. get_netmem/put_netmem will check the type of the netmem and route it to the correct helper: pages -> [get|put]_page() dmabuf net_iovs -> net_devmem_[get|put]_net_iov() new net_iovs -> new helpers Signed-off-by: Mina Almasry <almasrymina@google.com> Acked-by: Stanislav Fomichev <sdf@fomichev.me> Link: https://patch.msgid.link/20250508004830.4100853-3-almasrymina@google.com Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2025-05-13Merge commit 'its-for-linus-20250509-merge' into x86/core, to resolve conflictsIngo Molnar
Conflicts: Documentation/admin-guide/hw-vuln/index.rst arch/x86/include/asm/cpufeatures.h arch/x86/kernel/alternative.c arch/x86/kernel/cpu/bugs.c arch/x86/kernel/cpu/common.c drivers/base/cpu.c include/linux/cpu.h Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-05-13Merge branch 'x86/nmi' into x86/core, to merge dependent commitsIngo Molnar
Prepare to resolve conflicts with an upstream series of fixes that conflict with pending x86 changes: 6f5bf947bab0 Merge tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-05-13Merge branch 'x86/mm' into x86/core, to resolve conflictsIngo Molnar
Conflicts: arch/x86/mm/numa.c arch/x86/mm/pgtable.c Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-05-13Merge branch 'x86/microcode' into x86/core, to merge dependent commitsIngo Molnar
Prepare to resolve conflicts with an upstream series of fixes that conflict with pending x86 changes: 6f5bf947bab0 Merge tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-05-13Merge branch 'x86/fpu' into x86/core, to merge dependent commitsIngo Molnar
Prepare to resolve conflicts with an upstream series of fixes that conflict with pending x86 changes: 6f5bf947bab0 Merge tag 'its-for-linus-20250509' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-05-13net: phy: micrel: remove KSZ9477 EEE quirks now handled by phylinkOleksij Rempel
The KSZ9477 PHY driver contained workarounds for broken EEE capability advertisements by manually masking supported EEE modes and forcibly disabling EEE if MICREL_NO_EEE was set. With proper MAC-side EEE handling implemented via phylink, these quirks are no longer necessary. Remove MICREL_NO_EEE handling and the use of ksz9477_get_features(). This simplifies the PHY driver and avoids duplicated EEE management logic. Signed-off-by: Oleksij Rempel <o.rempel@pengutronix.de> Cc: stable@vger.kernel.org # v6.14+ Link: https://patch.msgid.link/20250504081434.424489-3-o.rempel@pengutronix.de Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2025-05-13soc: samsung: exynos-pmu: enable CPU hotplug support for gs101Peter Griffin
Some additional register writes are required when hotplugging CPUs on gs101, without these the system hangs when hotplugging. Specifically a CPU_INFORM register needs to be programmed with a hint value which is used by the EL3 firmware (el3mon) and the pmu-intr-gen registers need to be programmed. With this patch applied, and corresponding DT update CPU hotplug now works as expected. e.g. echo 0 > /sys/devices/system/cpu/cpu6/online echo 1 > /sys/devices/system/cpu/cpu6/online Note: to maintain compatibility with older DTs that didn't specify pmu-intr-gen phandle only a warning is issued if the syscon can't be obtained. Signed-off-by: Peter Griffin <peter.griffin@linaro.org> Link: https://lore.kernel.org/r/20250506-contrib-pg-cpu-hotplug-suspend2ram-fixes-v1-v4-5-9f64a2657316@linaro.org [krzk: few blank line and white-space alignment fixes from checkpatch] Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
2025-05-12mm, swap: remove no longer used swap mapping helperKairui Song
This helper existed to fix the circular header dependency issue but it is no longer used since commit 0d40cfe63a2f ("fs: remove folio_file_mapping()"), remove it. Link: https://lkml.kernel.org/r/20250430181052.55698-7-ryncsn@gmail.com Signed-off-by: Kairui Song <kasong@tencent.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: David Hildenbrand <david@redhat.com> Cc: Chao Yu <chao@kernel.org> Cc: Chris Li <chrisl@kernel.org> Cc: Chris Mason <clm@fb.com> Cc: Christian Brauner <brauner@kernel.org> Cc: David Sterba <dsterba@suse.com> Cc: "Huang, Ying" <ying.huang@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Joanne Koong <joannelkoong@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Qu Wenruo <wqu@suse.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12mm: move folio_index to mm/swap.h and remove no longer needed helperKairui Song
There are no remaining users of folio_index() outside the mm subsystem. Move it to mm/swap.h to co-locate it with swap_cache_index(), eliminating a forward declaration, and a function call overhead. Also remove the helper that was used to fix circular header dependency issue. Link: https://lkml.kernel.org/r/20250430181052.55698-6-ryncsn@gmail.com Signed-off-by: Kairui Song <kasong@tencent.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Chao Yu <chao@kernel.org> Cc: Chris Li <chrisl@kernel.org> Cc: Chris Mason <clm@fb.com> Cc: Christian Brauner <brauner@kernel.org> Cc: David Sterba <dsterba@suse.com> Cc: "Huang, Ying" <ying.huang@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Joanne Koong <joannelkoong@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Qu Wenruo <wqu@suse.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12filemap: do not use folio_contains for swap cache foliosKairui Song
Currently, none of the folio_contains callers should encounter swap cache folios. For fs/ callers, swap cache folios are never part of their workflow. For filemap and truncate, folio_contains is only used for sanity checks to verify the folio index matches the expected lookup / invalidation target. The swap cache does not utilize filemap or truncate helpers in ways that would trigger these checks, as it mostly implements its own cache management. Shmem won't trigger these sanity checks either unless thing went wrong, as it would directly trigger a BUG because swap cache index are unrelated and almost never matches shmem index. Shmem have to handle mixed values of folios, shadows, and swap entries, so it has its own way of handling the mapping. While some filemap helpers works for swap cache space, the swap cache is different from the page cache in many ways. So this particular helper will unlikely to work in a helpful way for swap cache folios. So make it explicit here that folio_contains should not be used for swap cache folios. This helps to avoid misuse, make swap cache less exposed and remove the folio_index usage here. [akpm@linux-foundation.org: s/VM_WARN_ON_FOLIO/VM_WARN_ON_ONCE_FOLIO/, per Kairui] Link: https://lkml.kernel.org/r/20250430181052.55698-5-ryncsn@gmail.com Signed-off-by: Kairui Song <kasong@tencent.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Chao Yu <chao@kernel.org> Cc: Chris Li <chrisl@kernel.org> Cc: Chris Mason <clm@fb.com> Cc: Christian Brauner <brauner@kernel.org> Cc: David Sterba <dsterba@suse.com> Cc: "Huang, Ying" <ying.huang@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Joanne Koong <joannelkoong@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Qu Wenruo <wqu@suse.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12mm: page-flags-layout.h: change the KASAN_TAG_WIDTH for HW_TAGSGuilherme Giacomo Simoes
KASAN_TAG_WIDTH is 8 bits for both (HW_TAGS and SW_TAGS), but for HW_TAGS the KASAN_TAG_WIDTH can be 4 bits bits because due to the design of the MTE the memory words for storing metadata only need 4 bits. Change the preprocessor define KASAN_TAG_WIDTH for check if SW_TAGS is define, so KASAN_TAG_WIDTH should be 8 bits, but if HW_TAGS is define, so KASAN_TAG_WIDTH should be 4 bits to save a few flags bits. Link: https://lkml.kernel.org/r/20250428201409.5482-1-trintaeoitogc@gmail.com Signed-off-by: Guilherme Giacomo Simoes <trintaeoitogc@gmail.com> Suggested-by: Andrey Konovalov <andreyknvl@gmail.com> Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12mm: establish mm/vma_exec.c for shared exec/mm VMA functionalityLorenzo Stoakes
Patch series "move all VMA allocation, freeing and duplication logic to mm", v3. Currently VMA allocation, freeing and duplication exist in kernel/fork.c, which is a violation of separation of concerns, and leaves these functions exposed to the rest of the kernel when they are in fact internal implementation details. Resolve this by moving this logic to mm, and making it internal to vma.c, vma.h. This also allows us, in future, to provide userland testing around this functionality. We additionally abstract dup_mmap() to mm, being careful to ensure kernel/fork.c acceses this via the mm internal header so it is not exposed elsewhere in the kernel. As part of this change, also abstract initial stack allocation performed in __bprm_mm_init() out of fs code into mm via the create_init_stack_vma(), as this code uses vm_area_alloc() and vm_area_free(). In order to do so sensibly, we introduce a new mm/vma_exec.c file, which contains the code that is shared by mm and exec. This file is added to both memory mapping and exec sections in MAINTAINERS so both sets of maintainers can maintain oversight. As part of this change, we also move relocate_vma_down() to mm/vma_exec.c so all shared mm/exec functionality is kept in one place. We add code shared between nommu and mmu-enabled configurations in order to share VMA allocation, freeing and duplication code correctly while also keeping these functions available in userland VMA testing. This is achieved by adding a mm/vma_init.c file which is also compiled by the userland tests. This patch (of 4): There is functionality that overlaps the exec and memory mapping subsystems. While it properly belongs in mm, it is important that exec maintainers maintain oversight of this functionality correctly. We can establish both goals by adding a new mm/vma_exec.c file which contains these 'glue' functions, and have fs/exec.c import them. As a part of this change, to ensure that proper oversight is achieved, add the file to both the MEMORY MAPPING and EXEC & BINFMT API, ELF sections. scripts/get_maintainer.pl can correctly handle files in multiple entries and this neatly handles the cross-over. [akpm@linux-foundation.org: fix comment typo] Link: https://lkml.kernel.org/r/80f0d0c6-0b68-47f9-ab78-0ab7f74677fc@lucifer.local Link: https://lkml.kernel.org/r/cover.1745853549.git.lorenzo.stoakes@oracle.com Link: https://lkml.kernel.org/r/91f2cee8f17d65214a9d83abb7011aa15f1ea690.1745853549.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com> Reviewed-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Pedro Falcato <pfalcato@suse.de> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Kees Cook <kees@kernel.org> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christian Brauner <brauner@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Jann Horn <jannh@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12mm: add folio_expected_ref_count() for reference count calculationShivank Garg
Patch series " JFS: Implement migrate_folio for jfs_metapage_aops" v5. This patchset addresses a warning that occurs during memory compaction due to JFS's missing migrate_folio operation. The warning was introduced by commit 7ee3647243e5 ("migrate: Remove call to ->writepage") which added explicit warnings when filesystem don't implement migrate_folio. The syzbot reported following [1]: jfs_metapage_aops does not implement migrate_folio WARNING: CPU: 1 PID: 5861 at mm/migrate.c:955 fallback_migrate_folio mm/migrate.c:953 [inline] WARNING: CPU: 1 PID: 5861 at mm/migrate.c:955 move_to_new_folio+0x70e/0x840 mm/migrate.c:1007 Modules linked in: CPU: 1 UID: 0 PID: 5861 Comm: syz-executor280 Not tainted 6.15.0-rc1-next-20250411-syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025 RIP: 0010:fallback_migrate_folio mm/migrate.c:953 [inline] RIP: 0010:move_to_new_folio+0x70e/0x840 mm/migrate.c:1007 To fix this issue, this series implement metapage_migrate_folio() for JFS which handles both single and multiple metapages per page configurations. While most filesystems leverage existing migration implementations like filemap_migrate_folio(), buffer_migrate_folio_norefs() or buffer_migrate_folio() (which internally used folio_expected_refs()), JFS's metapage architecture requires special handling of its private data during migration. To support this, this series introduce the folio_expected_ref_count(), which calculates external references to a folio from page/swap cache, private data, and page table mappings. This standardized implementation replaces the previous ad-hoc folio_expected_refs() function and enables JFS to accurately determine whether a folio has unexpected references before attempting migration. Implement folio_expected_ref_count() to calculate expected folio reference counts from: - Page/swap cache (1 per page) - Private data (1) - Page table mappings (1 per map) While originally needed for page migration operations, this improved implementation standardizes reference counting by consolidating all refcount contributors into a single, reusable function that can benefit any subsystem needing to detect unexpected references to folios. The folio_expected_ref_count() returns the sum of these external references without including any reference the caller itself might hold. Callers comparing against the actual folio_ref_count() must account for their own references separately. Link: https://syzkaller.appspot.com/bug?extid=8bb6fd945af4e0ad9299 [1] Link: https://lkml.kernel.org/r/20250430100150.279751-1-shivankg@amd.com Link: https://lkml.kernel.org/r/20250430100150.279751-2-shivankg@amd.com Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Shivank Garg <shivankg@amd.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Co-developed-by: David Hildenbrand <david@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Dave Kleikamp <shaggy@kernel.org> Cc: Donet Tom <donettom@linux.ibm.com> Cc: Jane Chu <jane.chu@oracle.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12util_macros.h: make the header more resilientAndy Shevchenko
Add missing header inclusions. Link: https://lkml.kernel.org/r/20250428072754.3265274-1-andriy.shevchenko@linux.intel.com Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12mm/rmap: inline folio_test_large_maybe_mapped_shared() into callersLance Yang
To prevent the function from being used when CONFIG_MM_ID is disabled, we intend to inline it into its few callers, which also would help maintain the expected code placement. Link: https://lkml.kernel.org/r/20250424155606.57488-1-lance.yang@linux.dev Signed-off-by: Lance Yang <lance.yang@linux.dev> Suggested-by: David Hildenbrand <david@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Mingzhe Yang <mingzhe.yang@ly.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12mm: implement for_each_valid_pfn() for CONFIG_SPARSEMEMDavid Woodhouse
Implement for_each_valid_pfn() based on two helper functions. The first_valid_pfn() function largely mirrors pfn_valid(), calling into a pfn_section_first_valid() helper which is trivial for the !VMEMMAP case, and in the VMEMMAP case will skip to the next subsection as needed. Since next_valid_pfn() knows that its argument *is* a valid PFN, it doesn't need to do any checking at all while iterating over the low bits within a (sub)section mask; the whole (sub)section is either present or not. Note that the VMEMMAP version of pfn_section_first_valid() may return a value *higher* than end_pfn when skipping to the next subsection, and first_valid_pfn() happily returns that higher value. This is fine. [dwmw2@infradead.org: fix next_valid_pfn() for sparsemem] Link: https://lkml.kernel.org/r/c15100fcf6781a60b852c4dbb43bdc98a678fcf0.camel@infradead.org Link: https://lkml.kernel.org/r/20250423133821.789413-4-dwmw2@infradead.org Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Marc Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Ruihan Li <lrh2000@pku.edu.cn> Cc: Will Deacon <will@kernel.org> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12mm: introduce for_each_valid_pfn() and use it from reserve_bootmem_region()David Woodhouse
Patch series "mm: Introduce for_each_valid_pfn()", v4. There are cases where a naïve loop over a PFN range, calling pfn_valid() on each one, is horribly inefficient. Ruihan Li reported the case where memmap_init() iterates all the way from zero to a potentially large value of ARCH_PFN_OFFSET, and we at Amazon found the reserve_bootmem_region() one as it affects hypervisor live update. Others are more cosmetic. By introducing a for_each_valid_pfn() helper it can optimise away a lot of pointless calls to pfn_valid(), skipping immediately to the next valid PFN and also skipping *all* checks within a valid (sub)region according to the granularity of the memory model in use. This patch (of 7) Especially since commit 9092d4f7a1f8 ("memblock: update initialization of reserved pages"), the reserve_bootmem_region() function can spend a significant amount of time iterating over every 4KiB PFN in a range, calling pfn_valid() on each one, and ultimately doing absolutely nothing. On a platform used for virtualization, with large NOMAP regions that eventually get used for guest RAM, this leads to a significant increase in steal time experienced during kexec for a live update. Introduce for_each_valid_pfn() and use it from reserve_bootmem_region(). This implementation is precisely the same naïve loop that the functio used to have, but subsequent commits will provide optimised versions for FLATMEM and SPARSEMEM, and this version will remain for those architectures which provide their own pfn_valid() implementation, until/unless they also provide a matching for_each_valid_pfn(). Link: https://lkml.kernel.org/r/20250423133821.789413-1-dwmw2@infradead.org Link: https://lkml.kernel.org/r/20250423133821.789413-2-dwmw2@infradead.org Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Acked-by: David Hildenbrand <david@redhat.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Marc Rutland <mark.rutland@arm.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Ruihan Li <lrh2000@pku.edu.cn> Cc: Will Deacon <will@kernel.org> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12kexec: add KHO support to kexec file loadsAlexander Graf
Kexec has 2 modes: A user space driven mode and a kernel driven mode. For the kernel driven mode, kernel code determines the physical addresses of all target buffers that the payload gets copied into. With KHO, we can only safely copy payloads into the "scratch area". Teach the kexec file loader about it, so it only allocates for that area. In addition, enlighten it with support to ask the KHO subsystem for its respective payloads to copy into target memory. Also teach the KHO subsystem how to fill the images for file loads. Link: https://lkml.kernel.org/r/20250509074635.3187114-8-changyuanl@google.com Signed-off-by: Alexander Graf <graf@amazon.com> Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Co-developed-by: Changyuan Lyu <changyuanl@google.com> Signed-off-by: Changyuan Lyu <changyuanl@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anthony Yznaga <anthony.yznaga@oracle.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ashish Kalra <ashish.kalra@amd.com> Cc: Ben Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Gowans <jgowans@amazon.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Krzysztof Kozlowski <krzk@kernel.org> Cc: Marc Rutland <mark.rutland@arm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pratyush Yadav <ptyadav@amazon.de> Cc: Rob Herring <robh@kernel.org> Cc: Saravana Kannan <saravanak@google.com> Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleinxer <tglx@linutronix.de> Cc: Thomas Lendacky <thomas.lendacky@amd.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12kexec: enable KHO support for memory preservationMike Rapoport (Microsoft)
Introduce APIs allowing KHO users to preserve memory across kexec and get access to that memory after boot of the kexeced kernel kho_preserve_folio() - record a folio to be preserved over kexec kho_restore_folio() - recreates the folio from the preserved memory kho_preserve_phys() - record physically contiguous range to be preserved over kexec. The memory preservations are tracked by two levels of xarrays to manage chunks of per-order 512 byte bitmaps. For instance if PAGE_SIZE = 4096, the entire 1G order of a 1TB x86 system would fit inside a single 512 byte bitmap. For order 0 allocations each bitmap will cover 16M of address space. Thus, for 16G of memory at most 512K of bitmap memory will be needed for order 0. At serialization time all bitmaps are recorded in a linked list of pages for the next kernel to process and the physical address of the list is recorded in KHO FDT. The next kernel then processes that list, reserves the memory ranges and later, when a user requests a folio or a physical range, KHO restores corresponding memory map entries. Link: https://lkml.kernel.org/r/20250509074635.3187114-7-changyuanl@google.com Suggested-by: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Co-developed-by: Changyuan Lyu <changyuanl@google.com> Signed-off-by: Changyuan Lyu <changyuanl@google.com> Cc: Alexander Graf <graf@amazon.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anthony Yznaga <anthony.yznaga@oracle.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ashish Kalra <ashish.kalra@amd.com> Cc: Ben Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Gowans <jgowans@amazon.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Krzysztof Kozlowski <krzk@kernel.org> Cc: Marc Rutland <mark.rutland@arm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pratyush Yadav <ptyadav@amazon.de> Cc: Rob Herring <robh@kernel.org> Cc: Saravana Kannan <saravanak@google.com> Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleinxer <tglx@linutronix.de> Cc: Thomas Lendacky <thomas.lendacky@amd.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12kexec: add KHO parsing supportAlexander Graf
When we have a KHO kexec, we get an FDT blob and scratch region to populate the state of the system. Provide helper functions that allow architecture code to easily handle memory reservations based on them and give device drivers visibility into the KHO FDT and memory reservations so they can recover their own state. Include a fix from Arnd Bergmann <arnd@arndb.de> https://lore.kernel.org/lkml/20250424093302.3894961-1-arnd@kernel.org/. Link: https://lkml.kernel.org/r/20250509074635.3187114-6-changyuanl@google.com Signed-off-by: Alexander Graf <graf@amazon.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Co-developed-by: Changyuan Lyu <changyuanl@google.com> Signed-off-by: Changyuan Lyu <changyuanl@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anthony Yznaga <anthony.yznaga@oracle.com> Cc: Ashish Kalra <ashish.kalra@amd.com> Cc: Ben Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Gowans <jgowans@amazon.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Krzysztof Kozlowski <krzk@kernel.org> Cc: Marc Rutland <mark.rutland@arm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pratyush Yadav <ptyadav@amazon.de> Cc: Rob Herring <robh@kernel.org> Cc: Saravana Kannan <saravanak@google.com> Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleinxer <tglx@linutronix.de> Cc: Thomas Lendacky <thomas.lendacky@amd.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12kexec: add Kexec HandOver (KHO) generation helpersAlexander Graf
Add the infrastructure to generate Kexec HandOver metadata. Kexec HandOver is a mechanism that allows Linux to preserve state - arbitrary properties as well as memory locations - across kexec. It does so using 2 concepts: 1) KHO FDT - Every KHO kexec carries a KHO specific flattened device tree blob that describes preserved memory regions. Device drivers can register to KHO to serialize and preserve their states before kexec. 2) Scratch Regions - CMA regions that we allocate in the first kernel. CMA gives us the guarantee that no handover pages land in those regions, because handover pages must be at a static physical memory location. We use these regions as the place to load future kexec images so that they won't collide with any handover data. Link: https://lkml.kernel.org/r/20250509074635.3187114-5-changyuanl@google.com Signed-off-by: Alexander Graf <graf@amazon.com> Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Co-developed-by: Pratyush Yadav <ptyadav@amazon.de> Signed-off-by: Pratyush Yadav <ptyadav@amazon.de> Co-developed-by: Changyuan Lyu <changyuanl@google.com> Signed-off-by: Changyuan Lyu <changyuanl@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anthony Yznaga <anthony.yznaga@oracle.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ashish Kalra <ashish.kalra@amd.com> Cc: Ben Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Gowans <jgowans@amazon.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Krzysztof Kozlowski <krzk@kernel.org> Cc: Marc Rutland <mark.rutland@arm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rob Herring <robh@kernel.org> Cc: Saravana Kannan <saravanak@google.com> Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleinxer <tglx@linutronix.de> Cc: Thomas Lendacky <thomas.lendacky@amd.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12memblock: introduce memmap_init_kho_scratch()Mike Rapoport (Microsoft)
With deferred initialization of struct page it will be necessary to initialize memory map for KHO scratch regions early. Add memmap_init_kho_scratch() method that will allow such initialization in upcoming patches. Link: https://lkml.kernel.org/r/20250509074635.3187114-4-changyuanl@google.com Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Signed-off-by: Changyuan Lyu <changyuanl@google.com> Cc: Alexander Graf <graf@amazon.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anthony Yznaga <anthony.yznaga@oracle.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ashish Kalra <ashish.kalra@amd.com> Cc: Ben Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Gowans <jgowans@amazon.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Krzysztof Kozlowski <krzk@kernel.org> Cc: Marc Rutland <mark.rutland@arm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pratyush Yadav <ptyadav@amazon.de> Cc: Rob Herring <robh@kernel.org> Cc: Saravana Kannan <saravanak@google.com> Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleinxer <tglx@linutronix.de> Cc: Thomas Lendacky <thomas.lendacky@amd.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12memblock: add support for scratch memoryAlexander Graf
With KHO (Kexec HandOver), we need a way to ensure that the new kernel does not allocate memory on top of any memory regions that the previous kernel was handing over. But to know where those are, we need to include them in the memblock.reserved array which may not be big enough to hold all ranges that need to be persisted across kexec. To resize the array, we need to allocate memory. That brings us into a catch 22 situation. The solution to that is limit memblock allocations to the scratch regions: safe regions to operate in the case when there is memory that should remain intact across kexec. KHO provides several "scratch regions" as part of its metadata. These scratch regions are contiguous memory blocks that known not to contain any memory that should be persisted across kexec. These regions should be large enough to accommodate all memblock allocations done by the kexeced kernel. We introduce a new memblock_set_scratch_only() function that allows KHO to indicate that any memblock allocation must happen from the scratch regions. Later, we may want to perform another KHO kexec. For that, we reuse the same scratch regions. To ensure that no eventually handed over data gets allocated inside a scratch region, we flip the semantics of the scratch region with memblock_clear_scratch_only(): After that call, no allocations may happen from scratch memblock regions. We will lift that restriction in the next patch. Link: https://lkml.kernel.org/r/20250509074635.3187114-3-changyuanl@google.com Signed-off-by: Alexander Graf <graf@amazon.com> Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Signed-off-by: Changyuan Lyu <changyuanl@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anthony Yznaga <anthony.yznaga@oracle.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ashish Kalra <ashish.kalra@amd.com> Cc: Ben Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Gowans <jgowans@amazon.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Krzysztof Kozlowski <krzk@kernel.org> Cc: Marc Rutland <mark.rutland@arm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pratyush Yadav <ptyadav@amazon.de> Cc: Rob Herring <robh@kernel.org> Cc: Saravana Kannan <saravanak@google.com> Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleinxer <tglx@linutronix.de> Cc: Thomas Lendacky <thomas.lendacky@amd.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12memblock: add MEMBLOCK_RSRV_KERN flagMike Rapoport (Microsoft)
Patch series "kexec: introduce Kexec HandOver (KHO)", v8. Kexec today considers itself purely a boot loader: When we enter the new kernel, any state the previous kernel left behind is irrelevant and the new kernel reinitializes the system. However, there are use cases where this mode of operation is not what we actually want. In virtualization hosts for example, we want to use kexec to update the host kernel while virtual machine memory stays untouched. When we add device assignment to the mix, we also need to ensure that IOMMU and VFIO states are untouched. If we add PCIe peer to peer DMA, we need to do the same for the PCI subsystem. If we want to kexec while an SEV-SNP enabled virtual machine is running, we need to preserve the VM context pages and physical memory. See "pkernfs: Persisting guest memory and kernel/device state safely across kexec" Linux Plumbers Conference 2023 presentation for details: https://lpc.events/event/17/contributions/1485/ To start us on the journey to support all the use cases above, this patch implements basic infrastructure to allow hand over of kernel state across kexec (Kexec HandOver, aka KHO). As a really simple example target, we use memblock's reserve_mem. With this patchset applied, memory that was reserved using "reserve_mem" command line options remains intact after kexec and it is guaranteed to reside at the same physical address. == Alternatives == There are alternative approaches to (parts of) the problems above: * Memory Pools [1] - preallocated persistent memory region + allocator * PRMEM [2] - resizable persistent memory regions with fixed metadata pointer on the kernel command line + allocator * Pkernfs [3] - preallocated file system for in-kernel data with fixed address location on the kernel command line * PKRAM [4] - handover of user space pages using a fixed metadata page specified via command line All of the approaches above fundamentally have the same problem: They require the administrator to explicitly carve out a physical memory location because they have no mechanism outside of the kernel command line to pass data (including memory reservations) between kexec'ing kernels. KHO provides that base foundation. We will determine later whether we still need any of the approaches above for fast bulk memory handover of for example IOMMU page tables. But IMHO they would all be users of KHO, with KHO providing the foundational primitive to pass metadata and bulk memory reservations as well as provide easy versioning for data. == Overview == We introduce a metadata file that the kernels pass between each other. How they pass it is architecture specific. The file's format is a Flattened Device Tree (fdt) which has a generator and parser already included in Linux. KHO is enabled in the kernel command line by `kho=on`. When the root user enables KHO through /sys/kernel/debug/kho/out/finalize, the kernel invokes callbacks to every KHO users to register preserved memory regions, which contain drivers' states. When the actual kexec happens, the fdt is part of the image set that we boot into. In addition, we keep "scratch regions" available for kexec: physically contiguous memory regions that are guaranteed to not have any memory that KHO would preserve. The new kernel bootstraps itself using the scratch regions and sets all handed over memory as in use. When drivers initialize that support KHO, they introspect the fdt, restore preserved memory regions, and retrieve their states stored in the preserved memory. == Limitations == Currently KHO is only implemented for file based kexec. The kernel interfaces in the patch set are already in place to support user space kexec as well, but it is still not implemented it yet inside kexec tools. == How to Use == To use the code, please boot the kernel with the "kho=on" command line parameter. KHO will automatically create scratch regions. If you want to set the scratch size explicitly you can use "kho_scratch=" command line parameter. For instance, "kho_scratch=16M,512M,256M" will reserve a 16 MiB low memory scratch area, a 512 MiB global scratch region, and 256 MiB per NUMA node scratch regions on boot. Make sure to have a reserved memory range requested with reserv_mem command line option, for example, "reserve_mem=64m:4k:n1". Then before you invoke file based "kexec -l", finalize KHO FDT: # echo 1 > /sys/kernel/debug/kho/out/finalize You can preview the generated FDT using `dtc`, # dtc /sys/kernel/debug/kho/out/fdt # dtc /sys/kernel/debug/kho/out/sub_fdts/memblock `dtc` is available on ubuntu by `sudo apt-get install device-tree-compiler`. Now kexec into the new kernel, # kexec -l Image --initrd=initrd -s # kexec -e (The order of KHO finalization and "kexec -l" does not matter.) The new kernel will boot up and contain the previous kernel's reserve_mem contents at the same physical address as the first kernel. You can also review the FDT passed from the old kernel, # dtc /sys/kernel/debug/kho/in/fdt # dtc /sys/kernel/debug/kho/in/sub_fdts/memblock This patch (of 17): To denote areas that were reserved for kernel use either directly with memblock_reserve_kern() or via memblock allocations. Link: https://lore.kernel.org/lkml/20250424083258.2228122-1-changyuanl@google.com/ Link: https://lore.kernel.org/lkml/aAeaJ2iqkrv_ffhT@kernel.org/ Link: https://lore.kernel.org/lkml/35c58191-f774-40cf-8d66-d1e2aaf11a62@intel.com/ Link: https://lore.kernel.org/lkml/20250424093302.3894961-1-arnd@kernel.org/ Link: https://lkml.kernel.org/r/20250509074635.3187114-1-changyuanl@google.com Link: https://lkml.kernel.org/r/20250509074635.3187114-2-changyuanl@google.com Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Co-developed-by: Changyuan Lyu <changyuanl@google.com> Signed-off-by: Changyuan Lyu <changyuanl@google.com> Cc: Alexander Graf <graf@amazon.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anthony Yznaga <anthony.yznaga@oracle.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ashish Kalra <ashish.kalra@amd.com> Cc: Ben Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Gowans <jgowans@amazon.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Krzysztof Kozlowski <krzk@kernel.org> Cc: Marc Rutland <mark.rutland@arm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pratyush Yadav <ptyadav@amazon.de> Cc: Rob Herring <robh@kernel.org> Cc: Saravana Kannan <saravanak@google.com> Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleinxer <tglx@linutronix.de> Cc: Thomas Lendacky <thomas.lendacky@amd.com> Cc: Will Deacon <will@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12mm: remove unused macro INIT_PASIDCheng-Han Wu
The macro INIT_PASID was originally used by mm_init_pasid. However, since commit a6cbd44093ef ("kernel/fork: Initialize mm's PASID"), mm_init_pasid has been removed. Therefore, INIT_PASID is no longer needed and is removed. Link: https://lkml.kernel.org/r/20250427145004.13049-1-hank20010209@gmail.com Signed-off-by: Cheng-Han Wu <hank20010209@gmail.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12mm: add swappiness=max arg to memory.reclaim for only anon reclaimZhongkun He
Patch series "add max arg to swappiness in memory.reclaim and lru_gen", v4. This patchset adds max arg to swappiness in memory.reclaim and lru_gen for anon only proactive memory reclaim. With commit <68cd9050d871> ("mm: add swappiness= arg to memory.reclaim") we can submit an additional swappiness=<val> argument to memory.reclaim. It is very useful because we can dynamically adjust the reclamation ratio based on the anonymous folios and file folios of each cgroup. For example,when swappiness is set to 0, we only reclaim from file folios. But we can not relciam memory just from anon folios. This patchset introduces a new macro, SWAPPINESS_ANON_ONLY, defined as MAX_SWAPPINESS + 1, represent the max arg semantics. It specifically indicates that reclamation should occur only from anonymous pages. Patch 1 adds swappiness=max arg to memory.reclaim suggested-by: Yosry Ahmed Patch 2 add more comments for cache_trim_mode from Johannes Weiner in [1]. Patch 3 add max arg to lru_gen for proactive memory reclaim in MGLRU. The MGLRU already supports reclaiming exclusively from anonymous pages. This patch formalizes that behavior by introducing a max parameter to represent the corresponding semantics. Patch 4 using SWAPPINESS_ANON_ONLY in MGLRU Using SWAPPINESS_ANON_ONLY instead of MAX_SWAPPINESS + 1 to indicate reclaiming only from anonymous pages makes the code more readable and explicit Here is the previous discussion: https://lore.kernel.org/all/20250314033350.1156370-1-hezhongkun.hzk@bytedance.com/ https://lore.kernel.org/all/20250312094337.2296278-1-hezhongkun.hzk@bytedance.com/ https://lore.kernel.org/all/20250318135330.3358345-1-hezhongkun.hzk@bytedance.com/ This patch (of 4): With commit <68cd9050d871> ("mm: add swappiness= arg to memory.reclaim") we can submit an additional swappiness=<val> argument to memory.reclaim. It is very useful because we can dynamically adjust the reclamation ratio based on the anonymous folios and file folios of each cgroup. For example,when swappiness is set to 0, we only reclaim from file folios. However,we have also encountered a new issue: when swappiness is set to the MAX_SWAPPINESS, it may still only reclaim file folios. So, we hope to add a new arg 'swappiness=max' in memory.reclaim where proactive memory reclaim only reclaims from anonymous folios when swappiness is set to max. The swappiness semantics from a user perspective remain unchanged. For example, something like this: echo "2M swappiness=max" > /sys/fs/cgroup/memory.reclaim will perform reclaim on the rootcg with a swappiness setting of 'max' (a new mode) regardless of the file folios. Users have a more comprehensive view of the application's memory distribution because there are many metrics available. For example, if we find that a certain cgroup has a large number of inactive anon folios, we can reclaim only those and skip file folios, because with the zram/zswap, the IO tradeoff that cache_trim_mode or other file first logic is making doesn't hold - file refaults will cause IO, whereas anon decompression will not. With this patch, the swappiness argument of memory.reclaim has a new mode 'max', means reclaiming just from anonymous folios both in traditional LRU and MGLRU. Link: https://lkml.kernel.org/r/cover.1745225696.git.hezhongkun.hzk@bytedance.com Link: https://lore.kernel.org/all/20250314141833.GA1316033@cmpxchg.org/ [1] Link: https://lkml.kernel.org/r/519e12b9b1f8c31a01e228c8b4b91a2419684f77.1745225696.git.hezhongkun.hzk@bytedance.com Signed-off-by: Zhongkun He <hezhongkun.hzk@bytedance.com> Suggested-by: Yosry Ahmed <yosry.ahmed@linux.dev> Acked-by: Muchun Song <muchun.song@linux.dev> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12mm/hugetlb: use separate nodemask for bootmem allocationsFrank van der Linden
Hugetlb boot allocation has used online nodes for allocation since commit de55996d7188 ("mm/hugetlb: use online nodes for bootmem allocation"). This was needed to be able to do the allocations earlier in boot, before N_MEMORY was set. This might lead to a different distribution of gigantic hugepages across NUMA nodes if there are memoryless nodes in the system. What happens is that the memoryless nodes are tried, but then the memblock allocation fails and falls back, which usually means that the node that has the highest physical address available will be used (top-down allocation). While this will end up getting the same number of hugetlb pages, they might not be be distributed the same way. The fallback for each memoryless node might not end up coming from the same node as the successful round-robin allocation from N_MEMORY nodes. While administrators that rely on having a specific number of hugepages per node should use the hugepages=N:X syntax, it's better not to change the old behavior for the plain hugepages=N case. To do this, construct a nodemask for hugetlb bootmem purposes only, containing nodes that have memory. Then use that for round-robin bootmem allocations. This saves some cycles, and the added advantage here is that hugetlb_cma can use it too, avoiding the older issue of pointless attempts to create a CMA area for memoryless nodes (which will also cause the per-node CMA area size to be too small). Link: https://lkml.kernel.org/r/20250402205613.3086864-1-fvdl@google.com Fixes: de55996d7188 ("mm/hugetlb: use online nodes for bootmem allocation") Signed-off-by: Frank van der Linden <fvdl@google.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Luiz Capitulino <luizcap@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-12mm/memcg: move mem_cgroup_init() ahead of cgroup_init()Huan Yang
Patch series "Use kmem_cache for memcg alloc", v3. (willy tldr: "you've gone from allocating 8 objects per 32KiB to allocating 13 objects per 32KiB, a 62% improvement in memory consumption" [1]) The mem_cgroup_alloc function creates mem_cgroup struct and it's associated structures including mem_cgroup_per_node. Through detailed analysis on our test machine (Arm64, 16GB RAM, 6.6 kernel, 1 NUMA node, memcgv2 with nokmem,nosocket,cgroup_disable=pressure), we can observe the memory allocation for these structures using the following shell commands: # Enable tracing echo 1 > /sys/kernel/tracing/events/kmem/kmalloc/enable echo 1 > /sys/kernel/tracing/tracing_on cat /sys/kernel/tracing/trace_pipe | grep kmalloc | grep mem_cgroup # Trigger allocation if cgroup subtree do not enable memcg echo +memory > /sys/fs/cgroup/cgroup.subtree_control Ftrace Output: # mem_cgroup struct allocation sh-6312 [000] ..... 58015.698365: kmalloc: call_site=mem_cgroup_css_alloc+0xd8/0x5b4 ptr=000000003e4c3799 bytes_req=2312 bytes_alloc=4096 gfp_flags=GFP_KERNEL|__GFP_ZERO node=-1 accounted=false # mem_cgroup_per_node allocation sh-6312 [000] ..... 58015.698389: kmalloc: call_site=mem_cgroup_css_alloc+0x1d8/0x5b4 ptr=00000000d798700c bytes_req=2896 bytes_alloc=4096 gfp_flags=GFP_KERNEL|__GFP_ZERO node=0 accounted=false Key Observations: 1. Both structures use kmalloc with requested sizes between 2KB-4KB 2. Allocation alignment forces 4KB slab usage due to pre-defined sizes (64B, 128B,..., 2KB, 4KB, 8KB) 3. Memory waste per memcg instance: Base struct: 4096 - 2312 = 1784 bytes Per-node struct: 4096 - 2896 = 1200 bytes Total waste: 2984 bytes (1-node system) NUMA scaling: (1200 + 8) * nr_node_ids bytes So, it's a little waste. This patchset introduces dedicated kmem_cache: Patch2 - mem_cgroup kmem_cache - memcg_cachep Patch3 - mem_cgroup_per_node kmem_cache - memcg_pn_cachep The benefits of this change can be observed with the following tracing commands: # Enable tracing echo 1 > /sys/kernel/tracing/events/kmem/kmem_cache_alloc/enable echo 1 > /sys/kernel/tracing/tracing_on cat /sys/kernel/tracing/trace_pipe | grep kmem_cache_alloc | grep mem_cgroup # In another terminal: echo +memory > /sys/fs/cgroup/cgroup.subtree_control The output might now look like this: # mem_cgroup struct allocation sh-9827 [000] ..... 289.513598: kmem_cache_alloc: call_site=mem_cgroup_css_alloc+0xbc/0x5d4 ptr=00000000695c1806 bytes_req=2312 bytes_alloc=2368 gfp_flags=GFP_KERNEL|__GFP_ZERO node=-1 accounted=false # mem_cgroup_per_node allocation sh-9827 [000] ..... 289.513602: kmem_cache_alloc: call_site=mem_cgroup_css_alloc+0x1b8/0x5d4 ptr=000000002989e63a bytes_req=2896 bytes_alloc=2944 gfp_flags=GFP_KERNEL|__GFP_ZERO node=0 accounted=false This indicates that the `mem_cgroup` struct now requests 2312 bytes and is allocated 2368 bytes, while `mem_cgroup_per_node` requests 2896 bytes and is allocated 2944 bytes. The slight increase in allocated size is due to `SLAB_HWCACHE_ALIGN` in the `kmem_cache`. Without `SLAB_HWCACHE_ALIGN`, the allocation might appear as: # mem_cgroup struct allocation sh-9269 [003] ..... 80.396366: kmem_cache_alloc: call_site=mem_cgroup_css_alloc+0xbc/0x5d4 ptr=000000005b12b475 bytes_req=2312 bytes_alloc=2312 gfp_flags=GFP_KERNEL|__GFP_ZERO node=-1 accounted=false # mem_cgroup_per_node allocation sh-9269 [003] ..... 80.396411: kmem_cache_alloc: call_site=mem_cgroup_css_alloc+0x1b8/0x5d4 ptr=00000000f347adc6 bytes_req=2896 bytes_alloc=2896 gfp_flags=GFP_KERNEL|__GFP_ZERO node=0 accounted=false While the `bytes_alloc` now matches the `bytes_req`, this patchset defaults to using `SLAB_HWCACHE_ALIGN` as it is generally considered more beneficial for performance. Please let me know if there are any issues or if I've misunderstood anything. This patchset also move mem_cgroup_init ahead of cgroup_init() due to cgroup_init() will allocate root_mem_cgroup, but each initcall invoke after cgroup_init, so if each kmem_cache do not prepare, we need testing NULL before use it. This patch (of 3): When cgroup_init() creates root_mem_cgroup through css_alloc callback, some critical resources might not be fully initialized, forcing later operations to perform conditional checks for resource availability. This patch move mem_cgroup_init() to address the init order, it invoke before cgroup_init, so, compare to subsys_initcall, it can use to prepare some key resources before root_mem_cgroup alloc. Link: https://lkml.kernel.org/r/aAsRCj-niMMTtmK8@casper.infradead.org [1] Link: https://lkml.kernel.org/r/20250425031935.76411-1-link@vivo.com Link: https://lkml.kernel.org/r/20250425031935.76411-2-link@vivo.com Signed-off-by: Huan Yang <link@vivo.com> Suggested-by: Shakeel Butt <shakeel.butt@linux.dev> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Francesco Valla <francesco@valla.it> Cc: guoweikang <guoweikang.kernel@gmail.com> Cc: Huang Shijie <shijie@os.amperecomputing.com> Cc: KP Singh <kpsingh@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: "Paul E . McKenney" <paulmck@kernel.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Raul E Rangel <rrangel@chromium.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: "Uladzislau Rezki (Sony)" <urezki@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>