Age | Commit message (Collapse) | Author |
|
The folio must be locked when we start writeback in order to prevent
writeback from being started twice on the same folio. I don't expect this
to catch any problems, but it should be good documentation.
Link: https://lkml.kernel.org/r/20250226153614.3774896-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
As documented in the comment this underflow should not happen. The
locking has indeed changed here since the comment was written, see the
migratetype hygiene patches[0]. However, those changes made the locking
_safer_, so the underflow _really_ shouldn't happen now. So upgrade the
comment to a warning.
[0] https://lore.kernel.org/all/20240320180429.678181-7-hannes@cmpxchg.org/T/#m3da87e6cc3348a4640aa298137bc9f8f61b76c84
Link: https://lkml.kernel.org/r/20250225-warn-underflow-v1-1-3dc542941d3a@google.com
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
With slot cache gone, clean up the allocation helpers even more.
folio_alloc_swap will be the only entry for allocation and adding the
folio to swap cache (except suspend), making it opposite of
folio_free_swap.
Link: https://lkml.kernel.org/r/20250313165935.63303-8-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Slot cache is no longer needed now, removing it and all related code.
- vm-scalability with: `usemem --init-time -O -y -x -R -31 1G`,
12G memory cgroup using simulated pmem as SWAP (32G pmem, 32 CPUs),
16 test runs for each case, measuring the total throughput:
Before (KB/s) (stdev) After (KB/s) (stdev)
Random (4K): 424907.60 (24410.78) 414745.92 (34554.78)
Random (64K): 163308.82 (11635.72) 167314.50 (18434.99)
Sequential (4K, !-R): 6150056.79 (103205.90) 6321469.06 (115878.16)
The performance changes are below noise level.
- Build linux kernel with make -j96, using 4K folio with 1.5G memory
cgroup limit and 64K folio with 2G memory cgroup limit, on top of tmpfs,
12 test runs, measuring the system time:
Before (s) (stdev) After (s) (stdev)
make -j96 (4K): 6445.69 (61.95) 6408.80 (69.46)
make -j96 (64K): 6841.71 (409.04) 6437.99 (435.55)
Similar to above, 64k mTHP case showed a slight improvement.
Link: https://lkml.kernel.org/r/20250313165935.63303-7-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Current allocation workflow first traverses the plist with a global lock
held, after choosing a device, it uses the percpu cluster on that swap
device. This commit moves the percpu cluster variable out of being tied
to individual swap devices, making it a global percpu variable, and will
be used directly for allocation as a fast path.
The global percpu cluster variable will never point to a HDD device, and
allocations on a HDD device are still globally serialized.
This improves the allocator performance and prepares for removal of the
slot cache in later commits. There shouldn't be much observable behavior
change, except one thing: this changes how swap device allocation rotation
works.
Currently, each allocation will rotate the plist, and because of the
existence of slot cache (one order 0 allocation usually returns 64
entries), swap devices of the same priority are rotated for every 64 order
0 entries consumed. High order allocations are different, they will
bypass the slot cache, and so swap device is rotated for every 16K, 32K,
or up to 2M allocation.
The rotation rule was never clearly defined or documented, it was changed
several times without mentioning.
After this commit, and once slot cache is gone in later commits, swap
device rotation will happen for every consumed cluster. Ideally non-HDD
devices will be rotated if 2M space has been consumed for each order.
Fragmented clusters will rotate the device faster, which seems OK. HDD
devices is rotated for every allocation regardless of the allocation
order, which should be OK too and trivial.
This commit also slightly changes allocation behaviour for slot cache.
The new added cluster allocation fast path may allocate entries from
different device to the slot cache, this is not observable from user
space, only impact performance very slightly, and slot cache will be just
gone in next commit, so this can be ignored.
Link: https://lkml.kernel.org/r/20250313165935.63303-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The counter update before allocation design was useful to avoid
unnecessary scan when device is full, so it will abort early if the
counter indicates the device is full. But that is an uncommon case, and
now scanning of a full device is very fast, so the up-front update is not
helpful any more.
Remove it and simplify the slot allocation logic.
Link: https://lkml.kernel.org/r/20250313165935.63303-5-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently __read_swap_cache_async() has get/put_swap_device() calls to
increase/decrease a swap device reference to prevent swapoff. While some
of its callers have already held the swap device reference, e.g in
do_swap_page() and shmem_swapin_folio() where __read_swap_cache_async()
will finally called. Now there are only two callers not holding a swap
device reference, so make them hold a reference instead. And drop the
get/put_swap_device calls in __read_swap_cache_async. This should reduce
the overhead for swap in during page fault slightly.
Link: https://lkml.kernel.org/r/20250313165935.63303-4-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This flag exists temporarily to allow the allocator to bypass the slot
cache during freeing, so reclaiming one slot will free the slot
immediately.
But now we have already removed slot cache usage on freeing, so this flag
has no effect now.
Link: https://lkml.kernel.org/r/20250313165935.63303-3-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm, swap: remove swap slot cache", v3.
Slot cache was initially introduced by commit 67afa38e012e ("mm/swap: add
cache for swap slots allocation") to reduce the lock contention of
si->lock.
Previous series "mm, swap: rework of swap allocator locks" [1] removed
swap slot cache for freeing path as freeing path no longer touches
si->lock in most cased. Allocation path also have slight to none
contention on si->lock since that series, but slot cache still helps to
reduce other overheads, like counters and the plist.
This series removes the slot cache from allocation path too, by using the
cluster as allocation fast path and also reduce other overheads.
Now slot cache is completely gone, the code is much simplified without
obvious feature or performance change, also clean up related workaround.
Also this should avoid other potential issues, e.g. the long pinning of
swap slots: swap slot cache pins swap slots with HAS_CACHE, causing
reclaim or allocation fail to use these slots on scanning.
The only behavior change is the swap device allocation rotation mechanism,
as explained in the patch "mm, swap: use percpu cluster as allocation fast
path".
Test results are looking good after deleting the swap slot cache:
- vm-scalability with: `usemem --init-time -O -y -x -R -31 1G`,
12G memory cgroup using simulated pmem as SWAP (32G pmem, 32 CPUs),
16 test runs for each case, measuring the total throughput:
Before (KB/s) (stdev) After (KB/s) (stdev)
Random (4K): 424907.60 (24410.78) 414745.92 (34554.78)
Random (64K): 163308.82 (11635.72) 167314.50 (18434.99)
Sequential (4K, !-R): 6150056.79 (103205.90) 6321469.06 (115878.16)
- Build linux kernel with make -j96, using 4K folio with 1.5G memory
cgroup limit and 64K folio with 2G memory cgroup limit, on top of tmpfs,
12 test runs, measuring the system time:
Before (s) (stdev) After (s) (stdev)
make -j96 (4K): 6445.69 (61.95) 6408.80 (69.46)
make -j96 (64K): 6841.71 (409.04) 6437.99 (435.55)
The performance is unchanged, slightly better in some cases.
[1] https://lore.kernel.org/linux-mm/20250113175732.48099-1-ryncsn@gmail.com/
This patch (of 7):
Swap allocator will do swap cache reclaim to recycle HAS_CACHE slots for
allocation. It initiates the reclaim from the offset to be reclaimed and
looks up the corresponding folio. The lookup process is lockless, so it's
possible the folio will be removed from the swap cache and given a
different swap entry before the reclaim locks the folio. If it happens,
the reclaim will end up reclaiming an irrelevant folio, and return wrong
return value.
This shouldn't cause any problem with correctness or stability, but it is
indeed confusing and unexpected, and will increase fragmentation, decrease
performance.
Fix this by checking whether the folio is still pointing to the offset the
allocator want to reclaim before reclaiming it.
Link: https://lkml.kernel.org/r/20250313165935.63303-1-ryncsn@gmail.com
Link: https://lkml.kernel.org/r/20250313165935.63303-2-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kairui Song <kasong@tencent.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When a process consumes a UE in a page, the memory failure handler
attempts to collect information for a potential SIGBUS. If the page is an
anonymous page, page_mapped_in_vma(page, vma) is invoked in order to
1. retrieve the vaddr from the process' address space,
2. verify that the vaddr is indeed mapped to the poisoned page,
where 'page' is the precise small page with UE.
It's been observed that when injecting poison to a non-head subpage of an
anonymous hugetlb page, no SIGBUS shows up, while injecting to the head
page produces a SIGBUS. The cause is that, though hugetlb_walk() returns
a valid pmd entry (on x86), but check_pte() detects mismatch between the
head page per the pmd and the input subpage. Thus the vaddr is considered
not mapped to the subpage and the process is not collected for SIGBUS
purpose. This is the calling stack:
collect_procs_anon
page_mapped_in_vma
page_vma_mapped_walk
hugetlb_walk
huge_pte_lock
check_pte
check_pte() header says that it
"check if [pvmw->pfn, @pvmw->pfn + @pvmw->nr_pages) is mapped at the @pvmw->pte"
but practically works only if pvmw->pfn is the head page pfn at pvmw->pte.
Hindsight acknowledging that some pvmw->pte could point to a hugepage of
some sort such that it makes sense to make check_pte() work for hugepage.
Link: https://lkml.kernel.org/r/20250224211445.2663312-1-jane.chu@oracle.com
Signed-off-by: Jane Chu <jane.chu@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The way the fallback rules are spread out makes them hard to follow. Move
the functions next to each other at least.
Link: https://lkml.kernel.org/r/20250225001023.1494422-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The freelist hygiene patches made migratetype accesses fully protected
under the zone->lock. Remove remnants of handling the race conditions
that existed before from the MIGRATE_HIGHATOMIC code.
Link: https://lkml.kernel.org/r/20250225001023.1494422-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The fallback code searches for the biggest buddy first in an attempt to
steal the whole block and encourage type grouping down the line.
The approach used to be this:
- Non-movable requests will split the largest buddy and steal the
remainder. This splits up contiguity, but it allows subsequent
requests of this type to fall back into adjacent space.
- Movable requests go and look for the smallest buddy instead. The
thinking is that movable requests can be compacted, so grouping is
less important than retaining contiguity.
c0cd6f557b90 ("mm: page_alloc: fix freelist movement during block
conversion") enforces freelist type hygiene, which restricts stealing to
either claiming the whole block or just taking the requested chunk; no
additional pages or buddy remainders can be stolen any more.
The patch mishandled when to switch to finding the smallest buddy in that
new reality. As a result, it may steal the exact request size, but from
the biggest buddy. This causes fracturing for no good reason.
Fix this by committing to the new behavior: either steal the whole block,
or fall back to the smallest buddy.
Remove single-page stealing from steal_suitable_fallback(). Rename it to
try_to_steal_block() to make the intentions clear. If this fails, always
fall back to the smallest buddy.
The following is from 4 runs of mmtest's thpchallenge. "Pollute" is
single page fallback, "steal" is conversion of a partially used block.
The numbers for free block conversions (omitted) are comparable.
vanilla patched
@pollute[unmovable from reclaimable]: 27 106
@pollute[unmovable from movable]: 82 46
@pollute[reclaimable from unmovable]: 256 83
@pollute[reclaimable from movable]: 46 8
@pollute[movable from unmovable]: 4841 868
@pollute[movable from reclaimable]: 5278 12568
@steal[unmovable from reclaimable]: 11 12
@steal[unmovable from movable]: 113 49
@steal[reclaimable from unmovable]: 19 34
@steal[reclaimable from movable]: 47 21
@steal[movable from unmovable]: 250 183
@steal[movable from reclaimable]: 81 93
The allocator appears to do a better job at keeping stealing and polluting
to the first fallback preference. As a result, the numbers for "from
movable" - the least preferred fallback option, and most detrimental to
compactability - are down across the board.
Link: https://lkml.kernel.org/r/20250225001023.1494422-2-hannes@cmpxchg.org
Fixes: c0cd6f557b90 ("mm: page_alloc: fix freelist movement during block conversion")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
swap_reclaim_full_clusters() has no return value now, just remove the
stale comment which says swap_reclaim_full_clusters() wil return a bool
value.
Link: https://lkml.kernel.org/r/20250222160850.505274-7-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We will add si back to plist in swap_usage_sub(), just correct the wrong
comment which says we will remove si from plist in swap_usage_sub().
Link: https://lkml.kernel.org/r/20250222160850.505274-6-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Cc: Kairui Song <ryncsn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Before alloc from a cluster, we will aqcuire cluster's lock and make sure
it is usable by cluster_is_usable(), so there is no need to set
SWAP_MAP_BAD for cluster to be discarded.
Link: https://lkml.kernel.org/r/20250222160850.505274-5-shikemeng@huaweicloud.com
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Kairui Song <kasong@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Current object mapping API is a little cumbersome. First, it's
inconsistent, sometimes it returns with page-faults disabled and sometimes
with page-faults enabled. Second, and most importantly, it enforces
atomicity restrictions on its users. zs_map_object() has to return a
liner object address which is not always possible because some objects
span multiple physical (non-contiguous) pages. For such objects zsmalloc
uses a per-CPU buffer to which object's data is copied before a pointer to
that per-CPU buffer is returned back to the caller. This leads to
another, final, issue - extra memcpy(). Since the caller gets a pointer
to per-CPU buffer it can memcpy() data only to that buffer, and during
zs_unmap_object() zsmalloc will memcpy() from that per-CPU buffer to
physical pages that object in question spans across.
New API splits functions by access mode:
- zs_obj_read_begin(handle, local_copy)
Returns a pointer to handle memory. For objects that span two
physical pages a local_copy buffer is used to store object's
data before the address is returned to the caller. Otherwise
the object's page is kmap_local mapped directly.
- zs_obj_read_end(handle, buf)
Unmaps the page if it was kmap_local mapped by zs_obj_read_begin().
- zs_obj_write(handle, buf, len)
Copies len-bytes from compression buffer to handle memory
(takes care of objects that span two pages). This does not
need any additional (e.g. per-CPU) buffers and writes the data
directly to zsmalloc pool pages.
In terms of performance, on a synthetic and completely reproducible
test that allocates fixed number of objects of fixed sizes and
iterates over those objects, first mapping in RO then in RW mode:
OLD API
=======
3 first results out of 10
369,205,778 instructions # 0.80 insn per cycle
40,467,926 branches # 113.732 M/sec
369,002,122 instructions # 0.62 insn per cycle
40,426,145 branches # 189.361 M/sec
369,036,706 instructions # 0.63 insn per cycle
40,430,860 branches # 204.105 M/sec
[..]
NEW API
=======
3 first results out of 10
265,799,293 instructions # 0.51 insn per cycle
29,834,567 branches # 170.281 M/sec
265,765,970 instructions # 0.55 insn per cycle
29,829,019 branches # 161.602 M/sec
265,764,702 instructions # 0.51 insn per cycle
29,828,015 branches # 189.677 M/sec
[..]
T-test on all 10 runs
=====================
Difference at 95.0% confidence
-1.03219e+08 +/- 55308.7
-27.9705% +/- 0.0149878%
(Student's t, pooled s = 58864.4)
The old API will stay around until the remaining users switch to the new
one. After that we'll also remove zsmalloc per-CPU buffer and CPU hotplug
handling.
The split of map(RO) and map(WO) into read_{begin/end}/write is suggested
by Yosry Ahmed.
Link: https://lkml.kernel.org/r/20250303022425.285971-15-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Suggested-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Reviewed-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In order to implement preemptible object mapping we need a zspage lock
that satisfies several preconditions:
- it should be reader-write type of a lock
- it should be possible to hold it from any context, but also being
preemptible if the context allows it
- we never sleep while acquiring but can sleep while holding in read
mode
An rwsemaphore doesn't suffice, due to atomicity requirements, rwlock
doesn't satisfy due to reader-preemptability requirement. It's also worth
to mention, that per-zspage rwsem is a little too memory heavy (we can
easily have double digits megabytes used only on rwsemaphores).
Switch over from rwlock_t to a atomic_t-based implementation of a
reader-writer semaphore that satisfies all of the preconditions.
The spin-lock based zspage_lock is suggested by Hillf Danton.
Link: https://lkml.kernel.org/r/20250303022425.285971-14-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Suggested-by: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The old name comes from the times when the pool did not have compaction
(defragmentation). Rename it to ->lock because these days it synchronizes
not only migration.
Link: https://lkml.kernel.org/r/20250303022425.285971-13-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kairui Song <ryncsn@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Adding an unlikely() hint on the masked start comparison error return path
improves run-time performance of the mincore system call.
Benchmarking on an i9-12900 shows an improvement of 7ns on mincore calls
on a 256KB mmap'd region where 50% of the pages we resident. Improvement
was from ~970 ns down to 963 ns, so a small ~0.7% improvement.
Results based on running 20 tests with turbo disabled (to reduce clock
freq turbo changes), with 10 second run per test and comparing the number
of mincores calls per second. The % standard deviation of the 20 tests
was ~0.10%, so results are reliable.
Link: https://lkml.kernel.org/r/20250219083607.5183-1-colin.i.king@gmail.com
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Cc: Matthew Wilcow <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm/damon: introduce DAMOS filter type for unmapped pages".
User decides whether their memory will be mapped or unmapped. It implies
that the two types of memory can have different characteristics and
management requirements. Provide the DAMON-observaibility DAMOS-operation
capability for the different types by introducing a new DAMOS filter type
for unmapped pages.
This patch (of 2):
Implement yet another DAMOS filter type for unmapped pages on DAMON kernel
API, and add support of it from the physical address space DAMON
operations set (paddr). Since it is for only unmapped pages, support from
the virtual address spaces DAMON operations set (vaddr) is not required.
Link: https://lkml.kernel.org/r/20250219220146.133650-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20250219220146.133650-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
hugetlb.c contained a number of CONFIG_CMA ifdefs, and the code inside
them was large enough to merit being in its own file, so move it, cleaning
up things a bit.
Hide some direct variable access behind functions to accommodate the move.
No functional change intended.
Link: https://lkml.kernel.org/r/20250228182928.2645936-28-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If hugetlb_cma_only is enabled, we know that hugetlb pages can only be
allocated from CMA. Now that there is an interface to do early
reservations from a CMA area (returning memblock memory), it can be used
to allocate hugetlb pages from CMA.
This also allows for doing pre-HVO on these pages (if enabled).
Make sure to initialize the page structures and associated data correctly.
Create a flag to signal that a hugetlb page has been allocated from CMA
to make things a little easier.
Some configurations of powerpc have a special hugetlb bootmem allocator,
so introduce a boolean arch_specific_huge_bootmem_alloc that returns true
if such an allocator is present. In that case, CMA bootmem allocations
can't be used, so check that function before trying.
Link: https://lkml.kernel.org/r/20250228182928.2645936-27-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add an option to force hugetlb gigantic pages to be allocated using CMA
only (if hugetlb_cma is enabled). This avoids a fallback to allocation
from the rest of system memory if the CMA allocation fails. This makes
the size of hugetlb_cma a hard upper boundary for gigantic hugetlb page
allocations.
This is useful because, with a large CMA area, the kernel's unmovable
allocations will have less room to work with and it is undesirable for new
hugetlb gigantic page allocations to be done from that remaining area. It
will eat in to the space available for unmovable allocations, leading to
unwanted system behavior (OOMs because the kernel fails to do unmovable
allocations).
So, with this enabled, an administrator can force a hard upper bound for
runtime gigantic page allocations, and have more predictable system
behavior.
Link: https://lkml.kernel.org/r/20250228182928.2645936-26-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It can be desirable to reserve memory in a CMA area before it is
activated, early in boot. Such reservations would effectively be memblock
allocations, but they can be returned to the CMA area later. This
functionality can be used to allow hugetlb bootmem allocations from a
hugetlb CMA area.
A new interface, cma_reserve_early is introduced. This allows for
pageblock-aligned reservations. These reservations are skipped during the
initial handoff of pages in a CMA area to the buddy allocator. The caller
is responsible for making sure that the page structures are set up, and
that the migrate type is set correctly, as with other memblock allocations
that stick around. If the CMA area fails to activate (because it
intersects with multiple zones), the reserved memory is not given to the
buddy allocator, the caller needs to take care of that.
Link: https://lkml.kernel.org/r/20250228182928.2645936-25-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Define a function to check if a CMA area is valid, which means: do its
ranges not cross any zone boundaries. Store the result in the newly
created flags for each CMA area, so that multiple calls are dealt with.
This allows for checking the validity of a CMA area early, which is needed
later in order to be able to allocate hugetlb bootmem pages from it with
pre-HVO.
Link: https://lkml.kernel.org/r/20250228182928.2645936-24-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
cma_activate_area walks all pages in the area, checking their zone
individually to see if the area resides in more than one zone.
Make this a little more efficient by using the recently introduced
pfn_range_intersects_zones() function. Store the NUMA node id (if any) in
the cma structure to facilitate this.
Link: https://lkml.kernel.org/r/20250228182928.2645936-23-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
For large systems, the overhead of vmemmap pages for hugetlb is
substantial. It's about 1.5% of memory, which is about 45G for a 3T
system. If you want to configure most of that system for hugetlb (e.g.
to use as backing memory for VMs), there is a chance of running out of
memory on boot, even though you know that the 45G will become available
later.
To avoid this scenario, and since it's a waste to first allocate and then
free that 45G during boot, do pre-HVO for hugetlb bootmem allocated pages
('gigantic' pages).
pre-HVO is done by adding functions that are called from
sparse_init_nid_early and sparse_init_nid_late. The first is called
before memmap allocation, so it takes care of allocating memmap HVO-style.
The second verifies that all bootmem pages look good, specifically it
checks that they do not intersect with multiple zones. This can only be
done from sparse_init_nid_late path, when zones have been initialized.
The hugetlb page size must be aligned to the section size, and aligned to
the size of memory described by the number of page structures contained in
one PMD (since pre-HVO is not prepared to split PMDs). This should be
true for most 'gigantic' pages, it is for 1G pages on x86, where both of
these alignment requirements are 128M.
This will only have an effect if hugetlb_bootmem_alloc was called early in
boot. If not, it won't do anything, and HVO for bootmem hugetlb pages
works as before.
Link: https://lkml.kernel.org/r/20250228182928.2645936-20-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Make the hugetlb_vmemmap_restore_folios definition inline for the
!CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP case, so that including this file in
files other than hugetlb_vmemmap.c will work.
Link: https://lkml.kernel.org/r/20250228182928.2645936-19-fvdl@google.com
Fixes: cfb8c75099db ("hugetlb: perform vmemmap restoration on a list of pages")
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Define flags for pre-HVOed bootmem hugetlb pages, and act on them.
The most important flag is the HVO flag, signalling that a bootmem
allocated gigantic page has already been HVO-ed. If this flag is seen by
the hugetlb bootmem gather code, the page is marked as HVO optimized. The
HVO code will then not try to optimize it again. Instead, it will just
map the tail page mirror pages read-only, completing the HVO steps.
No functional change, as nothing sets the flags yet.
Link: https://lkml.kernel.org/r/20250228182928.2645936-18-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Instead of initializing the per-node hugetlb bootmem pages list from the
alloc function, we can now do it in a somewhat cleaner way, since there is
an explicit hugetlb_bootmem_alloc function. Initialize the lists there.
Link: https://lkml.kernel.org/r/20250228182928.2645936-17-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Architectures that want pre-HVO of hugetlb vmemmap pages will need to call
hugetlb_bootmem_alloc from an earlier spot in boot (before sparse_init).
To facilitate some architectures doing this, protect hugetlb_bootmem_alloc
against multiple calls.
Also provide a helper function to check if it's been called, so that the
early HVO code, to be added later, can see if there is anything to do.
Link: https://lkml.kernel.org/r/20250228182928.2645936-16-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add a few functions to enable early HVO:
vmemmap_populate_hvo
vmemmap_undo_hvo
vmemmap_wrprotect_hvo
The populate and undo functions are expected to be used in early init,
from the sparse_init_nid_early() function. The wrprotect function is to
be used, potentially, later.
To implement these functions, mostly re-use the existing compound pages
vmemmap logic used by DAX. vmemmap_populate_address has its argument
changed a bit in this commit: the page structure passed in to be reused in
the mapping is replaced by a PFN and a flag. The flag indicates whether
an extra ref should be taken on the vmemmap page containing the head page
structure. Taking the ref is appropriate to for DAX / ZONE_DEVICE, but
not for HugeTLB HVO.
The HugeTLB vmemmap optimization maps tail page structure pages read-only.
The vmemmap_wrprotect_hvo function that does this is implemented
separately, because it cannot be guaranteed that reserved page structures
will not be write accessed during memory initialization. Even with
CONFIG_DEFERRED_STRUCT_PAGE_INIT, they might still be written to (if they
are at the bottom of a zone). So, vmemmap_populate_hvo leaves the tail
page structure pages RW initially, and then later during initialization,
after memmap init is fully done, vmemmap_wrprotect_hvo must be called to
finish the job.
Subsequent commits will use these functions for early HugeTLB HVO.
Link: https://lkml.kernel.org/r/20250228182928.2645936-15-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Bootmem hugetlb pages are allocated using memblock, which isn't (and
mostly can't be) aware of zones.
So, they may end up crossing zone boundaries. This would create
confusion, a hugetlb page that is part of multiple zones is bad. Worse,
HVO might then end up stealthily re-assigning pages to a different zone
when a hugetlb page is freed, since the tail page structures beyond the
first vmemmap page would inherit the zone of the first page structures.
While the chance of this happening is low, you can definitely create a
configuration where this happens (especially using ZONE_MOVABLE).
To avoid this issue, check if bootmem hugetlb pages intersect with
multiple zones during the gather phase, and discard them, handing them to
the page allocator, if they do. Record the number of invalid bootmem
pages per node and subtract them from the number of available pages at the
end, making it easier to do these checks in multiple places later on.
Link: https://lkml.kernel.org/r/20250228182928.2645936-14-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Sometimes page structs must be unconditionally initialized as reserved,
regardless of DEFERRED_STRUCT_PAGE_INIT.
Define a function, __init_reserved_page_zone, containing code that already
did all of the work in init_reserved_page, and make it available for use.
Link: https://lkml.kernel.org/r/20250228182928.2645936-13-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The pageblocks that back memblock allocated hugetlb folios might not have
the migrate type set, in the CONFIG_DEFERRED_STRUCT_PAGE_INIT case.
memblock allocated hugetlb folios might be given to the buddy allocator
eventually (if nr_hugepages is lowered), so make sure that the migrate
type for the pageblocks contained in them is set when initializing them.
Set it to the default that memmap init also uses (MIGRATE_MOVABLE).
Link: https://lkml.kernel.org/r/20250228182928.2645936-12-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add functions that are called just before the per-section memmap is
initialized and just before the memmap page structures are initialized.
They are called sparse_vmemmap_init_nid_early and
sparse_vmemmap_init_nid_late, respectively.
This allows for mm subsystems to add calls to initialize memmap and page
structures in a specific way, if using SPARSEMEM_VMEMMAP. Specifically,
hugetlb can pre-HVO bootmem allocated pages that way, so that no time and
resources are wasted on allocating vmemmap pages, only to free them later
(and possibly unnecessarily running the system out of memory in the
process).
Refactor some code and export a few convenience functions for external
use.
In sparse_init_nid, skip any sections that are already initialized, e.g.
they have been initialized by sparse_vmemmap_init_nid_early already.
The hugetlb code to use these functions will be added in a later commit.
Export section_map_size, as any alternate memmap init code will want to
use it.
The internal config option to enable this is SPARSEMEM_VMEMMAP_PREINIT,
which is selected if an architecture-specific option,
ARCH_WANT_HUGETLB_VMEMMAP_PREINIT, is set. In the future, if other
subsystems want to do preinit too, they can do it in a similar fashion.
The internal config option is there because a section flag is used, and
the number of flags available is architecture-dependent (see mmzone.h).
Architecures can decide if there is room for the flag when enabling
options that select SPARSEMEM_VMEMMAP_PREINIT.
Fortunately, as of right now, all sparse vmemmap using architectures do
have room.
Link: https://lkml.kernel.org/r/20250228182928.2645936-11-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Convert the cmdline parameters (hugepagesz, hugepages, default_hugepagesz
and hugetlb_free_vmemmap) to early parameters.
Since parse_early_param might run before MMU setups on some platforms
(powerpc), validation of huge page sizes as specified in command line
parameters would fail. So instead, for the hstate-related values, just
record the them and parse them on demand, from hugetlb_bootmem_alloc.
The allocation of hugetlb bootmem pages is now done in
hugetlb_bootmem_alloc, which is called explicitly at the start of
mm_core_init(). core_initcall would be too late, as that happens with
memblock already torn down.
This change will allow earlier allocation and initialization of bootmem
hugetlb pages later on.
No functional change intended.
Link: https://lkml.kernel.org/r/20250228182928.2645936-8-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Later commits will move hugetlb bootmem allocation to earlier in init,
when N_MEMORY has not yet been set on nodes. Use online nodes instead.
At most, this wastes just a few cycles once during boot (and most likely
none).
Link: https://lkml.kernel.org/r/20250228182928.2645936-7-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In hugetlb_folio_init_tail_vmemmap, the reserved flag is cleared for the
tail page just before it is zeroed out, which is redundant. Remove the
__ClearPageReserved call.
Link: https://lkml.kernel.org/r/20250228182928.2645936-6-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
hugetlb_cma is fine with using multiple CMA ranges, as long as it can get
its gigantic pages allocated from them. So, use
cma_declare_contiguous_multi to allow for multiple ranges, increasing the
chances of getting what we want on systems with gaps in physical memory.
Link: https://lkml.kernel.org/r/20250228182928.2645936-5-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Now that CMA areas can have multiple physical ranges, code can't assume a
CMA struct represents a base_pfn plus a size, as returned from
cma_get_base.
Most cases are ok though, since they all explicitly refer to CMA areas
that were created using existing interfaces (cma_declare_contiguous_nid or
cma_init_reserved_mem), which guarantees they have just one physical
range.
An exception is the s390 code, which walks all CMA ranges to see if they
intersect with a range of memory that is about to be hotremoved. So, in
the future, it might run in to multi-range areas. To keep this check
working, define a cma_intersects function. This just checks if a physaddr
range intersects any of the ranges. Use it in the s390 check.
Link: https://lkml.kernel.org/r/20250228182928.2645936-4-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, CMA manages one range of physically contiguous memory.
Creation of larger CMA areas with hugetlb_cma may run in to gaps in
physical memory, so that they are not able to allocate that contiguous
physical range from memblock when creating the CMA area.
This can happen, for example, on an AMD system with > 1TB of memory, where
there will be a gap just below the 1TB (40bit DMA) line. If you have set
aside most of memory for potential hugetlb CMA allocation,
cma_declare_contiguous_nid will fail.
hugetlb_cma doesn't need the entire area to be one physically contiguous
range. It just cares about being able to get physically contiguous chunks
of a certain size (e.g. 1G), and it is fine to have the CMA area backed
by multiple physical ranges, as long as it gets 1G contiguous allocations.
Multi-range support is implemented by introducing an array of ranges,
instead of just one big one. Each range has its own bitmap. Effectively,
the allocate and release operations work as before, just per-range. So,
instead of going through one large bitmap, they now go through a number of
smaller ones.
The maximum number of supported ranges is 8, as defined in CMA_MAX_RANGES.
Since some current users of CMA expect a CMA area to just use one
physically contiguous range, only allow for multiple ranges if a new
interface, cma_declare_contiguous_nid_multi, is used. The other
interfaces will work like before, creating only CMA areas with 1 range.
cma_declare_contiguous_nid_multi works as follows, mimicking the
default "bottom-up, above 4G" reservation approach:
0) Try cma_declare_contiguous_nid, which will use only one
region. If this succeeds, return. This makes sure that for
all the cases that currently work, the behavior remains
unchanged even if the caller switches from
cma_declare_contiguous_nid to cma_declare_contiguous_nid_multi.
1) Select the largest free memblock ranges above 4G, with
a maximum number of CMA_MAX_RANGES.
2) If we did not find at most CMA_MAX_RANGES that add
up to the total size requested, return -ENOMEM.
3) Sort the selected ranges by base address.
4) Reserve them bottom-up until we get what we wanted.
Link: https://lkml.kernel.org/r/20250228182928.2645936-3-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "hugetlb/CMA improvements for large systems", v5.
On large systems, we observed some issues with hugetlb and CMA:
1) When specifying a large number of hugetlb boot pages (hugepages= on
the commandline), the kernel may run out of memory before it even gets
to HVO. For example, if you have a 3072G system, and want to use 3024
1G hugetlb pages for VMs, that should leave you plenty of space for the
hypervisor, provided you have the hugetlb vmemmap optimization (HVO)
enabled. However, since the vmemmap pages are always allocated first,
and then later in boot freed, you will actually run yourself out of
memory before you can do HVO. This means not getting all the hugetlb
pages you want, and worse, failure to boot if there is an allocation
failure in the system from which it can't recover.
2) There is a system setup where you might want to use hugetlb_cma with
a large value (say, again, 3024 out of 3072G like above), and then
lower that if system usage allows it, to make room for non-hugetlb
processes. For this, a variation of the problem above applies: the
kernel runs out of unmovable space to allocate from before you finish
boot, since your CMA area takes up all the space.
3) CMA wants to use one big contiguous area for allocations. Which
fails if you have the aforementioned 3T system with a gap in the middle
of physical memory (like the < 40bits BIOS DMA area seen on some AMD
systems). You then won't be able to set up a CMA area for one of the
NUMA nodes, leading to loss of half of your hugetlb CMA area.
4) Under the scenario mentioned in 2), when trying to grow the number
of hugetlb pages after dropping it for a while, new CMA allocations may
fail occasionally. This is not unexpected, some transient references
on pages may prevent cma_alloc from succeeding under memory pressure.
However, the hugetlb code then falls back to a normal contiguous alloc,
which may end up succeeding. This is not always desired behavior. If
you have a large CMA area, then the kernel has a restricted amount of
memory it can do unmovable allocations from (a well known issue). A
normal contiguous alloc may eat further in to this space.
To resolve these issues, do the following:
* Add hooks to the section init code to do custom initialization of
memmap pages. Hugetlb bootmem (memblock) allocated pages can then be
pre-HVOed. This avoids allocating a large number of vmemmap pages early
in boot, only to have them be freed again later, and also avoids running
out of memory as described under 1). Using these hooks for hugetlb is
optional. It requires moving hugetlb bootmem allocation to an earlier
spot by the architecture. This has been enabled on x86.
* hugetlb_cma doesn't care about the CMA area it uses being one large
contiguous range. Multiple smaller ranges are fine. The only
requirements are that the areas should be on one NUMA node, and
individual gigantic pages should be allocatable from them. So,
implement multi-range support for CMA, avoiding issue 3).
* Introduce a hugetlb_cma_only option on the commandline. This only
allows allocations from CMA for gigantic pages, if hugetlb_cma= is also
specified.
* With hugetlb_cma_only active, it also makes sense to be able to
pre-allocate gigantic hugetlb pages at boot time from the CMA area(s).
Add a rudimentary early CMA allocation interface, that just grabs a
piece of memblock-allocated space from the CMA area, which gets marked
as allocated in the CMA bitmap when the CMA area is initialized. With
this, hugepages= can be supported with hugetlb_cma=, making scenario 2)
work.
Additionally, fix some minor bugs, with one worth mentioning: since
hugetlb gigantic bootmem pages are allocated by memblock, they may span
multiple zones, as memblock doesn't (and mostly can't) know about zones.
This can cause problems. A hugetlb page spanning multiple zones is bad,
and it's worse with HVO, when the de-HVO step effectively sneakily
re-assigns pages to a different zone than originally configured, since the
tail pages all inherit the zone from the first 60 tail pages. This
condition is not common, but can be easily reproduced using ZONE_MOVABLE.
To fix this, add checks to see if gigantic bootmem pages intersect with
multiple zones, and do not use them if they do, giving them back to the
page allocator instead.
The first patch is kind of along for the ride, except that maintaining an
available_count for a CMA area is convenient for the multiple range
support.
This patch (of 27):
In addition to the number of allocations and releases, system management
software may like to be aware of the size of CMA areas, and how many pages
are available in it. This information is currently not available, so
export it in total_page and available_pages, respectively.
The name 'available_pages' was picked over 'free_pages' because 'free'
implies that the pages are unused. But they might not be, they just
haven't been used by cma_alloc
The number of available pages is tracked regardless of CONFIG_CMA_SYSFS,
allowing for a few minor shortcuts in the code, avoiding bitmap
operations.
Link: https://lkml.kernel.org/r/20250228182928.2645936-2-fvdl@google.com
Signed-off-by: Frank van der Linden <fvdl@google.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
ioremap_prot() currently accepts pgprot_val parameter as an unsigned long,
thus implicitly assuming that pgprot_val and pgprot_t could never be
bigger than unsigned long. But this assumption soon will not be true on
arm64 when using D128 pgtables. In 128 bit page table configuration,
unsigned long is 64 bit, but pgprot_t is 128 bit.
Passing platform abstracted pgprot_t argument is better as compared to
size based data types. Let's change the parameter to directly pass
pgprot_t like another similar helper generic_ioremap_prot().
Without this change in place, D128 configuration does not work on arm64 as
the top 64 bits gets silently stripped when passing the protection value
to this function.
Link: https://lkml.kernel.org/r/20250218101954.415331-1-anshuman.khandual@arm.com
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Co-developed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
To enable SLAB_TYPESAFE_BY_RCU for vma cache we need to ensure that
object reuse before RCU grace period is over will be detected by
lock_vma_under_rcu().
Current checks are sufficient as long as vma is detached before it is
freed. The only place this is not currently happening is in exit_mmap().
Add the missing vma_mark_detached() in exit_mmap().
Another issue which might trick lock_vma_under_rcu() during vma reuse is
vm_area_dup(), which copies the entire content of the vma into a new one,
overriding new vma's vm_refcnt and temporarily making it appear as
attached. This might trick a racing lock_vma_under_rcu() to operate on a
reused vma if it found the vma before it got reused. To prevent this
situation, we should ensure that vm_refcnt stays at detached state (0)
when it is copied and advances to attached state only after it is added
into the vma tree. Introduce vm_area_init_from() which preserves new
vma's vm_refcnt and use it in vm_area_dup(). Since all vmas are in
detached state with no current readers when they are freed,
lock_vma_under_rcu() will not be able to take vm_refcnt after vma got
detached even if vma is reused. vma_mark_attached() in modified to
include a release fence to ensure all stores to the vma happen before
vm_refcnt gets initialized.
Finally, make vm_area_cachep SLAB_TYPESAFE_BY_RCU. This will facilitate
vm_area_struct reuse and will minimize the number of call_rcu() calls.
[surenb@google.com: remove atomic_set_release() usage in tools/]
Link: https://lkml.kernel.org/r/20250217054351.2973666-1-surenb@google.com
Link: https://lkml.kernel.org/r/20250213224655.1680278-18-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Shivank Garg <shivankg@amd.com>
Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Once we make vma cache SLAB_TYPESAFE_BY_RCU, it will be possible for a vma
to be reused and attached to another mm after lock_vma_under_rcu() locks
the vma. lock_vma_under_rcu() should ensure that vma_start_read() is
using the original mm and after locking the vma it should ensure that
vma->vm_mm has not changed from under us.
Link: https://lkml.kernel.org/r/20250213224655.1680278-17-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Shivank Garg <shivankg@amd.com>
Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
vm_refcnt encodes a number of useful states:
- whether vma is attached or detached
- the number of current vma readers
- presence of a vma writer
Let's include it in the vma dump.
Link: https://lkml.kernel.org/r/20250213224655.1680278-15-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Shivank Garg <shivankg@amd.com>
Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
rw_semaphore is a sizable structure of 40 bytes and consumes considerable
space for each vm_area_struct. However vma_lock has two important
specifics which can be used to replace rw_semaphore with a simpler
structure:
1. Readers never wait. They try to take the vma_lock and fall back to
mmap_lock if that fails.
2. Only one writer at a time will ever try to write-lock a vma_lock
because writers first take mmap_lock in write mode. Because of these
requirements, full rw_semaphore functionality is not needed and we can
replace rw_semaphore and the vma->detached flag with a refcount
(vm_refcnt).
When vma is in detached state, vm_refcnt is 0 and only a call to
vma_mark_attached() can take it out of this state. Note that unlike
before, now we enforce both vma_mark_attached() and vma_mark_detached() to
be done only after vma has been write-locked. vma_mark_attached() changes
vm_refcnt to 1 to indicate that it has been attached to the vma tree.
When a reader takes read lock, it increments vm_refcnt, unless the top
usable bit of vm_refcnt (0x40000000) is set, indicating presence of a
writer. When writer takes write lock, it sets the top usable bit to
indicate its presence. If there are readers, writer will wait using newly
introduced mm->vma_writer_wait. Since all writers take mmap_lock in write
mode first, there can be only one writer at a time. The last reader to
release the lock will signal the writer to wake up. refcount might
overflow if there are many competing readers, in which case read-locking
will fail. Readers are expected to handle such failures.
In summary:
1. all readers increment the vm_refcnt;
2. writer sets top usable (writer) bit of vm_refcnt;
3. readers cannot increment the vm_refcnt if the writer bit is set;
4. in the presence of readers, writer must wait for the vm_refcnt to drop
to 1 (plus the VMA_LOCK_OFFSET writer bit), indicating an attached vma
with no readers;
5. vm_refcnt overflow is handled by the readers.
While this vm_lock replacement does not yet result in a smaller
vm_area_struct (it stays at 256 bytes due to cacheline alignment), it
allows for further size optimization by structure member regrouping to
bring the size of vm_area_struct below 192 bytes.
[surenb@google.com: fix a crash due to vma_end_read() that should have been removed]
Link: https://lkml.kernel.org/r/20250220200208.323769-1-surenb@google.com
Link: https://lkml.kernel.org/r/20250213224655.1680278-13-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Shivank Garg <shivankg@amd.com>
Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
vma_start_write() is used in many places and will grow in size very soon.
It is not used in performance critical paths and uninlining it should
limit the future code size growth. No functional changes.
Link: https://lkml.kernel.org/r/20250213224655.1680278-10-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Tested-by: Shivank Garg <shivankg@amd.com>
Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|