Age | Commit message (Collapse) | Author |
|
This test intended to verify if SO_BINDTODEVICE option works in
bpf_setsockopt. Because we already in the SOL_SOCKET level in this
connect bpf prog its safe to verify the sanity in the beginning of
the connect_v4_prog by calling the bind_to_device test helper.
The testing environment already created by the test_sock_addr.sh
script so this test assume that two netdevices already existing in
the system: veth pair with names test_sock_addr1 and test_sock_addr2.
The test will try to bind the socket to those devices first.
Then the test assume there are no netdevice with "nonexistent_dev"
name so the bpf_setsockopt will give use ENODEV error.
At the end the test remove the device binding from the socket
by binding it to an empty name.
Signed-off-by: Ferenc Fejes <fejes@inf.elte.hu>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/3f055b8e45c65639c5c73d0b4b6c589e60b86f15.1590871065.git.fejes@inf.elte.hu
|
|
This adds a test for bpf ingress policy. To ensure data writes happen
as expected with extra TLS headers we run these tests with data
verification enabled by default. This will test receive packets have
"PASS" stamped into the front of the payload.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/159079363965.5745.3390806911628980210.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Sync bpf.h into tool/include/uapi/
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add tests to verify ability to add an XDP program to a
entry in a DEVMAP.
Add negative tests to show DEVMAP programs can not be
attached to devices as a normal XDP program, and accesses
to egress_ifindex require BPF_XDP_DEVMAP attach type.
Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200529220716.75383-6-dsahern@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Support SEC("xdp_devmap*") as a short cut for loading the program with
type BPF_PROG_TYPE_XDP and expected attach type BPF_XDP_DEVMAP.
Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200529220716.75383-5-dsahern@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add xdp_txq_info as the Tx counterpart to xdp_rxq_info. At the
moment only the device is added. Other fields (queue_index)
can be added as use cases arise.
>From a UAPI perspective, add egress_ifindex to xdp context for
bpf programs to see the Tx device.
Update the verifier to only allow accesses to egress_ifindex by
XDP programs with BPF_XDP_DEVMAP expected attach type.
Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200529220716.75383-4-dsahern@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add BPF_XDP_DEVMAP attach type for use with programs associated with a
DEVMAP entry.
Allow DEVMAPs to associate a program with a device entry by adding
a bpf_prog.fd to 'struct bpf_devmap_val'. Values read show the program
id, so the fd and id are a union. bpf programs can get access to the
struct via vmlinux.h.
The program associated with the fd must have type XDP with expected
attach type BPF_XDP_DEVMAP. When a program is associated with a device
index, the program is run on an XDP_REDIRECT and before the buffer is
added to the per-cpu queue. At this point rxq data is still valid; the
next patch adds tx device information allowing the prorgam to see both
ingress and egress device indices.
XDP generic is skb based and XDP programs do not work with skb's. Block
the use case by walking maps used by a program that is to be attached
via xdpgeneric and fail if any of them are DEVMAP / DEVMAP_HASH with
Block attach of BPF_XDP_DEVMAP programs to devices.
Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200529220716.75383-3-dsahern@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Extend bench framework with ability to have benchmark-provided child argument
parser for custom benchmark-specific parameters. This makes bench generic code
modular and independent from any specific benchmark.
Also implement a set of benchmarks for new BPF ring buffer and existing perf
buffer. 4 benchmarks were implemented: 2 variations for each of BPF ringbuf
and perfbuf:,
- rb-libbpf utilizes stock libbpf ring_buffer manager for reading data;
- rb-custom implements custom ring buffer setup and reading code, to
eliminate overheads inherent in generic libbpf code due to callback
functions and the need to update consumer position after each consumed
record, instead of batching updates (due to pessimistic assumption that
user callback might take long time and thus could unnecessarily hold ring
buffer space for too long);
- pb-libbpf uses stock libbpf perf_buffer code with all the default
settings, though uses higher-performance raw event callback to minimize
unnecessary overhead;
- pb-custom implements its own custom consumer code to minimize any possible
overhead of generic libbpf implementation and indirect function calls.
All of the test support default, no data notification skipped, mode, as well
as sampled mode (with --rb-sampled flag), which allows to trigger epoll
notification less frequently and reduce overhead. As will be shown, this mode
is especially critical for perf buffer, which suffers from high overhead of
wakeups in kernel.
Otherwise, all benchamrks implement similar way to generate a batch of records
by using fentry/sys_getpgid BPF program, which pushes a bunch of records in
a tight loop and records number of successful and dropped samples. Each record
is a small 8-byte integer, to minimize the effect of memory copying with
bpf_perf_event_output() and bpf_ringbuf_output().
Benchmarks that have only one producer implement optional back-to-back mode,
in which record production and consumption is alternating on the same CPU.
This is the highest-throughput happy case, showing ultimate performance
achievable with either BPF ringbuf or perfbuf.
All the below scenarios are implemented in a script in
benchs/run_bench_ringbufs.sh. Tests were performed on 28-core/56-thread
Intel Xeon CPU E5-2680 v4 @ 2.40GHz CPU.
Single-producer, parallel producer
==================================
rb-libbpf 12.054 ± 0.320M/s (drops 0.000 ± 0.000M/s)
rb-custom 8.158 ± 0.118M/s (drops 0.001 ± 0.003M/s)
pb-libbpf 0.931 ± 0.007M/s (drops 0.000 ± 0.000M/s)
pb-custom 0.965 ± 0.003M/s (drops 0.000 ± 0.000M/s)
Single-producer, parallel producer, sampled notification
========================================================
rb-libbpf 11.563 ± 0.067M/s (drops 0.000 ± 0.000M/s)
rb-custom 15.895 ± 0.076M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 9.889 ± 0.032M/s (drops 0.000 ± 0.000M/s)
pb-custom 9.866 ± 0.028M/s (drops 0.000 ± 0.000M/s)
Single producer on one CPU, consumer on another one, both running at full
speed. Curiously, rb-libbpf has higher throughput than objectively faster (due
to more lightweight consumer code path) rb-custom. It appears that faster
consumer causes kernel to send notifications more frequently, because consumer
appears to be caught up more frequently. Performance of perfbuf suffers from
default "no sampling" policy and huge overhead that causes.
In sampled mode, rb-custom is winning very significantly eliminating too
frequent in-kernel wakeups, the gain appears to be more than 2x.
Perf buffer achieves even more impressive wins, compared to stock perfbuf
settings, with 10x improvements in throughput with 1:500 sampling rate. The
trade-off is that with sampling, application might not get next X events until
X+1st arrives, which is not always acceptable. With steady influx of events,
though, this shouldn't be a problem.
Overall, single-producer performance of ring buffers seems to be better no
matter the sampled/non-sampled modes, but it especially beats ring buffer
without sampling due to its adaptive notification approach.
Single-producer, back-to-back mode
==================================
rb-libbpf 15.507 ± 0.247M/s (drops 0.000 ± 0.000M/s)
rb-libbpf-sampled 14.692 ± 0.195M/s (drops 0.000 ± 0.000M/s)
rb-custom 21.449 ± 0.157M/s (drops 0.000 ± 0.000M/s)
rb-custom-sampled 20.024 ± 0.386M/s (drops 0.000 ± 0.000M/s)
pb-libbpf 1.601 ± 0.015M/s (drops 0.000 ± 0.000M/s)
pb-libbpf-sampled 8.545 ± 0.064M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.607 ± 0.022M/s (drops 0.000 ± 0.000M/s)
pb-custom-sampled 8.988 ± 0.144M/s (drops 0.000 ± 0.000M/s)
Here we test a back-to-back mode, which is arguably best-case scenario both
for BPF ringbuf and perfbuf, because there is no contention and for ringbuf
also no excessive notification, because consumer appears to be behind after
the first record. For ringbuf, custom consumer code clearly wins with 21.5 vs
16 million records per second exchanged between producer and consumer. Sampled
mode actually hurts a bit due to slightly slower producer logic (it needs to
fetch amount of data available to decide whether to skip or force notification).
Perfbuf with wakeup sampling gets 5.5x throughput increase, compared to
no-sampling version. There also doesn't seem to be noticeable overhead from
generic libbpf handling code.
Perfbuf back-to-back, effect of sample rate
===========================================
pb-sampled-1 1.035 ± 0.012M/s (drops 0.000 ± 0.000M/s)
pb-sampled-5 3.476 ± 0.087M/s (drops 0.000 ± 0.000M/s)
pb-sampled-10 5.094 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-25 7.118 ± 0.153M/s (drops 0.000 ± 0.000M/s)
pb-sampled-50 8.169 ± 0.156M/s (drops 0.000 ± 0.000M/s)
pb-sampled-100 8.887 ± 0.136M/s (drops 0.000 ± 0.000M/s)
pb-sampled-250 9.180 ± 0.209M/s (drops 0.000 ± 0.000M/s)
pb-sampled-500 9.353 ± 0.281M/s (drops 0.000 ± 0.000M/s)
pb-sampled-1000 9.411 ± 0.217M/s (drops 0.000 ± 0.000M/s)
pb-sampled-2000 9.464 ± 0.167M/s (drops 0.000 ± 0.000M/s)
pb-sampled-3000 9.575 ± 0.273M/s (drops 0.000 ± 0.000M/s)
This benchmark shows the effect of event sampling for perfbuf. Back-to-back
mode for highest throughput. Just doing every 5th record notification gives
3.5x speed up. 250-500 appears to be the point of diminishing return, with
almost 9x speed up. Most benchmarks use 500 as the default sampling for pb-raw
and pb-custom.
Ringbuf back-to-back, effect of sample rate
===========================================
rb-sampled-1 1.106 ± 0.010M/s (drops 0.000 ± 0.000M/s)
rb-sampled-5 4.746 ± 0.149M/s (drops 0.000 ± 0.000M/s)
rb-sampled-10 7.706 ± 0.164M/s (drops 0.000 ± 0.000M/s)
rb-sampled-25 12.893 ± 0.273M/s (drops 0.000 ± 0.000M/s)
rb-sampled-50 15.961 ± 0.361M/s (drops 0.000 ± 0.000M/s)
rb-sampled-100 18.203 ± 0.445M/s (drops 0.000 ± 0.000M/s)
rb-sampled-250 19.962 ± 0.786M/s (drops 0.000 ± 0.000M/s)
rb-sampled-500 20.881 ± 0.551M/s (drops 0.000 ± 0.000M/s)
rb-sampled-1000 21.317 ± 0.532M/s (drops 0.000 ± 0.000M/s)
rb-sampled-2000 21.331 ± 0.535M/s (drops 0.000 ± 0.000M/s)
rb-sampled-3000 21.688 ± 0.392M/s (drops 0.000 ± 0.000M/s)
Similar benchmark for ring buffer also shows a great advantage (in terms of
throughput) of skipping notifications. Skipping every 5th one gives 4x boost.
Also similar to perfbuf case, 250-500 seems to be the point of diminishing
returns, giving roughly 20x better results.
Keep in mind, for this test, notifications are controlled manually with
BPF_RB_NO_WAKEUP and BPF_RB_FORCE_WAKEUP. As can be seen from previous
benchmarks, adaptive notifications based on consumer's positions provides same
(or even slightly better due to simpler load generator on BPF side) benefits in
favorable back-to-back scenario. Over zealous and fast consumer, which is
almost always caught up, will make thoughput numbers smaller. That's the case
when manual notification control might prove to be extremely beneficial.
Ringbuf back-to-back, reserve+commit vs output
==============================================
reserve 22.819 ± 0.503M/s (drops 0.000 ± 0.000M/s)
output 18.906 ± 0.433M/s (drops 0.000 ± 0.000M/s)
Ringbuf sampled, reserve+commit vs output
=========================================
reserve-sampled 15.350 ± 0.132M/s (drops 0.000 ± 0.000M/s)
output-sampled 14.195 ± 0.144M/s (drops 0.000 ± 0.000M/s)
BPF ringbuf supports two sets of APIs with various usability and performance
tradeoffs: bpf_ringbuf_reserve()+bpf_ringbuf_commit() vs bpf_ringbuf_output().
This benchmark clearly shows superiority of reserve+commit approach, despite
using a small 8-byte record size.
Single-producer, consumer/producer competing on the same CPU, low batch count
=============================================================================
rb-libbpf 3.045 ± 0.020M/s (drops 3.536 ± 0.148M/s)
rb-custom 3.055 ± 0.022M/s (drops 3.893 ± 0.066M/s)
pb-libbpf 1.393 ± 0.024M/s (drops 0.000 ± 0.000M/s)
pb-custom 1.407 ± 0.016M/s (drops 0.000 ± 0.000M/s)
This benchmark shows one of the worst-case scenarios, in which producer and
consumer do not coordinate *and* fight for the same CPU. No batch count and
sampling settings were able to eliminate drops for ringbuffer, producer is
just too fast for consumer to keep up. But ringbuf and perfbuf still able to
pass through quite a lot of messages, which is more than enough for a lot of
applications.
Ringbuf, multi-producer contention
==================================
rb-libbpf nr_prod 1 10.916 ± 0.399M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 2 4.931 ± 0.030M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 3 4.880 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 4 3.926 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 8 4.011 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 12 3.967 ± 0.016M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 16 2.604 ± 0.030M/s (drops 0.001 ± 0.002M/s)
rb-libbpf nr_prod 20 2.233 ± 0.003M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 24 2.085 ± 0.015M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 28 2.055 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 32 1.962 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 36 2.089 ± 0.005M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 40 2.118 ± 0.006M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 44 2.105 ± 0.004M/s (drops 0.000 ± 0.000M/s)
rb-libbpf nr_prod 48 2.120 ± 0.058M/s (drops 0.000 ± 0.001M/s)
rb-libbpf nr_prod 52 2.074 ± 0.024M/s (drops 0.007 ± 0.014M/s)
Ringbuf uses a very short-duration spinlock during reservation phase, to check
few invariants, increment producer count and set record header. This is the
biggest point of contention for ringbuf implementation. This benchmark
evaluates the effect of multiple competing writers on overall throughput of
a single shared ringbuffer.
Overall throughput drops almost 2x when going from single to two
highly-contended producers, gradually dropping with additional competing
producers. Performance drop stabilizes at around 20 producers and hovers
around 2mln even with 50+ fighting producers, which is a 5x drop compared to
non-contended case. Good kernel implementation in kernel helps maintain decent
performance here.
Note, that in the intended real-world scenarios, it's not expected to get even
close to such a high levels of contention. But if contention will become
a problem, there is always an option of sharding few ring buffers across a set
of CPUs.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-5-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Both singleton BPF ringbuf and BPF ringbuf with map-in-map use cases are tested.
Also reserve+submit/discards and output variants of API are validated.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-4-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Declaring and instantiating BPF ring buffer doesn't require any changes to
libbpf, as it's just another type of maps. So using existing BTF-defined maps
syntax with __uint(type, BPF_MAP_TYPE_RINGBUF) and __uint(max_elements,
<size-of-ring-buf>) is all that's necessary to create and use BPF ring buffer.
This patch adds BPF ring buffer consumer to libbpf. It is very similar to
perf_buffer implementation in terms of API, but also attempts to fix some
minor problems and inconveniences with existing perf_buffer API.
ring_buffer support both single ring buffer use case (with just using
ring_buffer__new()), as well as allows to add more ring buffers, each with its
own callback and context. This allows to efficiently poll and consume
multiple, potentially completely independent, ring buffers, using single
epoll instance.
The latter is actually a problem in practice for applications
that are using multiple sets of perf buffers. They have to create multiple
instances for struct perf_buffer and poll them independently or in a loop,
each approach having its own problems (e.g., inability to use a common poll
timeout). struct ring_buffer eliminates this problem by aggregating many
independent ring buffer instances under the single "ring buffer manager".
Second, perf_buffer's callback can't return error, so applications that need
to stop polling due to error in data or data signalling the end, have to use
extra mechanisms to signal that polling has to stop. ring_buffer's callback
can return error, which will be passed through back to user code and can be
acted upon appropariately.
Two APIs allow to consume ring buffer data:
- ring_buffer__poll(), which will wait for data availability notification
and will consume data only from reported ring buffer(s); this API allows
to efficiently use resources by reading data only when it becomes
available;
- ring_buffer__consume(), will attempt to read new records regardless of
data availablity notification sub-system. This API is useful for cases
when lowest latency is required, in expense of burning CPU resources.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-3-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This commit adds a new MPSC ring buffer implementation into BPF ecosystem,
which allows multiple CPUs to submit data to a single shared ring buffer. On
the consumption side, only single consumer is assumed.
Motivation
----------
There are two distinctive motivators for this work, which are not satisfied by
existing perf buffer, which prompted creation of a new ring buffer
implementation.
- more efficient memory utilization by sharing ring buffer across CPUs;
- preserving ordering of events that happen sequentially in time, even
across multiple CPUs (e.g., fork/exec/exit events for a task).
These two problems are independent, but perf buffer fails to satisfy both.
Both are a result of a choice to have per-CPU perf ring buffer. Both can be
also solved by having an MPSC implementation of ring buffer. The ordering
problem could technically be solved for perf buffer with some in-kernel
counting, but given the first one requires an MPSC buffer, the same solution
would solve the second problem automatically.
Semantics and APIs
------------------
Single ring buffer is presented to BPF programs as an instance of BPF map of
type BPF_MAP_TYPE_RINGBUF. Two other alternatives considered, but ultimately
rejected.
One way would be to, similar to BPF_MAP_TYPE_PERF_EVENT_ARRAY, make
BPF_MAP_TYPE_RINGBUF could represent an array of ring buffers, but not enforce
"same CPU only" rule. This would be more familiar interface compatible with
existing perf buffer use in BPF, but would fail if application needed more
advanced logic to lookup ring buffer by arbitrary key. HASH_OF_MAPS addresses
this with current approach. Additionally, given the performance of BPF
ringbuf, many use cases would just opt into a simple single ring buffer shared
among all CPUs, for which current approach would be an overkill.
Another approach could introduce a new concept, alongside BPF map, to
represent generic "container" object, which doesn't necessarily have key/value
interface with lookup/update/delete operations. This approach would add a lot
of extra infrastructure that has to be built for observability and verifier
support. It would also add another concept that BPF developers would have to
familiarize themselves with, new syntax in libbpf, etc. But then would really
provide no additional benefits over the approach of using a map.
BPF_MAP_TYPE_RINGBUF doesn't support lookup/update/delete operations, but so
doesn't few other map types (e.g., queue and stack; array doesn't support
delete, etc).
The approach chosen has an advantage of re-using existing BPF map
infrastructure (introspection APIs in kernel, libbpf support, etc), being
familiar concept (no need to teach users a new type of object in BPF program),
and utilizing existing tooling (bpftool). For common scenario of using
a single ring buffer for all CPUs, it's as simple and straightforward, as
would be with a dedicated "container" object. On the other hand, by being
a map, it can be combined with ARRAY_OF_MAPS and HASH_OF_MAPS map-in-maps to
implement a wide variety of topologies, from one ring buffer for each CPU
(e.g., as a replacement for perf buffer use cases), to a complicated
application hashing/sharding of ring buffers (e.g., having a small pool of
ring buffers with hashed task's tgid being a look up key to preserve order,
but reduce contention).
Key and value sizes are enforced to be zero. max_entries is used to specify
the size of ring buffer and has to be a power of 2 value.
There are a bunch of similarities between perf buffer
(BPF_MAP_TYPE_PERF_EVENT_ARRAY) and new BPF ring buffer semantics:
- variable-length records;
- if there is no more space left in ring buffer, reservation fails, no
blocking;
- memory-mappable data area for user-space applications for ease of
consumption and high performance;
- epoll notifications for new incoming data;
- but still the ability to do busy polling for new data to achieve the
lowest latency, if necessary.
BPF ringbuf provides two sets of APIs to BPF programs:
- bpf_ringbuf_output() allows to *copy* data from one place to a ring
buffer, similarly to bpf_perf_event_output();
- bpf_ringbuf_reserve()/bpf_ringbuf_commit()/bpf_ringbuf_discard() APIs
split the whole process into two steps. First, a fixed amount of space is
reserved. If successful, a pointer to a data inside ring buffer data area
is returned, which BPF programs can use similarly to a data inside
array/hash maps. Once ready, this piece of memory is either committed or
discarded. Discard is similar to commit, but makes consumer ignore the
record.
bpf_ringbuf_output() has disadvantage of incurring extra memory copy, because
record has to be prepared in some other place first. But it allows to submit
records of the length that's not known to verifier beforehand. It also closely
matches bpf_perf_event_output(), so will simplify migration significantly.
bpf_ringbuf_reserve() avoids the extra copy of memory by providing a memory
pointer directly to ring buffer memory. In a lot of cases records are larger
than BPF stack space allows, so many programs have use extra per-CPU array as
a temporary heap for preparing sample. bpf_ringbuf_reserve() avoid this needs
completely. But in exchange, it only allows a known constant size of memory to
be reserved, such that verifier can verify that BPF program can't access
memory outside its reserved record space. bpf_ringbuf_output(), while slightly
slower due to extra memory copy, covers some use cases that are not suitable
for bpf_ringbuf_reserve().
The difference between commit and discard is very small. Discard just marks
a record as discarded, and such records are supposed to be ignored by consumer
code. Discard is useful for some advanced use-cases, such as ensuring
all-or-nothing multi-record submission, or emulating temporary malloc()/free()
within single BPF program invocation.
Each reserved record is tracked by verifier through existing
reference-tracking logic, similar to socket ref-tracking. It is thus
impossible to reserve a record, but forget to submit (or discard) it.
bpf_ringbuf_query() helper allows to query various properties of ring buffer.
Currently 4 are supported:
- BPF_RB_AVAIL_DATA returns amount of unconsumed data in ring buffer;
- BPF_RB_RING_SIZE returns the size of ring buffer;
- BPF_RB_CONS_POS/BPF_RB_PROD_POS returns current logical possition of
consumer/producer, respectively.
Returned values are momentarily snapshots of ring buffer state and could be
off by the time helper returns, so this should be used only for
debugging/reporting reasons or for implementing various heuristics, that take
into account highly-changeable nature of some of those characteristics.
One such heuristic might involve more fine-grained control over poll/epoll
notifications about new data availability in ring buffer. Together with
BPF_RB_NO_WAKEUP/BPF_RB_FORCE_WAKEUP flags for output/commit/discard helpers,
it allows BPF program a high degree of control and, e.g., more efficient
batched notifications. Default self-balancing strategy, though, should be
adequate for most applications and will work reliable and efficiently already.
Design and implementation
-------------------------
This reserve/commit schema allows a natural way for multiple producers, either
on different CPUs or even on the same CPU/in the same BPF program, to reserve
independent records and work with them without blocking other producers. This
means that if BPF program was interruped by another BPF program sharing the
same ring buffer, they will both get a record reserved (provided there is
enough space left) and can work with it and submit it independently. This
applies to NMI context as well, except that due to using a spinlock during
reservation, in NMI context, bpf_ringbuf_reserve() might fail to get a lock,
in which case reservation will fail even if ring buffer is not full.
The ring buffer itself internally is implemented as a power-of-2 sized
circular buffer, with two logical and ever-increasing counters (which might
wrap around on 32-bit architectures, that's not a problem):
- consumer counter shows up to which logical position consumer consumed the
data;
- producer counter denotes amount of data reserved by all producers.
Each time a record is reserved, producer that "owns" the record will
successfully advance producer counter. At that point, data is still not yet
ready to be consumed, though. Each record has 8 byte header, which contains
the length of reserved record, as well as two extra bits: busy bit to denote
that record is still being worked on, and discard bit, which might be set at
commit time if record is discarded. In the latter case, consumer is supposed
to skip the record and move on to the next one. Record header also encodes
record's relative offset from the beginning of ring buffer data area (in
pages). This allows bpf_ringbuf_commit()/bpf_ringbuf_discard() to accept only
the pointer to the record itself, without requiring also the pointer to ring
buffer itself. Ring buffer memory location will be restored from record
metadata header. This significantly simplifies verifier, as well as improving
API usability.
Producer counter increments are serialized under spinlock, so there is
a strict ordering between reservations. Commits, on the other hand, are
completely lockless and independent. All records become available to consumer
in the order of reservations, but only after all previous records where
already committed. It is thus possible for slow producers to temporarily hold
off submitted records, that were reserved later.
Reservation/commit/consumer protocol is verified by litmus tests in
Documentation/litmus-test/bpf-rb.
One interesting implementation bit, that significantly simplifies (and thus
speeds up as well) implementation of both producers and consumers is how data
area is mapped twice contiguously back-to-back in the virtual memory. This
allows to not take any special measures for samples that have to wrap around
at the end of the circular buffer data area, because the next page after the
last data page would be first data page again, and thus the sample will still
appear completely contiguous in virtual memory. See comment and a simple ASCII
diagram showing this visually in bpf_ringbuf_area_alloc().
Another feature that distinguishes BPF ringbuf from perf ring buffer is
a self-pacing notifications of new data being availability.
bpf_ringbuf_commit() implementation will send a notification of new record
being available after commit only if consumer has already caught up right up
to the record being committed. If not, consumer still has to catch up and thus
will see new data anyways without needing an extra poll notification.
Benchmarks (see tools/testing/selftests/bpf/benchs/bench_ringbuf.c) show that
this allows to achieve a very high throughput without having to resort to
tricks like "notify only every Nth sample", which are necessary with perf
buffer. For extreme cases, when BPF program wants more manual control of
notifications, commit/discard/output helpers accept BPF_RB_NO_WAKEUP and
BPF_RB_FORCE_WAKEUP flags, which give full control over notifications of data
availability, but require extra caution and diligence in using this API.
Comparison to alternatives
--------------------------
Before considering implementing BPF ring buffer from scratch existing
alternatives in kernel were evaluated, but didn't seem to meet the needs. They
largely fell into few categores:
- per-CPU buffers (perf, ftrace, etc), which don't satisfy two motivations
outlined above (ordering and memory consumption);
- linked list-based implementations; while some were multi-producer designs,
consuming these from user-space would be very complicated and most
probably not performant; memory-mapping contiguous piece of memory is
simpler and more performant for user-space consumers;
- io_uring is SPSC, but also requires fixed-sized elements. Naively turning
SPSC queue into MPSC w/ lock would have subpar performance compared to
locked reserve + lockless commit, as with BPF ring buffer. Fixed sized
elements would be too limiting for BPF programs, given existing BPF
programs heavily rely on variable-sized perf buffer already;
- specialized implementations (like a new printk ring buffer, [0]) with lots
of printk-specific limitations and implications, that didn't seem to fit
well for intended use with BPF programs.
[0] https://lwn.net/Articles/779550/
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-2-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
For write-only stacks and queues bpf_map_update_elem should be allowed, but
bpf_map_lookup_elem and bpf_map_lookup_and_delete_elem should fail with EPERM.
Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200527185700.14658-6-a.s.protopopov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Make comments inside the test_map_rdonly and test_map_wronly tests
consistent with logic.
Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200527185700.14658-4-a.s.protopopov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The test_map_rdonly and test_map_wronly tests should close file descriptors
which they open.
Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200527185700.14658-3-a.s.protopopov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Trivial fix to a typo in the test_map_wronly test: "read" -> "write"
Signed-off-by: Anton Protopopov <a.s.protopopov@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200527185700.14658-2-a.s.protopopov@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
In case the cpu_bufs are sparsely allocated they are not all
free'ed. These changes will fix this.
Fixes: fb84b8224655 ("libbpf: add perf buffer API")
Signed-off-by: Eelco Chaudron <echaudro@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/159056888305.330763.9684536967379110349.stgit@ebuild
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Lets test using probe* in SCHED_CLS network programs as well just
to be sure these keep working. Its cheap to add the extra test
and provides a second context to test outside of sk_msg after
we generalized probe* helpers to all networking types.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/159033911685.12355.15951980509828906214.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
The test itself is not particularly useful but it encodes a common
pattern we have.
Namely do a sk storage lookup then depending on data here decide if
we need to do more work or alternatively allow packet to PASS. Then
if we need to do more work consult task_struct for more information
about the running task. Finally based on this additional information
drop or pass the data. In this case the suspicious check is not so
realisitic but it encodes the general pattern and uses the helpers
so we test the workflow.
This is a load test to ensure verifier correctly handles this case.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/159033909665.12355.6166415847337547879.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Add helpers to use local socket storage.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/159033907577.12355.14740125020572756560.stgit@john-Precision-5820-Tower
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Since dynamic symbols are used for dynamic linking it makes sense to
use them (readelf --dyn-syms) for abi check.
Found with some configuration on powerpc where linker puts
local *.plt_call.* symbols into .so.
Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200525061846.16524-1-yauheni.kaliuta@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Current 'make install' results in only pkg-config and library binaries
being installed. For consistency also install headers as part of
"make install"
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200526174612.5447-1-nborisov@suse.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This new API, perf_buffer__consume, can be used as follows:
- When you have a perf ring where wakeup_events is higher than 1,
and you have remaining data in the rings you would like to pull
out on exit (or maybe based on a timeout).
- For low latency cases where you burn a CPU that constantly polls
the queues.
Signed-off-by: Eelco Chaudron <echaudro@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/159048487929.89441.7465713173442594608.stgit@ebuild
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
btf__parse_raw and btf__parse_elf return negative error numbers wrapped
in an ERR_PTR, so the extracted value needs to be negated before passing
them to strerror which expects a positive error number.
Before:
Error: failed to load BTF from .../vmlinux: Unknown error -2
After:
Error: failed to load BTF from .../vmlinux: No such file or directory
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200525135421.4154-1-tklauser@distanz.ch
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Following the introduction of CAP_BPF, and the switch from CAP_SYS_ADMIN
to other capabilities for various BPF features, update the capability
checks (and potentially, drops) in bpftool for feature probes. Because
bpftool and/or the system might not know of CAP_BPF yet, some caution is
necessary:
- If compiled and run on a system with CAP_BPF, check CAP_BPF,
CAP_SYS_ADMIN, CAP_PERFMON, CAP_NET_ADMIN.
- Guard against CAP_BPF being undefined, to allow compiling bpftool from
latest sources on older systems. If the system where feature probes
are run does not know of CAP_BPF, stop checking after CAP_SYS_ADMIN,
as this should be the only capability required for all the BPF
probing.
- If compiled from latest sources on a system without CAP_BPF, but later
executed on a newer system with CAP_BPF knowledge, then we only test
CAP_SYS_ADMIN. Some probes may fail if the bpftool process has
CAP_SYS_ADMIN but misses the other capabilities. The alternative would
be to redefine the value for CAP_BPF in bpftool, but this does not
look clean, and the case sounds relatively rare anyway.
Note that libcap offers a cap_to_name() function to retrieve the name of
a given capability (e.g. "cap_sys_admin"). We do not use it because
deriving the names from the macros looks simpler than using
cap_to_name() (doing a strdup() on the string) + cap_free() + handling
the case of failed allocations, when we just want to use the name of the
capability in an error message.
The checks when compiling without libcap (i.e. root versus non-root) are
unchanged.
v2:
- Do not allocate cap_list dynamically.
- Drop BPF-related capabilities when running with "unprivileged", even
if we didn't have the full set in the first place (in v1, we would
skip dropping them in that case).
- Keep track of what capabilities we have, print the names of the
missing ones for privileged probing.
- Attempt to drop only the capabilities we actually have.
- Rename a couple variables.
Signed-off-by: Quentin Monnet <quentin@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200523010247.20654-1-quentin@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This is a clean-up for the formatting of the do_help functions for
bpftool's subcommands. The following fixes are included:
- Do not use argv[-2] for "iter" help message, as the help is shown by
default if no "iter" action is selected, resulting in messages looking
like "./bpftool bpftool pin...".
- Do not print unused HELP_SPEC_PROGRAM in help message for "bpftool
link".
- Andrii used argument indexing to avoid having multiple occurrences of
bin_name and argv[-2] in the fprintf() for the help message, for
"bpftool gen" and "bpftool link". Let's reuse this for all other help
functions. We can remove up to thirty arguments for the "bpftool map"
help message.
- Harmonise all functions, e.g. use ending quotes-comma on a separate
line.
Signed-off-by: Quentin Monnet <quentin@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200523010751.23465-1-quentin@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP updates from Ingo Molnar:
"Misc cleanups in the SMP hotplug and cross-call code"
* tag 'smp-core-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
cpu/hotplug: Remove __freeze_secondary_cpus()
cpu/hotplug: Remove disable_nonboot_cpus()
cpu/hotplug: Fix a typo in comment "broadacasted"->"broadcasted"
smp: Use smp_call_func_t in on_each_cpu()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar:
"Kernel side changes:
- Add AMD Fam17h RAPL support
- Introduce CAP_PERFMON to kernel and user space
- Add Zhaoxin CPU support
- Misc fixes and cleanups
Tooling changes:
- perf record:
Introduce '--switch-output-event' to use arbitrary events to be
setup and read from a side band thread and, when they take place a
signal be sent to the main 'perf record' thread, reusing the core
for '--switch-output' to take perf.data snapshots from the ring
buffer used for '--overwrite', e.g.:
# perf record --overwrite -e sched:* \
--switch-output-event syscalls:*connect* \
workload
will take perf.data.YYYYMMDDHHMMSS snapshots up to around the
connect syscalls.
Add '--num-synthesize-threads' option to control degree of
parallelism of the synthesize_mmap() code which is scanning
/proc/PID/task/PID/maps and can be time consuming. This mimics
pre-existing behaviour in 'perf top'.
- perf bench:
Add a multi-threaded synthesize benchmark and kallsyms parsing
benchmark.
- Intel PT support:
Stitch LBR records from multiple samples to get deeper backtraces,
there are caveats, see the csets for details.
Allow using Intel PT to synthesize callchains for regular events.
Add support for synthesizing branch stacks for regular events
(cycles, instructions, etc) from Intel PT data.
Misc changes:
- Updated perf vendor events for power9 and Coresight.
- Add flamegraph.py script via 'perf flamegraph'
- Misc other changes, fixes and cleanups - see the Git log for details
Also, since over the last couple of years perf tooling has matured and
decoupled from the kernel perf changes to a large degree, going
forward Arnaldo is going to send perf tooling changes via direct pull
requests"
* tag 'perf-core-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (163 commits)
perf/x86/rapl: Add AMD Fam17h RAPL support
perf/x86/rapl: Make perf_probe_msr() more robust and flexible
perf/x86/rapl: Flip logic on default events visibility
perf/x86/rapl: Refactor to share the RAPL code between Intel and AMD CPUs
perf/x86/rapl: Move RAPL support to common x86 code
perf/core: Replace zero-length array with flexible-array
perf/x86: Replace zero-length array with flexible-array
perf/x86/intel: Add more available bits for OFFCORE_RESPONSE of Intel Tremont
perf/x86/rapl: Add Ice Lake RAPL support
perf flamegraph: Use /bin/bash for report and record scripts
perf cs-etm: Move definition of 'traceid_list' global variable from header file
libsymbols kallsyms: Move hex2u64 out of header
libsymbols kallsyms: Parse using io api
perf bench: Add kallsyms parsing
perf: cs-etm: Update to build with latest opencsd version.
perf symbol: Fix kernel symbol address display
perf inject: Rename perf_evsel__*() operating on 'struct evsel *' to evsel__*()
perf annotate: Rename perf_evsel__*() operating on 'struct evsel *' to evsel__*()
perf trace: Rename perf_evsel__*() operating on 'struct evsel *' to evsel__*()
perf script: Rename perf_evsel__*() operating on 'struct evsel *' to evsel__*()
...
|
|
kunitconfig
The identation before this code
(`if not os.path.exists(cli_args.build_dir):``)
was with spaces instead of tabs after fixed up merge conflits,
this commit revert spaces to tabs:
[iha@bbking linux]$ tools/testing/kunit/kunit.py run
File "tools/testing/kunit/kunit.py", line 247
if not linux:
^
TabError: inconsistent use of tabs and spaces in indentation
[iha@bbking linux]$ tools/testing/kunit/kunit.py run
Traceback (most recent call last):
File "tools/testing/kunit/kunit.py", line 338, in <module>
main(sys.argv[1:])
File "tools/testing/kunit/kunit.py", line 215, in main
add_config_opts(config_parser)
[iha@bbking linux]$ tools/testing/kunit/kunit.py run
Traceback (most recent call last):
File "tools/testing/kunit/kunit.py", line 337, in <module>
main(sys.argv[1:])
File "tools/testing/kunit/kunit.py", line 255, in main
result = run_tests(linux, request)
File "tools/testing/kunit/kunit.py", line 133, in run_tests
request.defconfig,
AttributeError: 'KunitRequest' object has no attribute 'defconfig'
Handles when there is no .kunitconfig, the error due to merge conflicts
between the following:
commit 9bdf64b35117 ("kunit: use KUnit defconfig by default")
commit 45ba7a893ad8 ("kunit: kunit_tool: Separate out
config/build/exec/parse")
[iha@bbking linux]$ tools/testing/kunit/kunit.py run
Traceback (most recent call last):
File "tools/testing/kunit/kunit.py", line 335, in <module>
main(sys.argv[1:])
File "tools/testing/kunit/kunit.py", line 246, in main
linux = kunit_kernel.LinuxSourceTree()
File "../tools/testing/kunit/kunit_kernel.py", line 109, in __init__
self._kconfig.read_from_file(kunitconfig_path)
File "t../ools/testing/kunit/kunit_config.py", line 88, in read_from_file
with open(path, 'r') as f:
FileNotFoundError: [Errno 2] No such file or directory: '.kunit/.kunitconfig'
Signed-off-by: Vitor Massaru Iha <vitor@massaru.org>
Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Ingo Molnar:
"There are a lot of objtool changes in this cycle, all across the map:
- Speed up objtool significantly, especially when there are large
number of sections
- Improve objtool's understanding of special instructions such as
IRET, to reduce the number of annotations required
- Implement 'noinstr' validation
- Do baby steps for non-x86 objtool use
- Simplify/fix retpoline decoding
- Add vmlinux validation
- Improve documentation
- Fix various bugs and apply smaller cleanups"
* tag 'objtool-core-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
objtool: Enable compilation of objtool for all architectures
objtool: Move struct objtool_file into arch-independent header
objtool: Exit successfully when requesting help
objtool: Add check_kcov_mode() to the uaccess safelist
samples/ftrace: Fix asm function ELF annotations
objtool: optimize add_dead_ends for split sections
objtool: use gelf_getsymshndx to handle >64k sections
objtool: Allow no-op CFI ops in alternatives
x86/retpoline: Fix retpoline unwind
x86: Change {JMP,CALL}_NOSPEC argument
x86: Simplify retpoline declaration
x86/speculation: Change FILL_RETURN_BUFFER to work with objtool
objtool: Add support for intra-function calls
objtool: Move the IRET hack into the arch decoder
objtool: Remove INSN_STACK
objtool: Make handle_insn_ops() unconditional
objtool: Rework allocating stack_ops on decode
objtool: UNWIND_HINT_RET_OFFSET should not check registers
objtool: is_fentry_call() crashes if call has no destination
x86,smap: Fix smap_{save,restore}() alternatives
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar:
"The RCU updates for this cycle were:
- RCU-tasks update, including addition of RCU Tasks Trace for BPF use
and TASKS_RUDE_RCU
- kfree_rcu() updates.
- Remove scheduler locking restriction
- RCU CPU stall warning updates.
- Torture-test updates.
- Miscellaneous fixes and other updates"
* tag 'core-rcu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (103 commits)
rcu: Allow for smp_call_function() running callbacks from idle
rcu: Provide rcu_irq_exit_check_preempt()
rcu: Abstract out rcu_irq_enter_check_tick() from rcu_nmi_enter()
rcu: Provide __rcu_is_watching()
rcu: Provide rcu_irq_exit_preempt()
rcu: Make RCU IRQ enter/exit functions rely on in_nmi()
rcu/tree: Mark the idle relevant functions noinstr
x86: Replace ist_enter() with nmi_enter()
x86/mce: Send #MC singal from task work
x86/entry: Get rid of ist_begin/end_non_atomic()
sched,rcu,tracing: Avoid tracing before in_nmi() is correct
sh/ftrace: Move arch_ftrace_nmi_{enter,exit} into nmi exception
lockdep: Always inline lockdep_{off,on}()
hardirq/nmi: Allow nested nmi_enter()
arm64: Prepare arch_nmi_enter() for recursion
printk: Disallow instrumenting print_nmi_enter()
printk: Prepare for nested printk_nmi_enter()
rcutorture: Convert ULONG_CMP_LT() to time_before()
torture: Add a --kasan argument
torture: Save a few lines by using config_override_param initially
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull pstore updates from Kees Cook:
"Fixes and new features for pstore.
This is a pretty big set of changes (relative to past pstore pulls),
but it has been in -next for a while. The biggest change here is the
ability to support a block device as a pstore backend, which has been
desired for a while. A lot of additional fixes and refactorings are
also included, mostly in support of the new features.
- refactor pstore locking for safer module unloading (Kees Cook)
- remove orphaned records from pstorefs when backend unloaded (Kees
Cook)
- refactor dump_oops parameter into max_reason (Pavel Tatashin)
- introduce pstore/zone for common code for contiguous storage
(WeiXiong Liao)
- introduce pstore/blk for block device backend (WeiXiong Liao)
- introduce mtd backend (WeiXiong Liao)"
* tag 'pstore-v5.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (35 commits)
mtd: Support kmsg dumper based on pstore/blk
pstore/blk: Introduce "best_effort" mode
pstore/blk: Support non-block storage devices
pstore/blk: Provide way to query pstore configuration
pstore/zone: Provide way to skip "broken" zone for MTD devices
Documentation: Add details for pstore/blk
pstore/zone,blk: Add ftrace frontend support
pstore/zone,blk: Add console frontend support
pstore/zone,blk: Add support for pmsg frontend
pstore/blk: Introduce backend for block devices
pstore/zone: Introduce common layer to manage storage zones
ramoops: Add "max-reason" optional field to ramoops DT node
pstore/ram: Introduce max_reason and convert dump_oops
pstore/platform: Pass max_reason to kmesg dump
printk: Introduce kmsg_dump_reason_str()
printk: honor the max_reason field in kmsg_dumper
printk: Collapse shutdown types into a single dump reason
pstore/ftrace: Provide ftrace log merging routine
pstore/ram: Refactor ftrace buffer merging
pstore/ram: Refactor DT size parsing
...
|
|
Generate packets matching the various control traps and check that the
traps' stats increase accordingly.
Signed-off-by: Ido Schimmel <idosch@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
sh5 never became a product and has probably never really worked.
Remove it by recursively deleting all associated Kconfig options
and all corresponding files.
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Rich Felker <dalias@libc.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
Pull spi updates from Mark Brown:
"This has been a very active release for the DesignWare driver in
particular - after a long period of inactivity we have had a lot of
people actively working on it for unrelated reasons this cycle with
some of that work still not landed.
Otherwise it's been fairly quiet for the subsystem.
Highlights include:
- Lots of performance improvements and fixes for the DesignWare
driver from Serge Semin, Andy Shevchenko, Wan Ahmad Zainie, Clement
Leger, Dinh Nguyen and Jarkko Nikula.
- Support for octal mode transfers in spidev.
- Slave mode support for the Rockchip drivers.
- Support for AMD controllers, Broadcom mspi and Raspberry Pi 4, and
Intel Elkhart Lake"
* tag 'spi-v5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi: (125 commits)
spi: spi-fsl-dspi: fix native data copy
spi: Convert DW SPI binding to DT schema
spi: dw: Refactor mid_spi_dma_setup() to separate DMA and IRQ config
spi: dw: Make DMA request line assignments explicit for Intel Medfield
spi: bcm2835: Remove shared interrupt support
dt-bindings: snps,dw-apb-ssi: add optional reset property
spi: dw: add reset control
spi: bcm2835: Enable shared interrupt support
spi: bcm2835: Implement shutdown callback
spi: dw: Use regset32 DebugFS method to create regdump file
spi: dw: Add DMA support to the DW SPI MMIO driver
spi: dw: Cleanup generic DW DMA code namings
spi: dw: Add DW SPI DMA/PCI/MMIO dependency on the DW SPI core
spi: dw: Remove DW DMA code dependency from DW_DMAC_PCI
spi: dw: Move Non-DMA code to the DW PCIe-SPI driver
spi: dw: Add core suffix to the DW APB SSI core source file
spi: dw: Fix Rx-only DMA transfers
spi: dw: Use DMA max burst to set the request thresholds
spi: dw: Parameterize the DMA Rx/Tx burst length
spi: dw: Add SPI Rx-done wait method to DMA-based transfer
...
|
|
vmx_tsc_adjust_test fails with:
IA32_TSC_ADJUST is -4294969448 (-1 * TSC_ADJUST_VALUE + -2152).
IA32_TSC_ADJUST is -4294969448 (-1 * TSC_ADJUST_VALUE + -2152).
IA32_TSC_ADJUST is 281470681738540 (65534 * TSC_ADJUST_VALUE + 4294962476).
==== Test Assertion Failure ====
x86_64/vmx_tsc_adjust_test.c:153: false
pid=19738 tid=19738 - Interrupted system call
1 0x0000000000401192: main at vmx_tsc_adjust_test.c:153
2 0x00007fe1ef8583d4: ?? ??:0
3 0x0000000000401201: _start at ??:?
Failed guest assert: (adjust <= max)
The problem is that is 'tsc_val' should be u64, not u32 or the reading
gets truncated.
Fixes: 8d7fbf01f9afc ("KVM: selftests: VMX preemption timer migration test")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200601154726.261868-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
This is currently working due to extra include paths in the build.
Before:
$ cd tools/perf/arch/arm64/util
$ ls -la ../../util/unwind-libdw.h
ls: cannot access '../../util/unwind-libdw.h': No such file or directory
After:
$ ls -la ../../../util/unwind-libdw.h
-rw-r----- 1 irogers irogers 553 Apr 17 14:31 ../../../util/unwind-libdw.h
Signed-off-by: Ian Rogers <irogers@google.com>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lore.kernel.org/lkml/20200529225232.207532-1-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
After the commit ffd3d18c20b8 ("perf tools: Add ARM Statistical
Profiling Extensions (SPE) support") has been merged, it supports to
output raw data with option "--dump-raw-trace". However, it misses for
support synthetic events so cannot output any statistical info.
This patch is to improve the "perf report" support for ARM SPE for four
types synthetic events:
First level cache synthetic events, including L1 data cache accessing
and missing events;
Last level cache synthetic events, including last level cache
accessing and missing events;
TLB synthetic events, including TLB accessing and missing events;
Remote access events, which is used to account load/store operations
caused to another socket.
Example usage:
$ perf record -c 1024 -e arm_spe_0/branch_filter=1,ts_enable=1,pct_enable=1,pa_enable=1,load_filter=1,jitter=1,store_filter=1,min_latency=0/ dd if=/dev/zero of=/dev/null count=10000
$ perf report --stdio
# Samples: 59 of event 'l1d-miss'
# Event count (approx.): 59
#
# Children Self Command Shared Object Symbol
# ........ ........ ....... ................. ..................................
#
23.73% 23.73% dd [kernel.kallsyms] [k] perf_iterate_ctx.constprop.135
20.34% 20.34% dd [kernel.kallsyms] [k] filemap_map_pages
5.08% 5.08% dd [kernel.kallsyms] [k] perf_event_mmap
5.08% 5.08% dd [kernel.kallsyms] [k] unlock_page_memcg
5.08% 5.08% dd [kernel.kallsyms] [k] unmap_page_range
3.39% 3.39% dd [kernel.kallsyms] [k] PageHuge
3.39% 3.39% dd [kernel.kallsyms] [k] release_pages
3.39% 3.39% dd ld-2.28.so [.] 0x0000000000008b5c
1.69% 1.69% dd [kernel.kallsyms] [k] __alloc_fd
[...]
# Samples: 3K of event 'l1d-access'
# Event count (approx.): 3980
#
# Children Self Command Shared Object Symbol
# ........ ........ ....... ................. ......................................
#
26.98% 26.98% dd [kernel.kallsyms] [k] ret_to_user
10.53% 10.53% dd [kernel.kallsyms] [k] fsnotify
7.51% 7.51% dd [kernel.kallsyms] [k] new_sync_read
4.57% 4.57% dd [kernel.kallsyms] [k] vfs_read
4.35% 4.35% dd [kernel.kallsyms] [k] vfs_write
3.69% 3.69% dd [kernel.kallsyms] [k] __fget_light
3.69% 3.69% dd [kernel.kallsyms] [k] rw_verify_area
3.44% 3.44% dd [kernel.kallsyms] [k] security_file_permission
2.76% 2.76% dd [kernel.kallsyms] [k] __fsnotify_parent
2.44% 2.44% dd [kernel.kallsyms] [k] ksys_write
2.24% 2.24% dd [kernel.kallsyms] [k] iov_iter_zero
2.19% 2.19% dd [kernel.kallsyms] [k] read_iter_zero
1.81% 1.81% dd dd [.] 0x0000000000002960
1.78% 1.78% dd dd [.] 0x0000000000002980
[...]
# Samples: 35 of event 'llc-miss'
# Event count (approx.): 35
#
# Children Self Command Shared Object Symbol
# ........ ........ ....... ................. ...........................
#
34.29% 34.29% dd [kernel.kallsyms] [k] filemap_map_pages
8.57% 8.57% dd [kernel.kallsyms] [k] unlock_page_memcg
8.57% 8.57% dd [kernel.kallsyms] [k] unmap_page_range
5.71% 5.71% dd [kernel.kallsyms] [k] PageHuge
5.71% 5.71% dd [kernel.kallsyms] [k] release_pages
5.71% 5.71% dd ld-2.28.so [.] 0x0000000000008b5c
2.86% 2.86% dd [kernel.kallsyms] [k] __queue_work
2.86% 2.86% dd [kernel.kallsyms] [k] __radix_tree_lookup
2.86% 2.86% dd [kernel.kallsyms] [k] copy_page
[...]
# Samples: 2 of event 'llc-access'
# Event count (approx.): 2
#
# Children Self Command Shared Object Symbol
# ........ ........ ....... ................. .............
#
50.00% 50.00% dd [kernel.kallsyms] [k] copy_page
50.00% 50.00% dd libc-2.28.so [.] _dl_addr
# Samples: 48 of event 'tlb-miss'
# Event count (approx.): 48
#
# Children Self Command Shared Object Symbol
# ........ ........ ....... ................. ..................................
#
20.83% 20.83% dd [kernel.kallsyms] [k] perf_iterate_ctx.constprop.135
12.50% 12.50% dd [kernel.kallsyms] [k] __arch_clear_user
10.42% 10.42% dd [kernel.kallsyms] [k] clear_page
4.17% 4.17% dd [kernel.kallsyms] [k] copy_page
4.17% 4.17% dd [kernel.kallsyms] [k] filemap_map_pages
2.08% 2.08% dd [kernel.kallsyms] [k] __alloc_fd
2.08% 2.08% dd [kernel.kallsyms] [k] __mod_memcg_state.part.70
2.08% 2.08% dd [kernel.kallsyms] [k] __queue_work
2.08% 2.08% dd [kernel.kallsyms] [k] __rcu_read_unlock
2.08% 2.08% dd [kernel.kallsyms] [k] d_path
2.08% 2.08% dd [kernel.kallsyms] [k] destroy_inode
2.08% 2.08% dd [kernel.kallsyms] [k] do_dentry_open
[...]
# Samples: 9K of event 'tlb-access'
# Event count (approx.): 9573
#
# Children Self Command Shared Object Symbol
# ........ ........ ....... ................. ......................................
#
25.79% 25.79% dd [kernel.kallsyms] [k] __arch_clear_user
11.22% 11.22% dd [kernel.kallsyms] [k] ret_to_user
8.56% 8.56% dd [kernel.kallsyms] [k] fsnotify
4.06% 4.06% dd [kernel.kallsyms] [k] new_sync_read
3.67% 3.67% dd [kernel.kallsyms] [k] el0_svc_common.constprop.2
3.04% 3.04% dd [kernel.kallsyms] [k] __fsnotify_parent
2.90% 2.90% dd [kernel.kallsyms] [k] vfs_write
2.82% 2.82% dd [kernel.kallsyms] [k] vfs_read
2.52% 2.52% dd libc-2.28.so [.] write
2.26% 2.26% dd [kernel.kallsyms] [k] security_file_permission
2.08% 2.08% dd [kernel.kallsyms] [k] ksys_write
1.96% 1.96% dd [kernel.kallsyms] [k] rw_verify_area
1.95% 1.95% dd [kernel.kallsyms] [k] read_iter_zero
[...]
# Samples: 9 of event 'branch-miss'
# Event count (approx.): 9
#
# Children Self Command Shared Object Symbol
# ........ ........ ....... ................. .........................
#
22.22% 22.22% dd libc-2.28.so [.] _dl_addr
11.11% 11.11% dd [kernel.kallsyms] [k] __arch_clear_user
11.11% 11.11% dd [kernel.kallsyms] [k] __arch_copy_from_user
11.11% 11.11% dd [kernel.kallsyms] [k] __dentry_kill
11.11% 11.11% dd [kernel.kallsyms] [k] __efistub_memcpy
11.11% 11.11% dd ld-2.28.so [.] 0x0000000000012b7c
11.11% 11.11% dd libc-2.28.so [.] 0x000000000002a980
11.11% 11.11% dd libc-2.28.so [.] 0x0000000000083340
# Samples: 29 of event 'remote-access'
# Event count (approx.): 29
#
# Children Self Command Shared Object Symbol
# ........ ........ ....... ................. ...........................
#
41.38% 41.38% dd [kernel.kallsyms] [k] filemap_map_pages
10.34% 10.34% dd [kernel.kallsyms] [k] unlock_page_memcg
10.34% 10.34% dd [kernel.kallsyms] [k] unmap_page_range
6.90% 6.90% dd [kernel.kallsyms] [k] release_pages
3.45% 3.45% dd [kernel.kallsyms] [k] PageHuge
3.45% 3.45% dd [kernel.kallsyms] [k] __queue_work
3.45% 3.45% dd [kernel.kallsyms] [k] page_add_file_rmap
3.45% 3.45% dd [kernel.kallsyms] [k] page_counter_try_charge
3.45% 3.45% dd [kernel.kallsyms] [k] page_remove_rmap
3.45% 3.45% dd [kernel.kallsyms] [k] xas_start
3.45% 3.45% dd ld-2.28.so [.] 0x0000000000002a1c
3.45% 3.45% dd ld-2.28.so [.] 0x0000000000008b5c
3.45% 3.45% dd ld-2.28.so [.] 0x00000000000093cc
Signed-off-by: Tan Xiaojun <tanxiaojun@huawei.com>
Tested-by: James Clark <james.clark@arm.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Grant <al.grant@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jin Yao <yao.jin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lore.kernel.org/lkml/20200530122442.490-4-leo.yan@linaro.org
Signed-off-by: James Clark <james.clark@arm.com>
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
This patch is to add four options to synthesize events which are
described as below:
'f': synthesize first level cache events
'm': synthesize last level cache events
't': synthesize TLB events
'a': synthesize remote access events
This four options will be used by ARM SPE as their first consumer.
Signed-off-by: Tan Xiaojun <tanxiaojun@huawei.com>
Tested-by: James Clark <james.clark@arm.com>
Acked-by: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Grant <al.grant@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jin Yao <yao.jin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lore.kernel.org/lkml/20200530122442.490-3-leo.yan@linaro.org
Signed-off-by: James Clark <james.clark@arm.com>
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
Create a new arm-spe-decoder directory for subsequent extensions and
move arm-spe-pkt-decoder.h/c to this directory. No code changes.
Signed-off-by: Tan Xiaojun <tanxiaojun@huawei.com>
Tested-by: James Clark <james.clark@arm.com>
Tested-by: Qi Liu <liuqi115@hisilicon.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Grant <al.grant@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jin Yao <yao.jin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Poirier <mathieu.poirier@linaro.org>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Link: http://lore.kernel.org/lkml/20200530122442.490-2-leo.yan@linaro.org
Signed-off-by: James Clark <james.clark@arm.com>
Signed-off-by: Leo Yan <leo.yan@linaro.org>
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
Avoid a false positive caused by assembly code in arch/x86.
In tests, zero the perf_event to avoid uninitialized memory uses.
Warnings were caught using clang with -fsanitize=memory.
Signed-off-by: Ian Rogers <irogers@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Monnet <quentin@isovalent.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: clang-built-linux@googlegroups.com
Link: http://lore.kernel.org/lkml/20200530082015.39162-4-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
The tail call optimization can unexpectedly make the stack smaller and
cause the test to fail.
Signed-off-by: Ian Rogers <irogers@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: clang-built-linux@googlegroups.com
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Monnet <quentin@isovalent.com>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lore.kernel.org/lkml/20200530082015.39162-3-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
Tail call optimizations can remove stack frames that are used in
unwinding tests. Add an attribute that can be used to disable the tail
call optimization. Tested on clang and GCC.
Committer notes:
Old versions of clang don't like that __attribute__((optimize)), so add
an ifdef to make it go away.
Signed-off-by: Ian Rogers <irogers@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: clang-built-linux@googlegroups.com
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Quentin Monnet <quentin@isovalent.com>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lore.kernel.org/lkml/20200530082015.39162-2-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
|
|
With synthetic events now a separate config item as a result of
'tracing: Move synthetic events to a separate file', tests that use
both need to explicitly check for hist trigger support rather than
relying on hist triggers to pull in synthetic events.
Add an additional hist trigger check to all the trigger tests that now
require it, otherwise they'll fail if synthetic events but not hist
triggers are enabled.
Link: http://lkml.kernel.org/r/af36c539006ef2768114b4ed38e6b054f7c7a3bd.1590693308.git.zanussi@kernel.org
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Tom Zanussi <zanussi@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
Update tests to reflect new CPUID capabilities with SYNDBG.
Check that we get the right number of entries and that
0x40000000.EAX always returns the correct max leaf.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Jon Doron <arilou@gmail.com>
Message-Id: <20200529134543.1127440-7-arilou@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When a nested VM with a VMX-preemption timer is migrated, verify that the
nested VM and its parent VM observe the VMX-preemption timer exit close to
the original expiration deadline.
Signed-off-by: Makarand Sonare <makarandsonare@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20200526215107.205814-3-makarandsonare@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM_CAP_NESTED_STATE is now supported for AMD too but smm test acts like
it is still Intel only.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200529130407.57176-2-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The test is similar to the existing one for VMX, but simpler because we
don't have to test shadow VMCS or vmptrld/vmptrst/vmclear.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Many tests will want to check if the CPU is Intel or AMD in
guest code, add cpu_has_svm() and put it as static
inline to svm_util.h.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20200529130407.57176-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
xdp_umem.c had overlapping changes between the 64-bit math fix
for the calculation of npgs and the removal of the zerocopy
memory type which got rid of the chunk_size_nohdr member.
The mlx5 Kconfig conflict is a case where we just take the
net-next copy of the Kconfig entry dependency as it takes on
the ESWITCH dependency by one level of indirection which is
what the 'net' conflicting change is trying to ensure.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"A pile of x86 fixes:
- Prevent a memory leak in ioperm which was caused by the stupid
assumption that the exit cleanup is always called for current,
which is not the case when fork fails after taking a reference on
the ioperm bitmap.
- Fix an arithmething overflow in the DMA code on 32bit systems
- Fill gaps in the xstate copy with defaults instead of leaving them
uninitialized
- Revert: "Make __X32_SYSCALL_BIT be unsigned long" as it turned out
that existing user space fails to build"
* tag 'x86-urgent-2020-05-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ioperm: Prevent a memory leak when fork fails
x86/dma: Fix max PFN arithmetic overflow on 32 bit systems
copy_xstate_to_kernel(): don't leave parts of destination uninitialized
x86/syscalls: Revert "x86/syscalls: Make __X32_SYSCALL_BIT be unsigned long"
|