// SPDX-License-Identifier: GPL-2.0 /* * Timer present on EcoNet EN75xx MIPS based SoCs. * * Copyright (C) 2025 by Caleb James DeLisle */ #include #include #include #include #include #include #include #include #include #include #define ECONET_BITS 32 #define ECONET_MIN_DELTA 0x00001000 #define ECONET_MAX_DELTA GENMASK(ECONET_BITS - 2, 0) /* 34Kc hardware has 1 block and 1004Kc has 2. */ #define ECONET_NUM_BLOCKS DIV_ROUND_UP(NR_CPUS, 2) static struct { void __iomem *membase[ECONET_NUM_BLOCKS]; u32 freq_hz; } econet_timer __ro_after_init; static DEFINE_PER_CPU(struct clock_event_device, econet_timer_pcpu); /* Each memory block has 2 timers, the order of registers is: * CTL, CMR0, CNT0, CMR1, CNT1 */ static inline void __iomem *reg_ctl(u32 timer_n) { return econet_timer.membase[timer_n >> 1]; } static inline void __iomem *reg_compare(u32 timer_n) { return econet_timer.membase[timer_n >> 1] + (timer_n & 1) * 0x08 + 0x04; } static inline void __iomem *reg_count(u32 timer_n) { return econet_timer.membase[timer_n >> 1] + (timer_n & 1) * 0x08 + 0x08; } static inline u32 ctl_bit_enabled(u32 timer_n) { return 1U << (timer_n & 1); } static inline u32 ctl_bit_pending(u32 timer_n) { return 1U << ((timer_n & 1) + 16); } static bool cevt_is_pending(int cpu_id) { return ioread32(reg_ctl(cpu_id)) & ctl_bit_pending(cpu_id); } static irqreturn_t cevt_interrupt(int irq, void *dev_id) { struct clock_event_device *dev = this_cpu_ptr(&econet_timer_pcpu); int cpu = cpumask_first(dev->cpumask); /* Each VPE has its own events, * so this will only happen on spurious interrupt. */ if (!cevt_is_pending(cpu)) return IRQ_NONE; iowrite32(ioread32(reg_count(cpu)), reg_compare(cpu)); dev->event_handler(dev); return IRQ_HANDLED; } static int cevt_set_next_event(ulong delta, struct clock_event_device *dev) { u32 next; int cpu; cpu = cpumask_first(dev->cpumask); next = ioread32(reg_count(cpu)) + delta; iowrite32(next, reg_compare(cpu)); if ((s32)(next - ioread32(reg_count(cpu))) < ECONET_MIN_DELTA / 2) return -ETIME; return 0; } static int cevt_init_cpu(uint cpu) { struct clock_event_device *cd = &per_cpu(econet_timer_pcpu, cpu); u32 reg; pr_debug("%s: Setting up clockevent for CPU %d\n", cd->name, cpu); reg = ioread32(reg_ctl(cpu)) | ctl_bit_enabled(cpu); iowrite32(reg, reg_ctl(cpu)); enable_percpu_irq(cd->irq, IRQ_TYPE_NONE); /* Do this last because it synchronously configures the timer */ clockevents_config_and_register(cd, econet_timer.freq_hz, ECONET_MIN_DELTA, ECONET_MAX_DELTA); return 0; } static u64 notrace sched_clock_read(void) { /* Always read from clock zero no matter the CPU */ return (u64)ioread32(reg_count(0)); } /* Init */ static void __init cevt_dev_init(uint cpu) { iowrite32(0, reg_count(cpu)); iowrite32(U32_MAX, reg_compare(cpu)); } static int __init cevt_init(struct device_node *np) { int i, irq, ret; irq = irq_of_parse_and_map(np, 0); if (irq <= 0) { pr_err("%pOFn: irq_of_parse_and_map failed", np); return -EINVAL; } ret = request_percpu_irq(irq, cevt_interrupt, np->name, &econet_timer_pcpu); if (ret < 0) { pr_err("%pOFn: IRQ %d setup failed (%d)\n", np, irq, ret); goto err_unmap_irq; } for_each_possible_cpu(i) { struct clock_event_device *cd = &per_cpu(econet_timer_pcpu, i); cd->rating = 310, cd->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP | CLOCK_EVT_FEAT_PERCPU; cd->set_next_event = cevt_set_next_event; cd->irq = irq; cd->cpumask = cpumask_of(i); cd->name = np->name; cevt_dev_init(i); } cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "clockevents/econet/timer:starting", cevt_init_cpu, NULL); return 0; err_unmap_irq: irq_dispose_mapping(irq); return ret; } static int __init timer_init(struct device_node *np) { int num_blocks = DIV_ROUND_UP(num_possible_cpus(), 2); struct clk *clk; int ret; clk = of_clk_get(np, 0); if (IS_ERR(clk)) { pr_err("%pOFn: Failed to get CPU clock from DT %ld\n", np, PTR_ERR(clk)); return PTR_ERR(clk); } econet_timer.freq_hz = clk_get_rate(clk); for (int i = 0; i < num_blocks; i++) { econet_timer.membase[i] = of_iomap(np, i); if (!econet_timer.membase[i]) { pr_err("%pOFn: failed to map register [%d]\n", np, i); return -ENXIO; } } /* For clocksource purposes always read clock zero, whatever the CPU */ ret = clocksource_mmio_init(reg_count(0), np->name, econet_timer.freq_hz, 301, ECONET_BITS, clocksource_mmio_readl_up); if (ret) { pr_err("%pOFn: clocksource_mmio_init failed: %d", np, ret); return ret; } ret = cevt_init(np); if (ret < 0) return ret; sched_clock_register(sched_clock_read, ECONET_BITS, econet_timer.freq_hz); pr_info("%pOFn: using %u.%03u MHz high precision timer\n", np, econet_timer.freq_hz / 1000000, (econet_timer.freq_hz / 1000) % 1000); return 0; } TIMER_OF_DECLARE(econet_timer_hpt, "econet,en751221-timer", timer_init);