summaryrefslogtreecommitdiff
path: root/kernel/sched
AgeCommit message (Collapse)Author
2024-12-17sched/fair: Fix CPU bandwidth limit bypass during CPU hotplugVishal Chourasia
CPU controller limits are not properly enforced during CPU hotplug operations, particularly during CPU offline. When a CPU goes offline, throttled processes are unintentionally being unthrottled across all CPUs in the system, allowing them to exceed their assigned quota limits. Consider below for an example, Assigning 6.25% bandwidth limit to a cgroup in a 8 CPU system, where, workload is running 8 threads for 20 seconds at 100% CPU utilization, expected (user+sys) time = 10 seconds. $ cat /sys/fs/cgroup/test/cpu.max 50000 100000 $ ./ebizzy -t 8 -S 20 // non-hotplug case real 20.00 s user 10.81 s // intended behaviour sys 0.00 s $ ./ebizzy -t 8 -S 20 // hotplug case real 20.00 s user 14.43 s // Workload is able to run for 14 secs sys 0.00 s // when it should have only run for 10 secs During CPU hotplug, scheduler domains are rebuilt and cpu_attach_domain is called for every active CPU to update the root domain. That ends up calling rq_offline_fair which un-throttles any throttled hierarchies. Unthrottling should only occur for the CPU being hotplugged to allow its throttled processes to become runnable and get migrated to other CPUs. With current patch applied, $ ./ebizzy -t 8 -S 20 // hotplug case real 21.00 s user 10.16 s // intended behaviour sys 0.00 s This also has another symptom, when a CPU goes offline, and if the cfs_rq is not in throttled state and the runtime_remaining still had plenty remaining, it gets reset to 1 here, causing the runtime_remaining of cfs_rq to be quickly depleted. Note: hotplug operation (online, offline) was performed in while(1) loop v3: https://lore.kernel.org/all/20241210102346.228663-2-vishalc@linux.ibm.com v2: https://lore.kernel.org/all/20241207052730.1746380-2-vishalc@linux.ibm.com v1: https://lore.kernel.org/all/20241126064812.809903-2-vishalc@linux.ibm.com Suggested-by: Zhang Qiao <zhangqiao22@huawei.com> Signed-off-by: Vishal Chourasia <vishalc@linux.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Tested-by: Madadi Vineeth Reddy <vineethr@linux.ibm.com> Tested-by: Samir Mulani <samir@linux.ibm.com> Link: https://lore.kernel.org/r/20241212043102.584863-2-vishalc@linux.ibm.com
2024-12-15Merge tag 'sched_urgent_for_v6.13_rc3-p2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Borislav Petkov: - Prevent incorrect dequeueing of the deadline dlserver helper task and fix its time accounting - Properly track the CFS runqueue runnable stats - Check the total number of all queued tasks in a sched fair's runqueue hierarchy before deciding to stop the tick - Fix the scheduling of the task that got woken last (NEXT_BUDDY) by preventing those from being delayed * tag 'sched_urgent_for_v6.13_rc3-p2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/dlserver: Fix dlserver time accounting sched/dlserver: Fix dlserver double enqueue sched/eevdf: More PELT vs DELAYED_DEQUEUE sched/fair: Fix sched_can_stop_tick() for fair tasks sched/fair: Fix NEXT_BUDDY
2024-12-13sched_ext: Use sizeof_field for key_len in dsq_hash_paramsLiang Jie
Update the `dsq_hash_params` initialization to use `sizeof_field` for the `key_len` field instead of a hardcoded value. This improves code readability and ensures the key length dynamically matches the size of the `id` field in the `scx_dispatch_q` structure. Signed-off-by: Liang Jie <liangjie@lixiang.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2024-12-13sched/dlserver: Fix dlserver time accountingVineeth Pillai (Google)
dlserver time is accounted when: - dlserver is active and the dlserver proxies the cfs task. - dlserver is active but deferred and cfs task runs after being picked through the normal fair class pick. dl_server_update is called in two places to make sure that both the above times are accounted for. But it doesn't check if dlserver is active or not. Now that we have this dl_server_active flag, we can consolidate dl_server_update into one place and all we need to check is whether dlserver is active or not. When dlserver is active there is only two possible conditions: - dlserver is deferred. - cfs task is running on behalf of dlserver. Fixes: a110a81c52a9 ("sched/deadline: Deferrable dl server") Signed-off-by: "Vineeth Pillai (Google)" <vineeth@bitbyteword.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Marcel Ziswiler <marcel.ziswiler@codethink.co.uk> # ROCK 5B Link: https://lore.kernel.org/r/20241213032244.877029-2-vineeth@bitbyteword.org
2024-12-13sched/dlserver: Fix dlserver double enqueueVineeth Pillai (Google)
dlserver can get dequeued during a dlserver pick_task due to the delayed deueue feature and this can lead to issues with dlserver logic as it still thinks that dlserver is on the runqueue. The dlserver throttling and replenish logic gets confused and can lead to double enqueue of dlserver. Double enqueue of dlserver could happend due to couple of reasons: Case 1 ------ Delayed dequeue feature[1] can cause dlserver being stopped during a pick initiated by dlserver: __pick_next_task pick_task_dl -> server_pick_task pick_task_fair pick_next_entity (if (sched_delayed)) dequeue_entities dl_server_stop server_pick_task goes ahead with update_curr_dl_se without knowing that dlserver is dequeued and this confuses the logic and may lead to unintended enqueue while the server is stopped. Case 2 ------ A race condition between a task dequeue on one cpu and same task's enqueue on this cpu by a remote cpu while the lock is released causing dlserver double enqueue. One cpu would be in the schedule() and releasing RQ-lock: current->state = TASK_INTERRUPTIBLE(); schedule(); deactivate_task() dl_stop_server(); pick_next_task() pick_next_task_fair() sched_balance_newidle() rq_unlock(this_rq) at which point another CPU can take our RQ-lock and do: try_to_wake_up() ttwu_queue() rq_lock() ... activate_task() dl_server_start() --> first enqueue wakeup_preempt() := check_preempt_wakeup_fair() update_curr() update_curr_task() if (current->dl_server) dl_server_update() enqueue_dl_entity() --> second enqueue This bug was not apparent as the enqueue in dl_server_start doesn't usually happen because of the defer logic. But as a side effect of the first case(dequeue during dlserver pick), dl_throttled and dl_yield will be set and this causes the time accounting of dlserver to messup and then leading to a enqueue in dl_server_start. Have an explicit flag representing the status of dlserver to avoid the confusion. This is set in dl_server_start and reset in dlserver_stop. Fixes: 63ba8422f876 ("sched/deadline: Introduce deadline servers") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: "Vineeth Pillai (Google)" <vineeth@bitbyteword.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Marcel Ziswiler <marcel.ziswiler@codethink.co.uk> # ROCK 5B Link: https://lkml.kernel.org/r/20241213032244.877029-1-vineeth@bitbyteword.org
2024-12-11sched_ext: Fix invalid irq restore in scx_ops_bypass()Tejun Heo
While adding outer irqsave/restore locking, 0e7ffff1b811 ("scx: Fix raciness in scx_ops_bypass()") forgot to convert an inner rq_unlock_irqrestore() to rq_unlock() which could re-enable IRQ prematurely leading to the following warning: raw_local_irq_restore() called with IRQs enabled WARNING: CPU: 1 PID: 96 at kernel/locking/irqflag-debug.c:10 warn_bogus_irq_restore+0x30/0x40 ... Sched_ext: create_dsq (enabling) pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : warn_bogus_irq_restore+0x30/0x40 lr : warn_bogus_irq_restore+0x30/0x40 ... Call trace: warn_bogus_irq_restore+0x30/0x40 (P) warn_bogus_irq_restore+0x30/0x40 (L) scx_ops_bypass+0x224/0x3b8 scx_ops_enable.isra.0+0x2c8/0xaa8 bpf_scx_reg+0x18/0x30 ... irq event stamp: 33739 hardirqs last enabled at (33739): [<ffff8000800b699c>] scx_ops_bypass+0x174/0x3b8 hardirqs last disabled at (33738): [<ffff800080d48ad4>] _raw_spin_lock_irqsave+0xb4/0xd8 Drop the stray _irqrestore(). Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Ihor Solodrai <ihor.solodrai@pm.me> Link: http://lkml.kernel.org/r/qC39k3UsonrBYD_SmuxHnZIQLsuuccoCrkiqb_BT7DvH945A1_LZwE4g-5Pu9FcCtqZt4lY1HhIPi0homRuNWxkgo1rgP3bkxa0donw8kV4=@pm.me Fixes: 0e7ffff1b811 ("scx: Fix raciness in scx_ops_bypass()") Cc: stable@vger.kernel.org # v6.12
2024-12-10sched: deadline: Cleanup goto label in pick_earliest_pushable_dl_taskJohn Stultz
Commit 8b5e770ed7c0 ("sched/deadline: Optimize pull_dl_task()") added a goto label seems would be better written as a while loop. So replace the goto with a while loop, to make it easier to read. Reported-by: Todd Kjos <tkjos@google.com> Signed-off-by: John Stultz <jstultz@google.com> Reviewed-and-tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20241206000009.1226085-1-jstultz@google.com
2024-12-09Merge tag 'sched_urgent_for_v6.13_rc3' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Borislav Petkov: - Remove wrong enqueueing of a task for a later wakeup when a task blocks on a RT mutex - Do not setup a new deadline entity on a boosted task as that has happened already - Update preempt= kernel command line param - Prevent needless softirqd wakeups in the idle task's context - Detect the case where the idle load balancer CPU becomes busy and avoid unnecessary load balancing invocation - Remove an unnecessary load balancing need_resched() call in nohz_csd_func() - Allow for raising of SCHED_SOFTIRQ softirq type on RT but retain the warning to catch any other cases - Remove a wrong warning when a cpuset update makes the task affinity no longer a subset of the cpuset * tag 'sched_urgent_for_v6.13_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: locking: rtmutex: Fix wake_q logic in task_blocks_on_rt_mutex sched/deadline: Fix warning in migrate_enable for boosted tasks sched/core: Update kernel boot parameters for LAZY preempt. sched/core: Prevent wakeup of ksoftirqd during idle load balance sched/fair: Check idle_cpu() before need_resched() to detect ilb CPU turning busy sched/core: Remove the unnecessary need_resched() check in nohz_csd_func() softirq: Allow raising SCHED_SOFTIRQ from SMP-call-function on RT kernel sched: fix warning in sched_setaffinity sched/deadline: Fix replenish_dl_new_period dl_server condition
2024-12-09sched/fair: Untangle NEXT_BUDDY and pick_next_task()Peter Zijlstra
There are 3 sites using set_next_buddy() and only one is conditional on NEXT_BUDDY, the other two sites are unconditional; to note: - yield_to_task() - cgroup dequeue / pick optimization However, having NEXT_BUDDY control both the wakeup-preemption and the picking side of things means its near useless. Fixes: 147f3efaa241 ("sched/fair: Implement an EEVDF-like scheduling policy") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20241129101541.GA33464@noisy.programming.kicks-ass.net
2024-12-09sched/fair: Mark m*_vruntime() with __maybe_unusedAndy Shevchenko
When max_vruntime() is unused, it prevents kernel builds with clang, `make W=1` and CONFIG_WERROR=y: kernel/sched/fair.c:526:19: error: unused function 'max_vruntime' [-Werror,-Wunused-function] 526 | static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) | ^~~~~~~~~~~~ Fix this by marking them with __maybe_unused (all cases for the sake of symmetry). See also commit 6863f5643dd7 ("kbuild: allow Clang to find unused static inline functions for W=1 build"). Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20241202173546.634433-1-andriy.shevchenko@linux.intel.com
2024-12-09sched/fair: Fix variable declaration positionVincent Guittot
Move variable declaration at the beginning of the function Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20241202174606.4074512-12-vincent.guittot@linaro.org
2024-12-09sched/fair: Do not try to migrate delayed dequeue taskVincent Guittot
Migrating a delayed dequeued task doesn't help in balancing the number of runnable tasks in the system. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20241202174606.4074512-11-vincent.guittot@linaro.org
2024-12-09sched/fair: Rename cfs_rq.nr_running into nr_queuedVincent Guittot
Rename cfs_rq.nr_running into cfs_rq.nr_queued which better reflects the reality as the value includes both the ready to run tasks and the delayed dequeue tasks. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20241202174606.4074512-10-vincent.guittot@linaro.org
2024-12-09sched/fair: Remove unused cfs_rq.idle_nr_runningVincent Guittot
cfs_rq.idle_nr_running field is not used anywhere so we can remove the useless associated computation. Last user went in commit 5e963f2bd465 ("sched/fair: Commit to EEVDF"). Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20241202174606.4074512-9-vincent.guittot@linaro.org
2024-12-09sched/fair: Rename cfs_rq.idle_h_nr_running into h_nr_idleVincent Guittot
Use same naming convention as others starting with h_nr_* and rename idle_h_nr_running into h_nr_idle. The "running" is not correct anymore as it includes delayed dequeue tasks as well. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20241202174606.4074512-8-vincent.guittot@linaro.org
2024-12-09sched/fair: Removed unsued cfs_rq.h_nr_delayedVincent Guittot
h_nr_delayed is not used anymore. We now have: - h_nr_runnable which tracks tasks ready to run - h_nr_queued which tracks enqueued tasks either ready to run or delayed dequeue Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20241202174606.4074512-7-vincent.guittot@linaro.org
2024-12-09sched/fair: Use the new cfs_rq.h_nr_runnableVincent Guittot
Use the new h_nr_runnable that tracks only queued and runnable tasks in the statistics that are used to balance the system: - PELT runnable_avg - deciding if a group is overloaded or has spare capacity - numa stats - reduced capacity management - load balance - nohz kick It should be noticed that the rq->nr_running still counts the delayed dequeued tasks as delayed dequeue is a fair feature that is meaningless at core level. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20241202174606.4074512-6-vincent.guittot@linaro.org
2024-12-09sched/fair: Add new cfs_rq.h_nr_runnableVincent Guittot
With delayed dequeued feature, a sleeping sched_entity remains queued in the rq until its lag has elapsed. As a result, it stays also visible in the statistics that are used to balance the system and in particular the field cfs.h_nr_queued when the sched_entity is associated to a task. Create a new h_nr_runnable that tracks only queued and runnable tasks. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20241202174606.4074512-5-vincent.guittot@linaro.org
2024-12-09sched/fair: Rename h_nr_running into h_nr_queuedVincent Guittot
With delayed dequeued feature, a sleeping sched_entity remains queued in the rq until its lag has elapsed but can't run. Rename h_nr_running into h_nr_queued to reflect this new behavior. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20241202174606.4074512-4-vincent.guittot@linaro.org
2024-12-09Merge branch 'sched/urgent'Peter Zijlstra
Sync with urgent bits as a base for further work. Signed-off-by: Peter Zijlstra <peterz@infradead.org>
2024-12-09sched/eevdf: More PELT vs DELAYED_DEQUEUEPeter Zijlstra
Vincent and Dietmar noted that while commit fc1892becd56 ("sched/eevdf: Fixup PELT vs DELAYED_DEQUEUE") fixes the entity runnable stats, it does not adjust the cfs_rq runnable stats, which are based off of h_nr_running. Track h_nr_delayed such that we can discount those and adjust the signal. Fixes: fc1892becd56 ("sched/eevdf: Fixup PELT vs DELAYED_DEQUEUE") Closes: https://lore.kernel.org/lkml/a9a45193-d0c6-4ba2-a822-464ad30b550e@arm.com/ Closes: https://lore.kernel.org/lkml/CAKfTPtCNUvWE_GX5LyvTF-WdxUT=ZgvZZv-4t=eWntg5uOFqiQ@mail.gmail.com/ [ Fixes checkpatch warnings and rebased ] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reported-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Reported-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: "Peter Zijlstra (Intel)" <peterz@infradead.org> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: K Prateek Nayak <kprateek.nayak@amd.com> Link: https://lore.kernel.org/r/20241202174606.4074512-3-vincent.guittot@linaro.org
2024-12-09sched/fair: Fix sched_can_stop_tick() for fair tasksVincent Guittot
We can't stop the tick of a rq if there are at least 2 tasks enqueued in the whole hierarchy and not only at the root cfs rq. rq->cfs.nr_running tracks the number of sched_entity at one level whereas rq->cfs.h_nr_running tracks all queued tasks in the hierarchy. Fixes: 11cc374f4643b ("sched_ext: Simplify scx_can_stop_tick() invocation in sched_can_stop_tick()") Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20241202174606.4074512-2-vincent.guittot@linaro.org
2024-12-09sched/fair: Fix NEXT_BUDDYK Prateek Nayak
Adam reports that enabling NEXT_BUDDY insta triggers a WARN in pick_next_entity(). Moving clear_buddies() up before the delayed dequeue bits ensures no ->next buddy becomes delayed. Further ensure no new ->next buddy ever starts as delayed. Fixes: 152e11f6df29 ("sched/fair: Implement delayed dequeue") Reported-by: Adam Li <adamli@os.amperecomputing.com> Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Adam Li <adamli@os.amperecomputing.com> Link: https://lkml.kernel.org/r/670a0d54-e398-4b1f-8a6e-90784e2fdf89@amd.com
2024-12-05sched/numa: fix memory leak due to the overwritten vma->numab_stateAdrian Huang
[Problem Description] When running the hackbench program of LTP, the following memory leak is reported by kmemleak. # /opt/ltp/testcases/bin/hackbench 20 thread 1000 Running with 20*40 (== 800) tasks. # dmesg | grep kmemleak ... kmemleak: 480 new suspected memory leaks (see /sys/kernel/debug/kmemleak) kmemleak: 665 new suspected memory leaks (see /sys/kernel/debug/kmemleak) # cat /sys/kernel/debug/kmemleak unreferenced object 0xffff888cd8ca2c40 (size 64): comm "hackbench", pid 17142, jiffies 4299780315 hex dump (first 32 bytes): ac 74 49 00 01 00 00 00 4c 84 49 00 01 00 00 00 .tI.....L.I..... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc bff18fd4): [<ffffffff81419a89>] __kmalloc_cache_noprof+0x2f9/0x3f0 [<ffffffff8113f715>] task_numa_work+0x725/0xa00 [<ffffffff8110f878>] task_work_run+0x58/0x90 [<ffffffff81ddd9f8>] syscall_exit_to_user_mode+0x1c8/0x1e0 [<ffffffff81dd78d5>] do_syscall_64+0x85/0x150 [<ffffffff81e0012b>] entry_SYSCALL_64_after_hwframe+0x76/0x7e ... This issue can be consistently reproduced on three different servers: * a 448-core server * a 256-core server * a 192-core server [Root Cause] Since multiple threads are created by the hackbench program (along with the command argument 'thread'), a shared vma might be accessed by two or more cores simultaneously. When two or more cores observe that vma->numab_state is NULL at the same time, vma->numab_state will be overwritten. Although current code ensures that only one thread scans the VMAs in a single 'numa_scan_period', there might be a chance for another thread to enter in the next 'numa_scan_period' while we have not gotten till numab_state allocation [1]. Note that the command `/opt/ltp/testcases/bin/hackbench 50 process 1000` cannot the reproduce the issue. It is verified with 200+ test runs. [Solution] Use the cmpxchg atomic operation to ensure that only one thread executes the vma->numab_state assignment. [1] https://lore.kernel.org/lkml/1794be3c-358c-4cdc-a43d-a1f841d91ef7@amd.com/ Link: https://lkml.kernel.org/r/20241113102146.2384-1-ahuang12@lenovo.com Fixes: ef6a22b70f6d ("sched/numa: apply the scan delay to every new vma") Signed-off-by: Adrian Huang <ahuang12@lenovo.com> Reported-by: Jiwei Sun <sunjw10@lenovo.com> Reviewed-by: Raghavendra K T <raghavendra.kt@amd.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Ben Segall <bsegall@google.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Valentin Schneider <vschneid@redhat.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-12-04sched_ext: Use the NUMA scheduling domain for NUMA optimizationsAndrea Righi
Rely on the NUMA scheduling domain topology, instead of accessing NUMA topology information directly. There is basically no functional change, but in this way we ensure consistent use of the same topology information determined by the scheduling subsystem. Fixes: f6ce6b949304 ("sched_ext: Do not enable LLC/NUMA optimizations when domains overlap") Signed-off-by: Andrea Righi <arighi@nvidia.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2024-12-02sched: Unify HK_TYPE_{TIMER|TICK|MISC} to HK_TYPE_KERNEL_NOISEWaiman Long
As all the non-domain and non-managed_irq housekeeping types have been unified to HK_TYPE_KERNEL_NOISE, replace all these references in the scheduler to use HK_TYPE_KERNEL_NOISE. Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20241030175253.125248-5-longman@redhat.com
2024-12-02sched/isolation: Consolidate housekeeping cpumasks that are always identicalWaiman Long
The housekeeping cpumasks are only set by two boot commandline parameters: "nohz_full" and "isolcpus". When there is more than one of "nohz_full" or "isolcpus", the extra ones must have the same CPU list or the setup will fail partially. The HK_TYPE_DOMAIN and HK_TYPE_MANAGED_IRQ types are settable by "isolcpus" only and their settings can be independent of the other types. The other housekeeping types are all set by "nohz_full" or "isolcpus=nohz" without a way to set them individually. So they all have identical cpumasks. There is actually no point in having different cpumasks for these "nohz_full" only housekeeping types. Consolidate these types to use the same cpumask by aliasing them to the same value. If there is a need to set any of them independently in the future, we can break them out to their own cpumasks again. With this change, the number of cpumasks in the housekeeping structure drops from 9 to 3. Other than that, there should be no other functional change. Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20241030175253.125248-4-longman@redhat.com
2024-12-02sched/isolation: Make "isolcpus=nohz" equivalent to "nohz_full"Waiman Long
The "isolcpus=nohz" boot parameter and flag were used to disable tick when running a single task. Nowsdays, this "nohz" flag is seldomly used as it is included as part of the "nohz_full" parameter. Extend this flag to cover other kernel noises disabled by the "nohz_full" parameter to make them equivalent. This also eliminates the need to use both the "isolcpus" and the "nohz_full" parameters to fully isolated a given set of CPUs. Suggested-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20241030175253.125248-3-longman@redhat.com
2024-12-02sched/core: Remove HK_TYPE_SCHEDWaiman Long
The HK_TYPE_SCHED housekeeping type is defined but not set anywhere. So any code that try to use HK_TYPE_SCHED are essentially dead code. So remove HK_TYPE_SCHED and any code that use it. Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20241030175253.125248-2-longman@redhat.com
2024-12-02sched/fair: Remove CONFIG_CFS_BANDWIDTH=n definition of cfs_bandwidth_used()Valentin Schneider
Andy reported that clang gets upset with CONFIG_CFS_BANDWIDTH=n: kernel/sched/fair.c:6580:20: error: unused function 'cfs_bandwidth_used' [-Werror,-Wunused-function] 6580 | static inline bool cfs_bandwidth_used(void) | ^~~~~~~~~~~~~~~~~~ Indeed, cfs_bandwidth_used() is only used within functions defined under CONFIG_CFS_BANDWIDTH=y. Remove its CONFIG_CFS_BANDWIDTH=n declaration & definition. Reported-by: Andy Shevchenko <andy.shevchenko@gmail.com> Signed-off-by: Valentin Schneider <vschneid@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Link: https://lore.kernel.org/r/20241127165501.160004-1-vschneid@redhat.com
2024-12-02sched/deadline: Consolidate Timer CancellationWander Lairson Costa
After commit b58652db66c9 ("sched/deadline: Fix task_struct reference leak"), I identified additional calls to hrtimer_try_to_cancel that might also require a dl_server check. It remains unclear whether this omission was intentional or accidental in those contexts. This patch consolidates the timer cancellation logic into dedicated functions, ensuring consistent behavior across all calls. Additionally, it reduces code duplication and improves overall code cleanliness. Note the use of the __always_inline keyword. In some instances, we have a task_struct pointer, dereference the dl member, and then use the container_of macro to retrieve the task_struct pointer again. By inlining the code, the compiler can potentially optimize out this redundant round trip. Signed-off-by: Wander Lairson Costa <wander@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20240724142253.27145-3-wander@redhat.com
2024-12-02sched/deadline: Check bandwidth overflow earlier for hotplugJuri Lelli
Currently we check for bandwidth overflow potentially due to hotplug operations at the end of sched_cpu_deactivate(), after the cpu going offline has already been removed from scheduling, active_mask, etc. This can create issues for DEADLINE tasks, as there is a substantial race window between the start of sched_cpu_deactivate() and the moment we possibly decide to roll-back the operation if dl_bw_deactivate() returns failure in cpuset_cpu_inactive(). An example is a throttled task that sees its replenishment timer firing while the cpu it was previously running on is considered offline, but before dl_bw_deactivate() had a chance to say no and roll-back happened. Fix this by directly calling dl_bw_deactivate() first thing in sched_cpu_deactivate() and do the required calculation in the former function considering the cpu passed as an argument as offline already. By doing so we also simplify sched_cpu_deactivate(), as there is no need anymore for any kind of roll-back if we fail early. Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Phil Auld <pauld@redhat.com> Tested-by: Waiman Long <longman@redhat.com> Link: https://lore.kernel.org/r/Zzc1DfPhbvqDDIJR@jlelli-thinkpadt14gen4.remote.csb
2024-12-02sched/deadline: Correctly account for allocated bandwidth during hotplugJuri Lelli
For hotplug operations, DEADLINE needs to check that there is still enough bandwidth left after removing the CPU that is going offline. We however fail to do so currently. Restore the correct behavior by restructuring dl_bw_manage() a bit, so that overflow conditions (not enough bandwidth left) are properly checked. Also account for dl_server bandwidth, i.e. discount such bandwidth in the calculation since NORMAL tasks will be anyway moved away from the CPU as a result of the hotplug operation. Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Phil Auld <pauld@redhat.com> Tested-by: Waiman Long <longman@redhat.com> Link: https://lore.kernel.org/r/20241114142810.794657-3-juri.lelli@redhat.com
2024-12-02sched/deadline: Restore dl_server bandwidth on non-destructive root domain ↵Juri Lelli
changes When root domain non-destructive changes (e.g., only modifying one of the existing root domains while the rest is not touched) happen we still need to clear DEADLINE bandwidth accounting so that it's then properly restored, taking into account DEADLINE tasks associated to each cpuset (associated to each root domain). After the introduction of dl_servers, we fail to restore such servers contribution after non-destructive changes (as they are only considered on destructive changes when runqueues are attached to the new domains). Fix this by making sure we iterate over the dl_servers attached to domains that have not been destroyed and add their bandwidth contribution back correctly. Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Phil Auld <pauld@redhat.com> Tested-by: Waiman Long <longman@redhat.com> Link: https://lore.kernel.org/r/20241114142810.794657-2-juri.lelli@redhat.com
2024-12-02sched: add READ_ONCE to task_on_rq_queuedHarshit Agarwal
task_on_rq_queued read p->on_rq without READ_ONCE, though p->on_rq is set with WRITE_ONCE in {activate|deactivate}_task and smp_store_release in __block_task, and also read with READ_ONCE in task_on_rq_migrating. Make all of these accesses pair together by adding READ_ONCE in the task_on_rq_queued. Signed-off-by: Harshit Agarwal <harshit@nutanix.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Phil Auld <pauld@redhat.com> Link: https://lkml.kernel.org/r/20241114210812.1836587-1-jon@nutanix.com
2024-12-02sched: Don't try to catch up excess steal time.Suleiman Souhlal
When steal time exceeds the measured delta when updating clock_task, we currently try to catch up the excess in future updates. However, this results in inaccurate run times for the future things using clock_task, in some situations, as they end up getting additional steal time that did not actually happen. This is because there is a window between reading the elapsed time in update_rq_clock() and sampling the steal time in update_rq_clock_task(). If the VCPU gets preempted between those two points, any additional steal time is accounted to the outgoing task even though the calculated delta did not actually contain any of that "stolen" time. When this race happens, we can end up with steal time that exceeds the calculated delta, and the previous code would try to catch up that excess steal time in future clock updates, which is given to the next, incoming task, even though it did not actually have any time stolen. This behavior is particularly bad when steal time can be very long, which we've seen when trying to extend steal time to contain the duration that the host was suspended [0]. When this happens, clock_task stays frozen, during which the running task stays running for the whole duration, since its run time doesn't increase. However the race can happen even under normal operation. Ideally we would read the elapsed cpu time and the steal time atomically, to prevent this race from happening in the first place, but doing so is non-trivial. Since the time between those two points isn't otherwise accounted anywhere, neither to the outgoing task nor the incoming task (because the "end of outgoing task" and "start of incoming task" timestamps are the same), I would argue that the right thing to do is to simply drop any excess steal time, in order to prevent these issues. [0] https://lore.kernel.org/kvm/20240820043543.837914-1-suleiman@google.com/ Signed-off-by: Suleiman Souhlal <suleiman@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20241118043745.1857272-1-suleiman@google.com
2024-12-02sched/deadline: Fix warning in migrate_enable for boosted tasksWander Lairson Costa
When running the following command: while true; do stress-ng --cyclic 30 --timeout 30s --minimize --quiet done a warning is eventually triggered: WARNING: CPU: 43 PID: 2848 at kernel/sched/deadline.c:794 setup_new_dl_entity+0x13e/0x180 ... Call Trace: <TASK> ? show_trace_log_lvl+0x1c4/0x2df ? enqueue_dl_entity+0x631/0x6e0 ? setup_new_dl_entity+0x13e/0x180 ? __warn+0x7e/0xd0 ? report_bug+0x11a/0x1a0 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 enqueue_dl_entity+0x631/0x6e0 enqueue_task_dl+0x7d/0x120 __do_set_cpus_allowed+0xe3/0x280 __set_cpus_allowed_ptr_locked+0x140/0x1d0 __set_cpus_allowed_ptr+0x54/0xa0 migrate_enable+0x7e/0x150 rt_spin_unlock+0x1c/0x90 group_send_sig_info+0xf7/0x1a0 ? kill_pid_info+0x1f/0x1d0 kill_pid_info+0x78/0x1d0 kill_proc_info+0x5b/0x110 __x64_sys_kill+0x93/0xc0 do_syscall_64+0x5c/0xf0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 RIP: 0033:0x7f0dab31f92b This warning occurs because set_cpus_allowed dequeues and enqueues tasks with the ENQUEUE_RESTORE flag set. If the task is boosted, the warning is triggered. A boosted task already had its parameters set by rt_mutex_setprio, and a new call to setup_new_dl_entity is unnecessary, hence the WARN_ON call. Check if we are requeueing a boosted task and avoid calling setup_new_dl_entity if that's the case. Fixes: 295d6d5e3736 ("sched/deadline: Fix switching to -deadline") Signed-off-by: Wander Lairson Costa <wander@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20240724142253.27145-2-wander@redhat.com
2024-12-02sched/core: Prevent wakeup of ksoftirqd during idle load balanceK Prateek Nayak
Scheduler raises a SCHED_SOFTIRQ to trigger a load balancing event on from the IPI handler on the idle CPU. If the SMP function is invoked from an idle CPU via flush_smp_call_function_queue() then the HARD-IRQ flag is not set and raise_softirq_irqoff() needlessly wakes ksoftirqd because soft interrupts are handled before ksoftirqd get on the CPU. Adding a trace_printk() in nohz_csd_func() at the spot of raising SCHED_SOFTIRQ and enabling trace events for sched_switch, sched_wakeup, and softirq_entry (for SCHED_SOFTIRQ vector alone) helps observing the current behavior: <idle>-0 [000] dN.1.: nohz_csd_func: Raising SCHED_SOFTIRQ from nohz_csd_func <idle>-0 [000] dN.4.: sched_wakeup: comm=ksoftirqd/0 pid=16 prio=120 target_cpu=000 <idle>-0 [000] .Ns1.: softirq_entry: vec=7 [action=SCHED] <idle>-0 [000] .Ns1.: softirq_exit: vec=7 [action=SCHED] <idle>-0 [000] d..2.: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=ksoftirqd/0 next_pid=16 next_prio=120 ksoftirqd/0-16 [000] d..2.: sched_switch: prev_comm=ksoftirqd/0 prev_pid=16 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120 ... Use __raise_softirq_irqoff() to raise the softirq. The SMP function call is always invoked on the requested CPU in an interrupt handler. It is guaranteed that soft interrupts are handled at the end. Following are the observations with the changes when enabling the same set of events: <idle>-0 [000] dN.1.: nohz_csd_func: Raising SCHED_SOFTIRQ for nohz_idle_balance <idle>-0 [000] dN.1.: softirq_raise: vec=7 [action=SCHED] <idle>-0 [000] .Ns1.: softirq_entry: vec=7 [action=SCHED] No unnecessary ksoftirqd wakeups are seen from idle task's context to service the softirq. Fixes: b2a02fc43a1f ("smp: Optimize send_call_function_single_ipi()") Closes: https://lore.kernel.org/lkml/fcf823f-195e-6c9a-eac3-25f870cb35ac@inria.fr/ [1] Reported-by: Julia Lawall <julia.lawall@inria.fr> Suggested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Link: https://lore.kernel.org/r/20241119054432.6405-5-kprateek.nayak@amd.com
2024-12-02sched/fair: Check idle_cpu() before need_resched() to detect ilb CPU turning ↵K Prateek Nayak
busy Commit b2a02fc43a1f ("smp: Optimize send_call_function_single_ipi()") optimizes IPIs to idle CPUs in TIF_POLLING_NRFLAG mode by setting the TIF_NEED_RESCHED flag in idle task's thread info and relying on flush_smp_call_function_queue() in idle exit path to run the call-function. A softirq raised by the call-function is handled shortly after in do_softirq_post_smp_call_flush() but the TIF_NEED_RESCHED flag remains set and is only cleared later when schedule_idle() calls __schedule(). need_resched() check in _nohz_idle_balance() exists to bail out of load balancing if another task has woken up on the CPU currently in-charge of idle load balancing which is being processed in SCHED_SOFTIRQ context. Since the optimization mentioned above overloads the interpretation of TIF_NEED_RESCHED, check for idle_cpu() before going with the existing need_resched() check which can catch a genuine task wakeup on an idle CPU processing SCHED_SOFTIRQ from do_softirq_post_smp_call_flush(), as well as the case where ksoftirqd needs to be preempted as a result of new task wakeup or slice expiry. In case of PREEMPT_RT or threadirqs, although the idle load balancing may be inhibited in some cases on the ilb CPU, the fact that ksoftirqd is the only fair task going back to sleep will trigger a newidle balance on the CPU which will alleviate some imbalance if it exists if idle balance fails to do so. Fixes: b2a02fc43a1f ("smp: Optimize send_call_function_single_ipi()") Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20241119054432.6405-4-kprateek.nayak@amd.com
2024-12-02sched/core: Remove the unnecessary need_resched() check in nohz_csd_func()K Prateek Nayak
The need_resched() check currently in nohz_csd_func() can be tracked to have been added in scheduler_ipi() back in 2011 via commit ca38062e57e9 ("sched: Use resched IPI to kick off the nohz idle balance") Since then, it has travelled quite a bit but it seems like an idle_cpu() check currently is sufficient to detect the need to bail out from an idle load balancing. To justify this removal, consider all the following case where an idle load balancing could race with a task wakeup: o Since commit f3dd3f674555b ("sched: Remove the limitation of WF_ON_CPU on wakelist if wakee cpu is idle") a target perceived to be idle (target_rq->nr_running == 0) will return true for ttwu_queue_cond(target) which will offload the task wakeup to the idle target via an IPI. In all such cases target_rq->ttwu_pending will be set to 1 before queuing the wake function. If an idle load balance races here, following scenarios are possible: - The CPU is not in TIF_POLLING_NRFLAG mode in which case an actual IPI is sent to the CPU to wake it out of idle. If the nohz_csd_func() queues before sched_ttwu_pending(), the idle load balance will bail out since idle_cpu(target) returns 0 since target_rq->ttwu_pending is 1. If the nohz_csd_func() is queued after sched_ttwu_pending() it should see rq->nr_running to be non-zero and bail out of idle load balancing. - The CPU is in TIF_POLLING_NRFLAG mode and instead of an actual IPI, the sender will simply set TIF_NEED_RESCHED for the target to put it out of idle and flush_smp_call_function_queue() in do_idle() will execute the call function. Depending on the ordering of the queuing of nohz_csd_func() and sched_ttwu_pending(), the idle_cpu() check in nohz_csd_func() should either see target_rq->ttwu_pending = 1 or target_rq->nr_running to be non-zero if there is a genuine task wakeup racing with the idle load balance kick. o The waker CPU perceives the target CPU to be busy (targer_rq->nr_running != 0) but the CPU is in fact going idle and due to a series of unfortunate events, the system reaches a case where the waker CPU decides to perform the wakeup by itself in ttwu_queue() on the target CPU but target is concurrently selected for idle load balance (XXX: Can this happen? I'm not sure, but we'll consider the mother of all coincidences to estimate the worst case scenario). ttwu_do_activate() calls enqueue_task() which would increment "rq->nr_running" post which it calls wakeup_preempt() which is responsible for setting TIF_NEED_RESCHED (via a resched IPI or by setting TIF_NEED_RESCHED on a TIF_POLLING_NRFLAG idle CPU) The key thing to note in this case is that rq->nr_running is already non-zero in case of a wakeup before TIF_NEED_RESCHED is set which would lead to idle_cpu() check returning false. In all cases, it seems that need_resched() check is unnecessary when checking for idle_cpu() first since an impending wakeup racing with idle load balancer will either set the "rq->ttwu_pending" or indicate a newly woken task via "rq->nr_running". Chasing the reason why this check might have existed in the first place, I came across Peter's suggestion on the fist iteration of Suresh's patch from 2011 [1] where the condition to raise the SCHED_SOFTIRQ was: sched_ttwu_do_pending(list); if (unlikely((rq->idle == current) && rq->nohz_balance_kick && !need_resched())) raise_softirq_irqoff(SCHED_SOFTIRQ); Since the condition to raise the SCHED_SOFIRQ was preceded by sched_ttwu_do_pending() (which is equivalent of sched_ttwu_pending()) in the current upstream kernel, the need_resched() check was necessary to catch a newly queued task. Peter suggested modifying it to: if (idle_cpu() && rq->nohz_balance_kick && !need_resched()) raise_softirq_irqoff(SCHED_SOFTIRQ); where idle_cpu() seems to have replaced "rq->idle == current" check. Even back then, the idle_cpu() check would have been sufficient to catch a new task being enqueued. Since commit b2a02fc43a1f ("smp: Optimize send_call_function_single_ipi()") overloads the interpretation of TIF_NEED_RESCHED for TIF_POLLING_NRFLAG idling, remove the need_resched() check in nohz_csd_func() to raise SCHED_SOFTIRQ based on Peter's suggestion. Fixes: b2a02fc43a1f ("smp: Optimize send_call_function_single_ipi()") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20241119054432.6405-3-kprateek.nayak@amd.com
2024-12-02sched: fix warning in sched_setaffinityJosh Don
Commit 8f9ea86fdf99b added some logic to sched_setaffinity that included a WARN when a per-task affinity assignment races with a cpuset update. Specifically, we can have a race where a cpuset update results in the task affinity no longer being a subset of the cpuset. That's fine; we have a fallback to instead use the cpuset mask. However, we have a WARN set up that will trigger if the cpuset mask has no overlap at all with the requested task affinity. This shouldn't be a warning condition; its trivial to create this condition. Reproduced the warning by the following setup: - $PID inside a cpuset cgroup - another thread repeatedly switching the cpuset cpus from 1-2 to just 1 - another thread repeatedly setting the $PID affinity (via taskset) to 2 Fixes: 8f9ea86fdf99b ("sched: Always preserve the user requested cpumask") Signed-off-by: Josh Don <joshdon@google.com> Acked-and-tested-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Waiman Long <longman@redhat.com> Tested-by: Madadi Vineeth Reddy <vineethr@linux.ibm.com> Link: https://lkml.kernel.org/r/20241111182738.1832953-1-joshdon@google.com
2024-12-02sched/deadline: Fix replenish_dl_new_period dl_server conditionJuri Lelli
The condition in replenish_dl_new_period() that checks if a reservation (dl_server) is deferred and is not handling a starvation case is obviously wrong. Fix it. Fixes: a110a81c52a9 ("sched/deadline: Deferrable dl server") Signed-off-by: Juri Lelli <juri.lelli@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20241127063740.8278-1-juri.lelli@redhat.com
2024-11-20Merge tag 'sched_ext-for-6.13' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext Pull sched_ext updates from Tejun Heo: - Improve the default select_cpu() implementation making it topology aware and handle WAKE_SYNC better. - set_arg_maybe_null() was used to inform the verifier which ops args could be NULL in a rather hackish way. Use the new __nullable CFI stub tags instead. - On Sapphire Rapids multi-socket systems, a BPF scheduler, by hammering on the same queue across sockets, could live-lock the system to the point where the system couldn't make reasonable forward progress. This could lead to soft-lockup triggered resets or stalling out bypass mode switch and thus BPF scheduler ejection for tens of minutes if not hours. After trying a number of mitigations, the following set worked reliably: - Injecting artificial cpu_relax() loops in two places while sched_ext is trying to turn on the bypass mode. - Triggering scheduler ejection when soft-lockup detection is imminent (a quarter of threshold left). While not the prettiest, the impact both in terms of code complexity and overhead is minimal. - A common complaint on the API is the overuse of the word "dispatch" and the confusion around "consume". This is due to how the dispatch queues became more generic over time. Rename the affected kfuncs for clarity. Thanks to BPF's compatibility features, this change can be made in a way that's both forward and backward compatible. The compatibility code will be dropped in a few releases. - Other misc changes * tag 'sched_ext-for-6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext: (21 commits) sched_ext: Replace scx_next_task_picked() with switch_class() in comment sched_ext: Rename scx_bpf_dispatch[_vtime]_from_dsq*() -> scx_bpf_dsq_move[_vtime]*() sched_ext: Rename scx_bpf_consume() to scx_bpf_dsq_move_to_local() sched_ext: Rename scx_bpf_dispatch[_vtime]() to scx_bpf_dsq_insert[_vtime]() sched_ext: scx_bpf_dispatch_from_dsq_set_*() are allowed from unlocked context sched_ext: add a missing rcu_read_lock/unlock pair at scx_select_cpu_dfl() sched_ext: Clarify sched_ext_ops table for userland scheduler sched_ext: Enable the ops breather and eject BPF scheduler on softlockup sched_ext: Avoid live-locking bypass mode switching sched_ext: Fix incorrect use of bitwise AND sched_ext: Do not enable LLC/NUMA optimizations when domains overlap sched_ext: Introduce NUMA awareness to the default idle selection policy sched_ext: Replace set_arg_maybe_null() with __nullable CFI stub tags sched_ext: Rename CFI stubs to names that are recognized by BPF sched_ext: Introduce LLC awareness to the default idle selection policy sched_ext: Clarify ops.select_cpu() for single-CPU tasks sched_ext: improve WAKE_SYNC behavior for default idle CPU selection sched_ext: Use btf_ids to resolve task_struct sched/ext: Use tg_cgroup() to elieminate duplicate code sched/ext: Fix unmatch trailing comment of CONFIG_EXT_GROUP_SCHED ...
2024-11-19Merge tag 'timers-core-2024-11-18' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer updates from Thomas Gleixner: "A rather large update for timekeeping and timers: - The final step to get rid of auto-rearming posix-timers posix-timers are currently auto-rearmed by the kernel when the signal of the timer is ignored so that the timer signal can be delivered once the corresponding signal is unignored. This requires to throttle the timer to prevent a DoS by small intervals and keeps the system pointlessly out of low power states for no value. This is a long standing non-trivial problem due to the lock order of posix-timer lock and the sighand lock along with life time issues as the timer and the sigqueue have different life time rules. Cure this by: - Embedding the sigqueue into the timer struct to have the same life time rules. Aside of that this also avoids the lookup of the timer in the signal delivery and rearm path as it's just a always valid container_of() now. - Queuing ignored timer signals onto a seperate ignored list. - Moving queued timer signals onto the ignored list when the signal is switched to SIG_IGN before it could be delivered. - Walking the ignored list when SIG_IGN is lifted and requeue the signals to the actual signal lists. This allows the signal delivery code to rearm the timer. This also required to consolidate the signal delivery rules so they are consistent across all situations. With that all self test scenarios finally succeed. - Core infrastructure for VFS multigrain timestamping This is required to allow the kernel to use coarse grained time stamps by default and switch to fine grained time stamps when inode attributes are actively observed via getattr(). These changes have been provided to the VFS tree as well, so that the VFS specific infrastructure could be built on top. - Cleanup and consolidation of the sleep() infrastructure - Move all sleep and timeout functions into one file - Rework udelay() and ndelay() into proper documented inline functions and replace the hardcoded magic numbers by proper defines. - Rework the fsleep() implementation to take the reality of the timer wheel granularity on different HZ values into account. Right now the boundaries are hard coded time ranges which fail to provide the requested accuracy on different HZ settings. - Update documentation for all sleep/timeout related functions and fix up stale documentation links all over the place - Fixup a few usage sites - Rework of timekeeping and adjtimex(2) to prepare for multiple PTP clocks A system can have multiple PTP clocks which are participating in seperate and independent PTP clock domains. So far the kernel only considers the PTP clock which is based on CLOCK TAI relevant as that's the clock which drives the timekeeping adjustments via the various user space daemons through adjtimex(2). The non TAI based clock domains are accessible via the file descriptor based posix clocks, but their usability is very limited. They can't be accessed fast as they always go all the way out to the hardware and they cannot be utilized in the kernel itself. As Time Sensitive Networking (TSN) gains traction it is required to provide fast user and kernel space access to these clocks. The approach taken is to utilize the timekeeping and adjtimex(2) infrastructure to provide this access in a similar way how the kernel provides access to clock MONOTONIC, REALTIME etc. Instead of creating a duplicated infrastructure this rework converts timekeeping and adjtimex(2) into generic functionality which operates on pointers to data structures instead of using static variables. This allows to provide time accessors and adjtimex(2) functionality for the independent PTP clocks in a subsequent step. - Consolidate hrtimer initialization hrtimers are set up by initializing the data structure and then seperately setting the callback function for historical reasons. That's an extra unnecessary step and makes Rust support less straight forward than it should be. Provide a new set of hrtimer_setup*() functions and convert the core code and a few usage sites of the less frequently used interfaces over. The bulk of the htimer_init() to hrtimer_setup() conversion is already prepared and scheduled for the next merge window. - Drivers: - Ensure that the global timekeeping clocksource is utilizing the cluster 0 timer on MIPS multi-cluster systems. Otherwise CPUs on different clusters use their cluster specific clocksource which is not guaranteed to be synchronized with other clusters. - Mostly boring cleanups, fixes, improvements and code movement" * tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (140 commits) posix-timers: Fix spurious warning on double enqueue versus do_exit() clocksource/drivers/arm_arch_timer: Use of_property_present() for non-boolean properties clocksource/drivers/gpx: Remove redundant casts clocksource/drivers/timer-ti-dm: Fix child node refcount handling dt-bindings: timer: actions,owl-timer: convert to YAML clocksource/drivers/ralink: Add Ralink System Tick Counter driver clocksource/drivers/mips-gic-timer: Always use cluster 0 counter as clocksource clocksource/drivers/timer-ti-dm: Don't fail probe if int not found clocksource/drivers:sp804: Make user selectable clocksource/drivers/dw_apb: Remove unused dw_apb_clockevent functions hrtimers: Delete hrtimer_init_on_stack() alarmtimer: Switch to use hrtimer_setup() and hrtimer_setup_on_stack() io_uring: Switch to use hrtimer_setup_on_stack() sched/idle: Switch to use hrtimer_setup_on_stack() hrtimers: Delete hrtimer_init_sleeper_on_stack() wait: Switch to use hrtimer_setup_sleeper_on_stack() timers: Switch to use hrtimer_setup_sleeper_on_stack() net: pktgen: Switch to use hrtimer_setup_sleeper_on_stack() futex: Switch to use hrtimer_setup_sleeper_on_stack() fs/aio: Switch to use hrtimer_setup_sleeper_on_stack() ...
2024-11-19Merge tag 'sched-core-2024-11-18' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: "Core facilities: - Add the "Lazy preemption" model (CONFIG_PREEMPT_LAZY=y), which optimizes fair-class preemption by delaying preemption requests to the tick boundary, while working as full preemption for RR/FIFO/DEADLINE classes. (Peter Zijlstra) - x86: Enable Lazy preemption (Peter Zijlstra) - riscv: Enable Lazy preemption (Jisheng Zhang) - Initialize idle tasks only once (Thomas Gleixner) - sched/ext: Remove sched_fork() hack (Thomas Gleixner) Fair scheduler: - Optimize the PLACE_LAG when se->vlag is zero (Huang Shijie) Idle loop: - Optimize the generic idle loop by removing unnecessary memory barrier (Zhongqiu Han) RSEQ: - Improve cache locality of RSEQ concurrency IDs for intermittent workloads (Mathieu Desnoyers) Waitqueues: - Make wake_up_{bit,var} less fragile (Neil Brown) PSI: - Pass enqueue/dequeue flags to psi callbacks directly (Johannes Weiner) Preparatory patches for proxy execution: - Add move_queued_task_locked helper (Connor O'Brien) - Consolidate pick_*_task to task_is_pushable helper (Connor O'Brien) - Split out __schedule() deactivate task logic into a helper (John Stultz) - Split scheduler and execution contexts (Peter Zijlstra) - Make mutex::wait_lock irq safe (Juri Lelli) - Expose __mutex_owner() (Juri Lelli) - Remove wakeups from under mutex::wait_lock (Peter Zijlstra) Misc fixes and cleanups: - Remove unused __HAVE_THREAD_FUNCTIONS hook support (David Disseldorp) - Update the comment for TIF_NEED_RESCHED_LAZY (Sebastian Andrzej Siewior) - Remove unused bit_wait_io_timeout (Dr. David Alan Gilbert) - remove the DOUBLE_TICK feature (Huang Shijie) - fix the comment for PREEMPT_SHORT (Huang Shijie) - Fix unnused variable warning (Christian Loehle) - No PREEMPT_RT=y for all{yes,mod}config" * tag 'sched-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits) sched, x86: Update the comment for TIF_NEED_RESCHED_LAZY. sched: No PREEMPT_RT=y for all{yes,mod}config riscv: add PREEMPT_LAZY support sched, x86: Enable Lazy preemption sched: Enable PREEMPT_DYNAMIC for PREEMPT_RT sched: Add Lazy preemption model sched: Add TIF_NEED_RESCHED_LAZY infrastructure sched/ext: Remove sched_fork() hack sched: Initialize idle tasks only once sched: psi: pass enqueue/dequeue flags to psi callbacks directly sched/uclamp: Fix unnused variable warning sched: Split scheduler and execution contexts sched: Split out __schedule() deactivate task logic into a helper sched: Consolidate pick_*_task to task_is_pushable helper sched: Add move_queued_task_locked helper locking/mutex: Expose __mutex_owner() locking/mutex: Make mutex::wait_lock irq safe locking/mutex: Remove wakeups from under mutex::wait_lock sched: Improve cache locality of RSEQ concurrency IDs for intermittent workloads sched: idle: Optimize the generic idle loop by removing needless memory barrier ...
2024-11-19Merge tag 'pm-6.13-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management updates from Rafael Wysocki: "The amd-pstate cpufreq driver gets the majority of changes this time. They are mostly fixes and cleanups, but one of them causes it to become the default cpufreq driver on some AMD server platforms. Apart from that, the menu cpuidle governor is modified to not use iowait any more, the intel_idle gets a custom C-states table for Granite Rapids Xeon D, and the intel_pstate driver will use a more aggressive Balance- performance default EPP value on Granite Rapids now. There are also some fixes, cleanups and tooling updates. Specifics: - Update the amd-pstate driver to set the initial scaling frequency policy lower bound to be the lowest non-linear frequency (Dhananjay Ugwekar) - Enable amd-pstate by default on servers starting with newer AMD Epyc processors (Swapnil Sapkal) - Align more codepaths between shared memory and MSR designs in amd-pstate (Dhananjay Ugwekar) - Clean up amd-pstate code to rename functions and remove redundant calls (Dhananjay Ugwekar, Mario Limonciello) - Do other assorted fixes and cleanups in amd-pstate (Dhananjay Ugwekar and Mario Limonciello) - Change the Balance-performance EPP value for Granite Rapids in the intel_pstate driver to a more performance-biased one (Srinivas Pandruvada) - Simplify MSR read on the boot CPU in the ACPI cpufreq driver (Chang S. Bae) - Ensure sugov_eas_rebuild_sd() is always called when sugov_init() succeeds to always enforce sched domains rebuild in case EAS needs to be enabled (Christian Loehle) - Switch cpufreq back to platform_driver::remove() (Uwe Kleine-König) - Use proper frequency unit names in cpufreq (Marcin Juszkiewicz) - Add a built-in idle states table for Granite Rapids Xeon D to the intel_idle driver (Artem Bityutskiy) - Fix some typos in comments in the cpuidle core and drivers (Shen Lichuan) - Remove iowait influence from the menu cpuidle governor (Christian Loehle) - Add min/max available performance state limits to the Energy Model management code (Lukasz Luba) - Update pm-graph to v5.13 (Todd Brandt) - Add documentation for some recently introduced cpupower utility options (Tor Vic) - Make cpupower inform users where cpufreq-bench.conf should be located when opening it fails (Peng Fan) - Allow overriding cross-compiling env params in cpupower (Peng Fan) - Add compile_commands.json to .gitignore in cpupower (John B. Wyatt IV) - Improve disable c_state block in cpupower bindings and add a test to confirm that CPU state is disabled to it (John B. Wyatt IV) - Add Chinese Simplified translation to cpupower (Kieran Moy) - Add checks for xgettext and msgfmt to cpupower (Siddharth Menon)" * tag 'pm-6.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (38 commits) cpufreq: intel_pstate: Update Balance-performance EPP for Granite Rapids cpufreq: ACPI: Simplify MSR read on the boot CPU sched/cpufreq: Ensure sd is rebuilt for EAS check intel_idle: add Granite Rapids Xeon D support PM: EM: Add min/max available performance state limits cpufreq/amd-pstate: Move registration after static function call update cpufreq/amd-pstate: Push adjust_perf vfunc init into cpu_init cpufreq/amd-pstate: Align offline flow of shared memory and MSR based systems cpufreq/amd-pstate: Call cppc_set_epp_perf in the reenable function cpufreq/amd-pstate: Do not attempt to clear MSR_AMD_CPPC_ENABLE cpufreq/amd-pstate: Rename functions that enable CPPC cpufreq/amd-pstate-ut: Add fix for min freq unit test amd-pstate: Switch to amd-pstate by default on some Server platforms amd-pstate: Set min_perf to nominal_perf for active mode performance gov cpufreq/amd-pstate: Remove the redundant amd_pstate_set_driver() call cpufreq/amd-pstate: Remove the switch case in amd_pstate_init() cpufreq/amd-pstate: Call amd_pstate_set_driver() in amd_pstate_register_driver() cpufreq/amd-pstate: Call amd_pstate_register() in amd_pstate_init() cpufreq/amd-pstate: Set the initial min_freq to lowest_nonlinear_freq cpufreq/amd-pstate: Remove the redundant verify() function ...
2024-11-18Merge tag 'vfs-6.13.usercopy' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs Pull copy_struct_to_user helper from Christian Brauner: "This adds a copy_struct_to_user() helper which is a companion helper to the already widely used copy_struct_from_user(). It copies a struct from kernel space to userspace, in a way that guarantees backwards-compatibility for struct syscall arguments as long as future struct extensions are made such that all new fields are appended to the old struct, and zeroed-out new fields have the same meaning as the old struct. The first user is sched_getattr() system call but the new extensible pidfs ioctl will be ported to it as well" * tag 'vfs-6.13.usercopy' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: sched_getattr: port to copy_struct_to_user uaccess: add copy_struct_to_user helper
2024-11-15Merge tag 'sched_ext-for-6.12-rc7-fixes-2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext Pull sched_ext fix from Tejun Heo: "One more fix for v6.12-rc7 ops.cpu_acquire() was being invoked with the wrong kfunc mask allowing the operation to call kfuncs which shouldn't be allowed. Fix it by using SCX_KF_REST instead, which is trivial and low risk" * tag 'sched_ext-for-6.12-rc7-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext: sched_ext: ops.cpu_acquire() should be called with SCX_KF_REST
2024-11-14sched_ext: Replace scx_next_task_picked() with switch_class() in commentZhao Mengmeng
scx_next_task_picked() has been replaced with siwtch_class(), but comment is still referencing old one, so replace it. Signed-off-by: Zhao Mengmeng <zhaomengmeng@kylinos.cn> Signed-off-by: Tejun Heo <tj@kernel.org>
2024-11-14sched_ext: ops.cpu_acquire() should be called with SCX_KF_RESTTejun Heo
ops.cpu_acquire() is currently called with 0 kf_maks which is interpreted as SCX_KF_UNLOCKED which allows all unlocked kfuncs, but ops.cpu_acquire() is called from balance_one() under the rq lock and should only be allowed call kfuncs that are safe under the rq lock. Update it to use SCX_KF_REST. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: David Vernet <void@manifault.com> Cc: Zhao Mengmeng <zhaomzhao@126.com> Link: http://lkml.kernel.org/r/ZzYvf2L3rlmjuKzh@slm.duckdns.org Fixes: 245254f7081d ("sched_ext: Implement sched_ext_ops.cpu_acquire/release()")