// SPDX-License-Identifier: GPL-2.0 /* * A V4L2 driver for ST VD56G3 (Mono) and VD66GY (RGB) global shutter cameras. * Copyright (C) 2024, STMicroelectronics SA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Register Map */ #define VD56G3_REG_MODEL_ID CCI_REG16_LE(0x0000) #define VD56G3_MODEL_ID 0x5603 #define VD56G3_REG_REVISION CCI_REG16_LE(0x0002) #define VD56G3_REVISION_CUT3 0x31 #define VD56G3_REG_OPTICAL_REVISION CCI_REG8(0x001a) #define VD56G3_OPTICAL_REVISION_MONO 0 #define VD56G3_OPTICAL_REVISION_BAYER 1 #define VD56G3_REG_SYSTEM_FSM CCI_REG8(0x0028) #define VD56G3_SYSTEM_FSM_READY_TO_BOOT 0x01 #define VD56G3_SYSTEM_FSM_SW_STBY 0x02 #define VD56G3_SYSTEM_FSM_STREAMING 0x03 #define VD56G3_REG_APPLIED_COARSE_EXPOSURE CCI_REG16_LE(0x0064) #define VD56G3_REG_APPLIED_ANALOG_GAIN CCI_REG8(0x0068) #define VD56G3_REG_APPLIED_DIGITAL_GAIN CCI_REG16_LE(0x006a) #define VD56G3_REG_BOOT CCI_REG8(0x0200) #define VD56G3_CMD_ACK 0 #define VD56G3_CMD_BOOT 1 #define VD56G3_REG_STBY CCI_REG8(0x0201) #define VD56G3_CMD_START_STREAM 1 #define VD56G3_REG_STREAMING CCI_REG8(0x0202) #define VD56G3_CMD_STOP_STREAM 1 #define VD56G3_REG_EXT_CLOCK CCI_REG32_LE(0x0220) #define VD56G3_REG_CLK_PLL_PREDIV CCI_REG8(0x0224) #define VD56G3_REG_CLK_SYS_PLL_MULT CCI_REG8(0x0226) #define VD56G3_REG_ORIENTATION CCI_REG8(0x0302) #define VD56G3_REG_FORMAT_CTRL CCI_REG8(0x030a) #define VD56G3_REG_OIF_CTRL CCI_REG16_LE(0x030c) #define VD56G3_REG_OIF_IMG_CTRL CCI_REG8(0x030f) #define VD56G3_REG_OIF_CSI_BITRATE CCI_REG16_LE(0x0312) #define VD56G3_REG_DUSTER_CTRL CCI_REG8(0x0318) #define VD56G3_DUSTER_DISABLE 0 #define VD56G3_DUSTER_ENABLE_DEF_MODULES 0x13 #define VD56G3_REG_ISL_ENABLE CCI_REG8(0x0333) #define VD56G3_REG_DARKCAL_CTRL CCI_REG8(0x0340) #define VD56G3_DARKCAL_ENABLE 1 #define VD56G3_DARKCAL_DISABLE_DARKAVG 2 #define VD56G3_REG_PATGEN_CTRL CCI_REG16_LE(0x0400) #define VD56G3_PATGEN_ENABLE 1 #define VD56G3_PATGEN_TYPE_SHIFT 4 #define VD56G3_REG_AE_COLDSTART_COARSE_EXPOSURE CCI_REG16_LE(0x042a) #define VD56G3_REG_AE_COLDSTART_ANALOG_GAIN CCI_REG8(0x042c) #define VD56G3_REG_AE_COLDSTART_DIGITAL_GAIN CCI_REG16_LE(0x042e) #define VD56G3_REG_AE_ROI_START_H CCI_REG16_LE(0x0432) #define VD56G3_REG_AE_ROI_START_V CCI_REG16_LE(0x0434) #define VD56G3_REG_AE_ROI_END_H CCI_REG16_LE(0x0436) #define VD56G3_REG_AE_ROI_END_V CCI_REG16_LE(0x0438) #define VD56G3_REG_AE_COMPENSATION CCI_REG16_LE(0x043a) #define VD56G3_REG_EXP_MODE CCI_REG8(0x044c) #define VD56G3_EXP_MODE_AUTO 0 #define VD56G3_EXP_MODE_FREEZE 1 #define VD56G3_EXP_MODE_MANUAL 2 #define VD56G3_REG_MANUAL_ANALOG_GAIN CCI_REG8(0x044d) #define VD56G3_REG_MANUAL_COARSE_EXPOSURE CCI_REG16_LE(0x044e) #define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH0 CCI_REG16_LE(0x0450) #define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH1 CCI_REG16_LE(0x0452) #define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH2 CCI_REG16_LE(0x0454) #define VD56G3_REG_MANUAL_DIGITAL_GAIN_CH3 CCI_REG16_LE(0x0456) #define VD56G3_REG_FRAME_LENGTH CCI_REG16_LE(0x0458) #define VD56G3_REG_Y_START CCI_REG16_LE(0x045a) #define VD56G3_REG_Y_END CCI_REG16_LE(0x045c) #define VD56G3_REG_OUT_ROI_X_START CCI_REG16_LE(0x045e) #define VD56G3_REG_OUT_ROI_X_END CCI_REG16_LE(0x0460) #define VD56G3_REG_OUT_ROI_Y_START CCI_REG16_LE(0x0462) #define VD56G3_REG_OUT_ROI_Y_END CCI_REG16_LE(0x0464) #define VD56G3_REG_GPIO_0_CTRL CCI_REG8(0x0467) #define VD56G3_GPIOX_GPIO_IN 0x01 #define VD56G3_GPIOX_STROBE_MODE 0x02 #define VD56G3_REG_READOUT_CTRL CCI_REG8(0x047e) #define READOUT_NORMAL 0x00 #define READOUT_DIGITAL_BINNING_X2 0x01 /* The VD56G3 is a portrait image sensor with native resolution of 1124x1364. */ #define VD56G3_NATIVE_WIDTH 1124 #define VD56G3_NATIVE_HEIGHT 1364 #define VD56G3_DEFAULT_MODE 0 /* PLL settings */ #define VD56G3_TARGET_PLL 804000000UL #define VD56G3_VT_CLOCK_DIV 5 /* External clock must be in [6Mhz-27Mhz] */ #define VD56G3_XCLK_FREQ_MIN (6 * HZ_PER_MHZ) #define VD56G3_XCLK_FREQ_MAX (27 * HZ_PER_MHZ) /* Line length and Frame length (settings are for standard 10bits ADC mode) */ #define VD56G3_LINE_LENGTH_MIN 1236 #define VD56G3_VBLANK_MIN 110 #define VD56G3_FRAME_LENGTH_DEF_60FPS 2168 #define VD56G3_FRAME_LENGTH_MAX 0xffff /* Exposure settings */ #define VD56G3_EXPOSURE_MARGIN 75 #define VD56G3_EXPOSURE_MIN 5 #define VD56G3_EXPOSURE_DEFAULT 1420 /* Output Interface settings */ #define VD56G3_MAX_CSI_DATA_LANES 2 #define VD56G3_LINK_FREQ_DEF_1LANE 750000000UL #define VD56G3_LINK_FREQ_DEF_2LANES 402000000UL /* GPIOs */ #define VD56G3_NB_GPIOS 8 /* regulator supplies */ static const char *const vd56g3_supply_names[] = { "vcore", "vddio", "vana", }; /* ----------------------------------------------------------------------------- * Models (VD56G3: Mono, VD66GY: Bayer RGB), Modes and formats */ enum vd56g3_models { VD56G3_MODEL_VD56G3, VD56G3_MODEL_VD66GY, }; struct vd56g3_mode { u32 width; u32 height; }; static const struct vd56g3_mode vd56g3_supported_modes[] = { { .width = VD56G3_NATIVE_WIDTH, .height = VD56G3_NATIVE_HEIGHT, }, { .width = 1120, .height = 1360, }, { .width = 1024, .height = 1280, }, { .width = 1024, .height = 768, }, { .width = 768, .height = 1024, }, { .width = 720, .height = 1280, }, { .width = 640, .height = 480, }, { .width = 480, .height = 640, }, { .width = 320, .height = 240, }, }; /* * Sensor support 8bits and 10bits output in both variants * - Monochrome * - RGB (with all H/V flip variations) */ static const unsigned int vd56g3_mbus_codes[2][5] = { { MEDIA_BUS_FMT_Y8_1X8, MEDIA_BUS_FMT_SGRBG8_1X8, MEDIA_BUS_FMT_SRGGB8_1X8, MEDIA_BUS_FMT_SBGGR8_1X8, MEDIA_BUS_FMT_SGBRG8_1X8, }, { MEDIA_BUS_FMT_Y10_1X10, MEDIA_BUS_FMT_SGRBG10_1X10, MEDIA_BUS_FMT_SRGGB10_1X10, MEDIA_BUS_FMT_SBGGR10_1X10, MEDIA_BUS_FMT_SGBRG10_1X10, }, }; struct vd56g3 { struct device *dev; struct v4l2_subdev sd; struct media_pad pad; struct regulator_bulk_data supplies[ARRAY_SIZE(vd56g3_supply_names)]; struct gpio_desc *reset_gpio; struct clk *xclk; struct regmap *regmap; u32 xclk_freq; u32 pll_prediv; u32 pll_mult; u32 pixel_clock; u16 oif_ctrl; u8 nb_of_lane; u32 gpios[VD56G3_NB_GPIOS]; unsigned long ext_leds_mask; bool is_mono; struct v4l2_ctrl_handler ctrl_handler; struct v4l2_ctrl *hblank_ctrl; struct v4l2_ctrl *vblank_ctrl; struct { struct v4l2_ctrl *hflip_ctrl; struct v4l2_ctrl *vflip_ctrl; }; struct v4l2_ctrl *patgen_ctrl; struct { struct v4l2_ctrl *ae_ctrl; struct v4l2_ctrl *expo_ctrl; struct v4l2_ctrl *again_ctrl; struct v4l2_ctrl *dgain_ctrl; }; struct v4l2_ctrl *ae_lock_ctrl; struct v4l2_ctrl *ae_bias_ctrl; struct v4l2_ctrl *led_ctrl; }; static inline struct vd56g3 *to_vd56g3(struct v4l2_subdev *sd) { return container_of_const(sd, struct vd56g3, sd); } static inline struct vd56g3 *ctrl_to_vd56g3(struct v4l2_ctrl *ctrl) { return container_of_const(ctrl->handler, struct vd56g3, ctrl_handler); } /* ----------------------------------------------------------------------------- * Additional i2c register helpers */ static int vd56g3_poll_reg(struct vd56g3 *sensor, u32 reg, u8 poll_val, int *err) { unsigned int val = 0; int ret; if (err && *err) return *err; /* * Timeout must be higher than longuest frame duration. With current * blanking constraints, frame duration can take up to 504ms. */ ret = regmap_read_poll_timeout(sensor->regmap, CCI_REG_ADDR(reg), val, (val == poll_val), 2000, 600 * USEC_PER_MSEC); if (ret && err) *err = ret; return ret; } static int vd56g3_wait_state(struct vd56g3 *sensor, int state, int *err) { return vd56g3_poll_reg(sensor, VD56G3_REG_SYSTEM_FSM, state, err); } /* ----------------------------------------------------------------------------- * Controls: definitions, helpers and handlers */ static const char *const vd56g3_tp_menu[] = { "Disabled", "Solid Color", "Vertical Color Bars", "Horizontal Gray Scale", "Vertical Gray Scale", "Diagonal Gray Scale", "Pseudo Random" }; static const s64 vd56g3_ev_bias_qmenu[] = { -4000, -3500, -3000, -2500, -2000, -1500, -1000, -500, 0, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000 }; static const s64 vd56g3_link_freq_1lane[] = { VD56G3_LINK_FREQ_DEF_1LANE }; static const s64 vd56g3_link_freq_2lanes[] = { VD56G3_LINK_FREQ_DEF_2LANES }; static u8 vd56g3_get_bpp(__u32 code) { switch (code) { case MEDIA_BUS_FMT_Y8_1X8: case MEDIA_BUS_FMT_SGRBG8_1X8: case MEDIA_BUS_FMT_SRGGB8_1X8: case MEDIA_BUS_FMT_SBGGR8_1X8: case MEDIA_BUS_FMT_SGBRG8_1X8: default: return 8; case MEDIA_BUS_FMT_Y10_1X10: case MEDIA_BUS_FMT_SGRBG10_1X10: case MEDIA_BUS_FMT_SRGGB10_1X10: case MEDIA_BUS_FMT_SBGGR10_1X10: case MEDIA_BUS_FMT_SGBRG10_1X10: return 10; } } static u8 vd56g3_get_datatype(__u32 code) { switch (code) { case MEDIA_BUS_FMT_Y8_1X8: case MEDIA_BUS_FMT_SGRBG8_1X8: case MEDIA_BUS_FMT_SRGGB8_1X8: case MEDIA_BUS_FMT_SBGGR8_1X8: case MEDIA_BUS_FMT_SGBRG8_1X8: default: return MIPI_CSI2_DT_RAW8; case MEDIA_BUS_FMT_Y10_1X10: case MEDIA_BUS_FMT_SGRBG10_1X10: case MEDIA_BUS_FMT_SRGGB10_1X10: case MEDIA_BUS_FMT_SBGGR10_1X10: case MEDIA_BUS_FMT_SGBRG10_1X10: return MIPI_CSI2_DT_RAW10; } } static int vd56g3_read_expo_cluster(struct vd56g3 *sensor, bool force_cur_val) { u64 exposure; u64 again; u64 dgain; int ret = 0; /* * When 'force_cur_val' is enabled, save the ctrl value in 'cur.val' * instead of the normal 'val', this is used during poweroff to cache * volatile ctrls and enable coldstart. */ cci_read(sensor->regmap, VD56G3_REG_APPLIED_COARSE_EXPOSURE, &exposure, &ret); cci_read(sensor->regmap, VD56G3_REG_APPLIED_ANALOG_GAIN, &again, &ret); cci_read(sensor->regmap, VD56G3_REG_APPLIED_DIGITAL_GAIN, &dgain, &ret); if (ret) return ret; if (force_cur_val) { sensor->expo_ctrl->cur.val = exposure; sensor->again_ctrl->cur.val = again; sensor->dgain_ctrl->cur.val = dgain; } else { sensor->expo_ctrl->val = exposure; sensor->again_ctrl->val = again; sensor->dgain_ctrl->val = dgain; } return ret; } static int vd56g3_update_patgen(struct vd56g3 *sensor, u32 patgen_index) { u32 pattern = patgen_index <= 2 ? patgen_index : patgen_index + 13; u16 patgen = pattern << VD56G3_PATGEN_TYPE_SHIFT; u8 duster = VD56G3_DUSTER_ENABLE_DEF_MODULES; u8 darkcal = VD56G3_DARKCAL_ENABLE; int ret = 0; if (patgen_index) { patgen |= VD56G3_PATGEN_ENABLE; duster = VD56G3_DUSTER_DISABLE; darkcal = VD56G3_DARKCAL_DISABLE_DARKAVG; } cci_write(sensor->regmap, VD56G3_REG_DUSTER_CTRL, duster, &ret); cci_write(sensor->regmap, VD56G3_REG_DARKCAL_CTRL, darkcal, &ret); cci_write(sensor->regmap, VD56G3_REG_PATGEN_CTRL, patgen, &ret); return ret; } static int vd56g3_update_expo_cluster(struct vd56g3 *sensor, bool is_auto) { u8 expo_state = is_auto ? VD56G3_EXP_MODE_AUTO : VD56G3_EXP_MODE_MANUAL; int ret = 0; if (sensor->ae_ctrl->is_new) cci_write(sensor->regmap, VD56G3_REG_EXP_MODE, expo_state, &ret); /* In Auto expo, set coldstart parameters */ if (is_auto && sensor->ae_ctrl->is_new) { cci_write(sensor->regmap, VD56G3_REG_AE_COLDSTART_COARSE_EXPOSURE, sensor->expo_ctrl->val, &ret); cci_write(sensor->regmap, VD56G3_REG_AE_COLDSTART_ANALOG_GAIN, sensor->again_ctrl->val, &ret); cci_write(sensor->regmap, VD56G3_REG_AE_COLDSTART_DIGITAL_GAIN, sensor->dgain_ctrl->val, &ret); } /* In Manual expo, set exposure, analog and digital gains */ if (!is_auto && sensor->expo_ctrl->is_new) cci_write(sensor->regmap, VD56G3_REG_MANUAL_COARSE_EXPOSURE, sensor->expo_ctrl->val, &ret); if (!is_auto && sensor->again_ctrl->is_new) cci_write(sensor->regmap, VD56G3_REG_MANUAL_ANALOG_GAIN, sensor->again_ctrl->val, &ret); if (!is_auto && sensor->dgain_ctrl->is_new) { cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH0, sensor->dgain_ctrl->val, &ret); cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH1, sensor->dgain_ctrl->val, &ret); cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH2, sensor->dgain_ctrl->val, &ret); cci_write(sensor->regmap, VD56G3_REG_MANUAL_DIGITAL_GAIN_CH3, sensor->dgain_ctrl->val, &ret); } return ret; } static int vd56g3_lock_exposure(struct vd56g3 *sensor, u32 lock_val) { bool ae_lock = lock_val & V4L2_LOCK_EXPOSURE; u8 expo_state = ae_lock ? VD56G3_EXP_MODE_FREEZE : VD56G3_EXP_MODE_AUTO; if (sensor->ae_ctrl->val == V4L2_EXPOSURE_AUTO) return cci_write(sensor->regmap, VD56G3_REG_EXP_MODE, expo_state, NULL); return 0; } static int vd56g3_write_gpiox(struct vd56g3 *sensor, unsigned long gpio_mask) { unsigned long io; u32 gpio_val; int ret = 0; for_each_set_bit(io, &gpio_mask, VD56G3_NB_GPIOS) { gpio_val = sensor->gpios[io]; if (gpio_val == VD56G3_GPIOX_STROBE_MODE && sensor->led_ctrl->val == V4L2_FLASH_LED_MODE_NONE) gpio_val = VD56G3_GPIOX_GPIO_IN; cci_write(sensor->regmap, VD56G3_REG_GPIO_0_CTRL + io, gpio_val, &ret); } return ret; } static int vd56g3_g_volatile_ctrl(struct v4l2_ctrl *ctrl) { struct vd56g3 *sensor = ctrl_to_vd56g3(ctrl); int ret = 0; /* Interact with HW only when it is powered ON */ if (!pm_runtime_get_if_in_use(sensor->dev)) return 0; switch (ctrl->id) { case V4L2_CID_EXPOSURE_AUTO: ret = vd56g3_read_expo_cluster(sensor, false); break; default: ret = -EINVAL; break; } pm_runtime_mark_last_busy(sensor->dev); pm_runtime_put_autosuspend(sensor->dev); return ret; } static int vd56g3_s_ctrl(struct v4l2_ctrl *ctrl) { struct vd56g3 *sensor = ctrl_to_vd56g3(ctrl); struct v4l2_subdev_state *state; const struct v4l2_rect *crop; unsigned int frame_length = 0; unsigned int expo_max; unsigned int ae_compensation; bool is_auto = false; int ret = 0; state = v4l2_subdev_get_locked_active_state(&sensor->sd); crop = v4l2_subdev_state_get_crop(state, 0); if (ctrl->flags & V4L2_CTRL_FLAG_READ_ONLY) return 0; /* Update controls state, range, etc. whatever the state of the HW */ switch (ctrl->id) { case V4L2_CID_VBLANK: frame_length = crop->height + ctrl->val; expo_max = frame_length - VD56G3_EXPOSURE_MARGIN; ret = __v4l2_ctrl_modify_range(sensor->expo_ctrl, VD56G3_EXPOSURE_MIN, expo_max, 1, min(VD56G3_EXPOSURE_DEFAULT, expo_max)); break; case V4L2_CID_EXPOSURE_AUTO: is_auto = (ctrl->val == V4L2_EXPOSURE_AUTO); __v4l2_ctrl_grab(sensor->ae_lock_ctrl, !is_auto); __v4l2_ctrl_grab(sensor->ae_bias_ctrl, !is_auto); break; default: break; } if (ret) return ret; /* Interact with HW only when it is powered ON */ if (!pm_runtime_get_if_in_use(sensor->dev)) return 0; switch (ctrl->id) { case V4L2_CID_HFLIP: ret = cci_write(sensor->regmap, VD56G3_REG_ORIENTATION, sensor->hflip_ctrl->val | (sensor->vflip_ctrl->val << 1), NULL); break; case V4L2_CID_TEST_PATTERN: ret = vd56g3_update_patgen(sensor, ctrl->val); break; case V4L2_CID_EXPOSURE_AUTO: ret = vd56g3_update_expo_cluster(sensor, is_auto); break; case V4L2_CID_3A_LOCK: ret = vd56g3_lock_exposure(sensor, ctrl->val); break; case V4L2_CID_AUTO_EXPOSURE_BIAS: ae_compensation = DIV_ROUND_CLOSEST((int)vd56g3_ev_bias_qmenu[ctrl->val] * 256, 1000); ret = cci_write(sensor->regmap, VD56G3_REG_AE_COMPENSATION, ae_compensation, NULL); break; case V4L2_CID_VBLANK: ret = cci_write(sensor->regmap, VD56G3_REG_FRAME_LENGTH, frame_length, NULL); break; case V4L2_CID_FLASH_LED_MODE: ret = vd56g3_write_gpiox(sensor, sensor->ext_leds_mask); break; default: ret = -EINVAL; break; } pm_runtime_mark_last_busy(sensor->dev); pm_runtime_put_autosuspend(sensor->dev); return ret; } static const struct v4l2_ctrl_ops vd56g3_ctrl_ops = { .g_volatile_ctrl = vd56g3_g_volatile_ctrl, .s_ctrl = vd56g3_s_ctrl, }; static int vd56g3_update_controls(struct vd56g3 *sensor) { struct v4l2_subdev_state *state; const struct v4l2_rect *crop; unsigned int hblank; unsigned int vblank_min, vblank, vblank_max; unsigned int frame_length; unsigned int expo_max; int ret; state = v4l2_subdev_get_locked_active_state(&sensor->sd); crop = v4l2_subdev_state_get_crop(state, 0); hblank = VD56G3_LINE_LENGTH_MIN - crop->width; vblank_min = VD56G3_VBLANK_MIN; vblank = VD56G3_FRAME_LENGTH_DEF_60FPS - crop->height; vblank_max = VD56G3_FRAME_LENGTH_MAX - crop->height; frame_length = crop->height + vblank; expo_max = frame_length - VD56G3_EXPOSURE_MARGIN; /* Update blanking and exposure (ranges + values) */ ret = __v4l2_ctrl_modify_range(sensor->hblank_ctrl, hblank, hblank, 1, hblank); if (ret) return ret; ret = __v4l2_ctrl_modify_range(sensor->vblank_ctrl, vblank_min, vblank_max, 1, vblank); if (ret) return ret; ret = __v4l2_ctrl_s_ctrl(sensor->vblank_ctrl, vblank); if (ret) return ret; ret = __v4l2_ctrl_modify_range(sensor->expo_ctrl, VD56G3_EXPOSURE_MIN, expo_max, 1, VD56G3_EXPOSURE_DEFAULT); if (ret) return ret; return __v4l2_ctrl_s_ctrl(sensor->expo_ctrl, VD56G3_EXPOSURE_DEFAULT); } static int vd56g3_init_controls(struct vd56g3 *sensor) { const struct v4l2_ctrl_ops *ops = &vd56g3_ctrl_ops; struct v4l2_ctrl_handler *hdl = &sensor->ctrl_handler; struct v4l2_fwnode_device_properties fwnode_props; struct v4l2_ctrl *ctrl; int ret; v4l2_ctrl_handler_init(hdl, 25); /* Horizontal & vertical flips modify bayer code on RGB variant */ sensor->hflip_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 0, 1, 1, 0); if (sensor->hflip_ctrl) sensor->hflip_ctrl->flags |= V4L2_CTRL_FLAG_MODIFY_LAYOUT; sensor->vflip_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 0, 1, 1, 0); if (sensor->vflip_ctrl) sensor->vflip_ctrl->flags |= V4L2_CTRL_FLAG_MODIFY_LAYOUT; sensor->patgen_ctrl = v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN, ARRAY_SIZE(vd56g3_tp_menu) - 1, 0, 0, vd56g3_tp_menu); ctrl = v4l2_ctrl_new_int_menu(hdl, ops, V4L2_CID_LINK_FREQ, ARRAY_SIZE(vd56g3_link_freq_1lane) - 1, 0, (sensor->nb_of_lane == 2) ? vd56g3_link_freq_2lanes : vd56g3_link_freq_1lane); if (ctrl) ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE, sensor->pixel_clock, sensor->pixel_clock, 1, sensor->pixel_clock); if (ctrl) ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; sensor->ae_ctrl = v4l2_ctrl_new_std_menu(hdl, ops, V4L2_CID_EXPOSURE_AUTO, V4L2_EXPOSURE_MANUAL, 0, V4L2_EXPOSURE_AUTO); sensor->ae_lock_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_3A_LOCK, 0, GENMASK(2, 0), 0, 0); sensor->ae_bias_ctrl = v4l2_ctrl_new_int_menu(hdl, ops, V4L2_CID_AUTO_EXPOSURE_BIAS, ARRAY_SIZE(vd56g3_ev_bias_qmenu) - 1, ARRAY_SIZE(vd56g3_ev_bias_qmenu) / 2, vd56g3_ev_bias_qmenu); /* * Analog gain [1, 8] is computed with the following logic : * 32/(32 - again_reg), with again_reg in the range [0:28] * Digital gain [1.00, 8.00] is coded as a Fixed Point 5.8 */ sensor->again_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_ANALOGUE_GAIN, 0, 28, 1, 0); sensor->dgain_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_DIGITAL_GAIN, 0x100, 0x800, 1, 0x100); /* * Set the exposure, horizontal and vertical blanking ctrls * to hardcoded values, they will be updated in vd56g3_update_controls. * Exposure being in an auto-cluster, set a significant value here. */ sensor->expo_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE, VD56G3_EXPOSURE_DEFAULT, VD56G3_EXPOSURE_DEFAULT, 1, VD56G3_EXPOSURE_DEFAULT); sensor->hblank_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HBLANK, 1, 1, 1, 1); if (sensor->hblank_ctrl) sensor->hblank_ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; sensor->vblank_ctrl = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VBLANK, 1, 1, 1, 1); /* Additional control based on device tree properties */ if (sensor->ext_leds_mask) sensor->led_ctrl = v4l2_ctrl_new_std_menu(hdl, ops, V4L2_CID_FLASH_LED_MODE, V4L2_FLASH_LED_MODE_FLASH, 0, V4L2_FLASH_LED_MODE_NONE); if (hdl->error) { ret = hdl->error; goto free_ctrls; } v4l2_ctrl_cluster(2, &sensor->hflip_ctrl); v4l2_ctrl_auto_cluster(4, &sensor->ae_ctrl, V4L2_EXPOSURE_MANUAL, true); /* Optional controls coming from fwnode (e.g. rotation, orientation). */ ret = v4l2_fwnode_device_parse(sensor->dev, &fwnode_props); if (ret) goto free_ctrls; ret = v4l2_ctrl_new_fwnode_properties(hdl, ops, &fwnode_props); if (ret) goto free_ctrls; sensor->sd.ctrl_handler = hdl; return 0; free_ctrls: v4l2_ctrl_handler_free(hdl); return ret; } /* ----------------------------------------------------------------------------- * Pad ops */ /* Media bus code is dependent of : * - 8bits or 10bits output * - variant : Mono or RGB * - H/V flips parameters in case of RGB */ static u32 vd56g3_get_mbus_code(struct vd56g3 *sensor, u32 code) { unsigned int i_bpp; unsigned int j; for (i_bpp = 0; i_bpp < ARRAY_SIZE(vd56g3_mbus_codes); i_bpp++) { for (j = 0; j < ARRAY_SIZE(vd56g3_mbus_codes[i_bpp]); j++) { if (vd56g3_mbus_codes[i_bpp][j] == code) goto endloops; } } endloops: if (i_bpp >= ARRAY_SIZE(vd56g3_mbus_codes)) i_bpp = 0; if (sensor->is_mono) j = 0; else j = 1 + (sensor->hflip_ctrl->val ? 1 : 0) + (sensor->vflip_ctrl->val ? 2 : 0); return vd56g3_mbus_codes[i_bpp][j]; } static int vd56g3_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { struct vd56g3 *sensor = to_vd56g3(sd); if (code->index >= ARRAY_SIZE(vd56g3_mbus_codes)) return -EINVAL; code->code = vd56g3_get_mbus_code(sensor, vd56g3_mbus_codes[code->index][0]); return 0; } static int vd56g3_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) { if (fse->index >= ARRAY_SIZE(vd56g3_supported_modes)) return -EINVAL; fse->min_width = vd56g3_supported_modes[fse->index].width; fse->max_width = fse->min_width; fse->min_height = vd56g3_supported_modes[fse->index].height; fse->max_height = fse->min_height; return 0; } static void vd56g3_update_img_pad_format(struct vd56g3 *sensor, const struct vd56g3_mode *mode, u32 mbus_code, struct v4l2_mbus_framefmt *mbus_fmt) { mbus_fmt->width = mode->width; mbus_fmt->height = mode->height; mbus_fmt->code = vd56g3_get_mbus_code(sensor, mbus_code); mbus_fmt->colorspace = V4L2_COLORSPACE_RAW; mbus_fmt->field = V4L2_FIELD_NONE; mbus_fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT; mbus_fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; mbus_fmt->xfer_func = V4L2_XFER_FUNC_NONE; } static int vd56g3_set_pad_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *sd_fmt) { struct vd56g3 *sensor = to_vd56g3(sd); const struct vd56g3_mode *new_mode; struct v4l2_rect pad_crop; unsigned int binning; new_mode = v4l2_find_nearest_size(vd56g3_supported_modes, ARRAY_SIZE(vd56g3_supported_modes), width, height, sd_fmt->format.width, sd_fmt->format.height); vd56g3_update_img_pad_format(sensor, new_mode, sd_fmt->format.code, &sd_fmt->format); *v4l2_subdev_state_get_format(sd_state, sd_fmt->pad) = sd_fmt->format; /* Compute and update crop rectangle (maximized via binning) */ binning = min(VD56G3_NATIVE_WIDTH / sd_fmt->format.width, VD56G3_NATIVE_HEIGHT / sd_fmt->format.height); binning = min(binning, 2U); pad_crop.width = sd_fmt->format.width * binning; pad_crop.height = sd_fmt->format.height * binning; pad_crop.left = (VD56G3_NATIVE_WIDTH - pad_crop.width) / 2; pad_crop.top = (VD56G3_NATIVE_HEIGHT - pad_crop.height) / 2; *v4l2_subdev_state_get_crop(sd_state, sd_fmt->pad) = pad_crop; /* Update controls in case of active state */ if (sd_fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) return vd56g3_update_controls(sensor); return 0; } static int vd56g3_get_selection(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_selection *sel) { switch (sel->target) { case V4L2_SEL_TGT_CROP: sel->r = *v4l2_subdev_state_get_crop(sd_state, 0); break; case V4L2_SEL_TGT_NATIVE_SIZE: case V4L2_SEL_TGT_CROP_DEFAULT: case V4L2_SEL_TGT_CROP_BOUNDS: sel->r.top = 0; sel->r.left = 0; sel->r.width = VD56G3_NATIVE_WIDTH; sel->r.height = VD56G3_NATIVE_HEIGHT; break; default: return -EINVAL; } return 0; } static int vd56g3_get_frame_desc(struct v4l2_subdev *sd, unsigned int pad, struct v4l2_mbus_frame_desc *fd) { struct v4l2_subdev_state *state; const struct v4l2_mbus_framefmt *format; state = v4l2_subdev_lock_and_get_active_state(sd); format = v4l2_subdev_state_get_format(state, pad); v4l2_subdev_unlock_state(state); fd->type = V4L2_MBUS_FRAME_DESC_TYPE_CSI2; fd->num_entries = 1; fd->entry[0].pixelcode = format->code; fd->entry[0].stream = 0; fd->entry[0].bus.csi2.vc = 0; fd->entry[0].bus.csi2.dt = vd56g3_get_datatype(format->code); return 0; } static int vd56g3_enable_streams(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, u32 pad, u64 streams_mask) { struct vd56g3 *sensor = to_vd56g3(sd); const struct v4l2_mbus_framefmt *format = v4l2_subdev_state_get_format(state, 0); const struct v4l2_rect *crop = v4l2_subdev_state_get_crop(state, 0); unsigned int csi_mbps = ((sensor->nb_of_lane == 2) ? VD56G3_LINK_FREQ_DEF_2LANES : VD56G3_LINK_FREQ_DEF_1LANE) * 2 / MEGA; unsigned int binning; int ret; ret = pm_runtime_resume_and_get(sensor->dev); if (ret < 0) return ret; /* configure clocks */ cci_write(sensor->regmap, VD56G3_REG_EXT_CLOCK, sensor->xclk_freq, &ret); cci_write(sensor->regmap, VD56G3_REG_CLK_PLL_PREDIV, sensor->pll_prediv, &ret); cci_write(sensor->regmap, VD56G3_REG_CLK_SYS_PLL_MULT, sensor->pll_mult, &ret); /* configure output */ cci_write(sensor->regmap, VD56G3_REG_FORMAT_CTRL, vd56g3_get_bpp(format->code), &ret); cci_write(sensor->regmap, VD56G3_REG_OIF_CTRL, sensor->oif_ctrl, &ret); cci_write(sensor->regmap, VD56G3_REG_OIF_CSI_BITRATE, csi_mbps, &ret); cci_write(sensor->regmap, VD56G3_REG_OIF_IMG_CTRL, vd56g3_get_datatype(format->code), &ret); cci_write(sensor->regmap, VD56G3_REG_ISL_ENABLE, 0, &ret); /* configure binning mode */ switch (crop->width / format->width) { case 1: default: binning = READOUT_NORMAL; break; case 2: binning = READOUT_DIGITAL_BINNING_X2; break; } cci_write(sensor->regmap, VD56G3_REG_READOUT_CTRL, binning, &ret); /* configure ROIs */ cci_write(sensor->regmap, VD56G3_REG_Y_START, crop->top, &ret); cci_write(sensor->regmap, VD56G3_REG_Y_END, crop->top + crop->height - 1, &ret); cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_X_START, crop->left, &ret); cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_X_END, crop->left + crop->width - 1, &ret); cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_Y_START, 0, &ret); cci_write(sensor->regmap, VD56G3_REG_OUT_ROI_Y_END, crop->height - 1, &ret); cci_write(sensor->regmap, VD56G3_REG_AE_ROI_START_H, crop->left, &ret); cci_write(sensor->regmap, VD56G3_REG_AE_ROI_END_H, crop->left + crop->width - 1, &ret); cci_write(sensor->regmap, VD56G3_REG_AE_ROI_START_V, 0, &ret); cci_write(sensor->regmap, VD56G3_REG_AE_ROI_END_V, crop->height - 1, &ret); if (ret) goto rpm_put; /* Setup default GPIO values; could be overridden by V4L2 ctrl setup */ ret = vd56g3_write_gpiox(sensor, GENMASK(VD56G3_NB_GPIOS - 1, 0)); if (ret) goto rpm_put; /* Apply settings from V4L2 ctrls */ ret = __v4l2_ctrl_handler_setup(&sensor->ctrl_handler); if (ret) goto rpm_put; /* start streaming */ cci_write(sensor->regmap, VD56G3_REG_STBY, VD56G3_CMD_START_STREAM, &ret); vd56g3_poll_reg(sensor, VD56G3_REG_STBY, VD56G3_CMD_ACK, &ret); vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_STREAMING, &ret); if (ret) goto rpm_put; /* some controls are locked during streaming */ __v4l2_ctrl_grab(sensor->hflip_ctrl, true); __v4l2_ctrl_grab(sensor->vflip_ctrl, true); __v4l2_ctrl_grab(sensor->patgen_ctrl, true); return ret; rpm_put: dev_err(sensor->dev, "Failed to start streaming\n"); pm_runtime_put_sync(sensor->dev); return ret; } static int vd56g3_disable_streams(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, u32 pad, u64 streams_mask) { struct vd56g3 *sensor = to_vd56g3(sd); int ret; /* Retrieve Expo cluster to enable coldstart of AE */ ret = vd56g3_read_expo_cluster(sensor, true); cci_write(sensor->regmap, VD56G3_REG_STREAMING, VD56G3_CMD_STOP_STREAM, &ret); vd56g3_poll_reg(sensor, VD56G3_REG_STREAMING, VD56G3_CMD_ACK, &ret); vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_SW_STBY, &ret); /* locked controls must be unlocked */ __v4l2_ctrl_grab(sensor->hflip_ctrl, false); __v4l2_ctrl_grab(sensor->vflip_ctrl, false); __v4l2_ctrl_grab(sensor->patgen_ctrl, false); pm_runtime_mark_last_busy(sensor->dev); pm_runtime_put_autosuspend(sensor->dev); return ret; } static int vd56g3_init_state(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state) { unsigned int def_mode = VD56G3_DEFAULT_MODE; struct v4l2_subdev_format fmt = { .which = V4L2_SUBDEV_FORMAT_TRY, .pad = 0, .format = { .code = vd56g3_mbus_codes[0][0], .width = vd56g3_supported_modes[def_mode].width, .height = vd56g3_supported_modes[def_mode].height, }, }; return vd56g3_set_pad_fmt(sd, sd_state, &fmt); } static const struct v4l2_subdev_video_ops vd56g3_video_ops = { .s_stream = v4l2_subdev_s_stream_helper, }; static const struct v4l2_subdev_pad_ops vd56g3_pad_ops = { .enum_mbus_code = vd56g3_enum_mbus_code, .enum_frame_size = vd56g3_enum_frame_size, .get_fmt = v4l2_subdev_get_fmt, .set_fmt = vd56g3_set_pad_fmt, .get_selection = vd56g3_get_selection, .get_frame_desc = vd56g3_get_frame_desc, .enable_streams = vd56g3_enable_streams, .disable_streams = vd56g3_disable_streams, }; static const struct v4l2_subdev_ops vd56g3_subdev_ops = { .video = &vd56g3_video_ops, .pad = &vd56g3_pad_ops, }; static const struct media_entity_operations vd56g3_subdev_entity_ops = { .link_validate = v4l2_subdev_link_validate, }; static const struct v4l2_subdev_internal_ops vd56g3_internal_ops = { .init_state = vd56g3_init_state, }; /* ----------------------------------------------------------------------------- * Power management */ static int vd56g3_power_on(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct vd56g3 *sensor = to_vd56g3(sd); int ret; /* power on */ ret = regulator_bulk_enable(ARRAY_SIZE(sensor->supplies), sensor->supplies); if (ret) { dev_err(dev, "Failed to enable regulators: %d\n", ret); return ret; } ret = clk_prepare_enable(sensor->xclk); if (ret) { dev_err(dev, "Failed to enable clock: %d\n", ret); goto disable_reg; } gpiod_set_value_cansleep(sensor->reset_gpio, 0); usleep_range(3500, 4000); ret = vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_READY_TO_BOOT, NULL); if (ret) { dev_err(dev, "Sensor reset failed: %d\n", ret); goto disable_clock; } /* boot sensor */ cci_write(sensor->regmap, VD56G3_REG_BOOT, VD56G3_CMD_BOOT, &ret); vd56g3_poll_reg(sensor, VD56G3_REG_BOOT, VD56G3_CMD_ACK, &ret); vd56g3_wait_state(sensor, VD56G3_SYSTEM_FSM_SW_STBY, &ret); if (ret) { dev_err(dev, "Sensor boot failed: %d\n", ret); goto disable_clock; } return 0; disable_clock: gpiod_set_value_cansleep(sensor->reset_gpio, 1); clk_disable_unprepare(sensor->xclk); disable_reg: regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies); return ret; } static int vd56g3_power_off(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct vd56g3 *sensor = to_vd56g3(sd); gpiod_set_value_cansleep(sensor->reset_gpio, 1); clk_disable_unprepare(sensor->xclk); regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies); return 0; } static const struct dev_pm_ops vd56g3_pm_ops = { SET_RUNTIME_PM_OPS(vd56g3_power_off, vd56g3_power_on, NULL) }; /* ----------------------------------------------------------------------------- * Probe and initialization */ static int vd56g3_check_csi_conf(struct vd56g3 *sensor, struct fwnode_handle *endpoint) { struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_CSI2_DPHY }; u32 phy_data_lanes[VD56G3_MAX_CSI_DATA_LANES] = { ~0, ~0 }; u8 n_lanes; u64 frequency; int p, l; int ret = 0; ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &ep); if (ret) return -EINVAL; /* Check lanes number */ n_lanes = ep.bus.mipi_csi2.num_data_lanes; if (n_lanes != 1 && n_lanes != 2) { dev_err(sensor->dev, "Invalid data lane number: %d\n", n_lanes); ret = -EINVAL; goto done; } sensor->nb_of_lane = n_lanes; /* Clock lane must be first */ if (ep.bus.mipi_csi2.clock_lane != 0) { dev_err(sensor->dev, "Clock lane must be mapped to lane 0\n"); ret = -EINVAL; goto done; } /* * Prepare Output Interface conf based on lane settings * logical to physical lane conversion (+ pad remaining slots) */ for (l = 0; l < n_lanes; l++) phy_data_lanes[ep.bus.mipi_csi2.data_lanes[l] - 1] = l; for (p = 0; p < VD56G3_MAX_CSI_DATA_LANES; p++) { if (phy_data_lanes[p] != ~0) continue; phy_data_lanes[p] = l; l++; } sensor->oif_ctrl = n_lanes | (ep.bus.mipi_csi2.lane_polarities[0] << 3) | ((phy_data_lanes[0]) << 4) | (ep.bus.mipi_csi2.lane_polarities[1] << 6) | ((phy_data_lanes[1]) << 7) | (ep.bus.mipi_csi2.lane_polarities[2] << 9); /* Check link frequency */ if (!ep.nr_of_link_frequencies) { dev_err(sensor->dev, "link-frequency not found in DT\n"); ret = -EINVAL; goto done; } frequency = (n_lanes == 2) ? VD56G3_LINK_FREQ_DEF_2LANES : VD56G3_LINK_FREQ_DEF_1LANE; if (ep.nr_of_link_frequencies != 1 || ep.link_frequencies[0] != frequency) { dev_err(sensor->dev, "Link frequency not supported: %lld\n", ep.link_frequencies[0]); ret = -EINVAL; goto done; } done: v4l2_fwnode_endpoint_free(&ep); return ret; } static int vd56g3_parse_dt_gpios_array(struct vd56g3 *sensor, char *prop_name, u32 *array, unsigned int *nb) { struct device *dev = sensor->dev; unsigned int i; int ret; if (!device_property_present(dev, prop_name)) { *nb = 0; return 0; } ret = device_property_count_u32(dev, prop_name); if (ret < 0) { dev_err(dev, "Failed to read %s count\n", prop_name); return ret; } *nb = ret; ret = device_property_read_u32_array(dev, prop_name, array, *nb); if (ret) { dev_err(dev, "Failed to read %s prop\n", prop_name); return ret; } for (i = 0; i < *nb; i++) { if (array[i] >= VD56G3_NB_GPIOS) { dev_err(dev, "Invalid GPIO: %d\n", array[i]); return -EINVAL; } } return 0; } static int vd56g3_parse_dt_gpios(struct vd56g3 *sensor) { u32 led_gpios[VD56G3_NB_GPIOS]; unsigned int nb_gpios_leds; unsigned int i; int ret; /* Initialize GPIOs to default */ for (i = 0; i < VD56G3_NB_GPIOS; i++) sensor->gpios[i] = VD56G3_GPIOX_GPIO_IN; sensor->ext_leds_mask = 0; /* Take into account optional 'st,leds' output for GPIOs */ ret = vd56g3_parse_dt_gpios_array(sensor, "st,leds", led_gpios, &nb_gpios_leds); if (ret) return ret; for (i = 0; i < nb_gpios_leds; i++) { sensor->gpios[led_gpios[i]] = VD56G3_GPIOX_STROBE_MODE; set_bit(led_gpios[i], &sensor->ext_leds_mask); } return 0; } static int vd56g3_parse_dt(struct vd56g3 *sensor) { struct fwnode_handle *endpoint; int ret; endpoint = fwnode_graph_get_endpoint_by_id(dev_fwnode(sensor->dev), 0, 0, 0); if (!endpoint) { dev_err(sensor->dev, "Endpoint node not found\n"); return -EINVAL; } ret = vd56g3_check_csi_conf(sensor, endpoint); fwnode_handle_put(endpoint); if (ret) return ret; return vd56g3_parse_dt_gpios(sensor); } static int vd56g3_get_regulators(struct vd56g3 *sensor) { unsigned int i; for (i = 0; i < ARRAY_SIZE(sensor->supplies); i++) sensor->supplies[i].supply = vd56g3_supply_names[i]; return devm_regulator_bulk_get(sensor->dev, ARRAY_SIZE(sensor->supplies), sensor->supplies); } static int vd56g3_prepare_clock_tree(struct vd56g3 *sensor) { const unsigned int predivs[] = { 1, 2, 4 }; u32 pll_out; int i; /* External clock must be in [6Mhz-27Mhz] */ if (sensor->xclk_freq < VD56G3_XCLK_FREQ_MIN || sensor->xclk_freq > VD56G3_XCLK_FREQ_MAX) { dev_err(sensor->dev, "Only 6Mhz-27Mhz clock range supported. Provided %lu MHz\n", sensor->xclk_freq / HZ_PER_MHZ); return -EINVAL; } /* PLL input should be in [6Mhz-12Mhz[ */ for (i = 0; i < ARRAY_SIZE(predivs); i++) { sensor->pll_prediv = predivs[i]; if (sensor->xclk_freq / sensor->pll_prediv < 12 * HZ_PER_MHZ) break; } /* PLL output clock must be as close as possible to 804Mhz */ sensor->pll_mult = (VD56G3_TARGET_PLL * sensor->pll_prediv + sensor->xclk_freq / 2) / sensor->xclk_freq; pll_out = sensor->xclk_freq * sensor->pll_mult / sensor->pll_prediv; /* Target Pixel Clock for standard 10bit ADC mode : 160.8Mhz */ sensor->pixel_clock = pll_out / VD56G3_VT_CLOCK_DIV; return 0; } static int vd56g3_detect(struct vd56g3 *sensor) { struct device *dev = sensor->dev; unsigned int model; u64 model_id; u64 device_revision; u64 optical_revision; int ret = 0; model = (uintptr_t)device_get_match_data(dev); ret = cci_read(sensor->regmap, VD56G3_REG_MODEL_ID, &model_id, NULL); if (ret) return ret; if (model_id != VD56G3_MODEL_ID) { dev_err(dev, "Unsupported sensor id: %x\n", (u16)model_id); return -ENODEV; } ret = cci_read(sensor->regmap, VD56G3_REG_REVISION, &device_revision, NULL); if (ret) return ret; if ((device_revision >> 8) != VD56G3_REVISION_CUT3) { dev_err(dev, "Unsupported version: %x\n", (u16)device_revision); return -ENODEV; } ret = cci_read(sensor->regmap, VD56G3_REG_OPTICAL_REVISION, &optical_revision, NULL); if (ret) return ret; sensor->is_mono = ((optical_revision & 1) == VD56G3_OPTICAL_REVISION_MONO); if ((sensor->is_mono && model == VD56G3_MODEL_VD66GY) || (!sensor->is_mono && model == VD56G3_MODEL_VD56G3)) { dev_err(dev, "Found %s sensor, while %s model is defined in DT\n", (sensor->is_mono) ? "Mono" : "Bayer", (model == VD56G3_MODEL_VD56G3) ? "vd56g3" : "vd66gy"); return -ENODEV; } return 0; } static int vd56g3_subdev_init(struct vd56g3 *sensor) { struct v4l2_subdev_state *state; int ret; /* Init remaining sub device ops */ sensor->sd.internal_ops = &vd56g3_internal_ops; sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; sensor->sd.entity.ops = &vd56g3_subdev_entity_ops; /* Init source pad */ sensor->pad.flags = MEDIA_PAD_FL_SOURCE; sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad); if (ret) { dev_err(sensor->dev, "Failed to init media entity: %d\n", ret); return ret; } /* Init controls */ ret = vd56g3_init_controls(sensor); if (ret) { dev_err(sensor->dev, "Controls initialization failed: %d\n", ret); goto err_media; } /* Init vd56g3 struct : default resolution + raw8 */ sensor->sd.state_lock = sensor->ctrl_handler.lock; ret = v4l2_subdev_init_finalize(&sensor->sd); if (ret) { dev_err(sensor->dev, "Subdev init failed: %d\n", ret); goto err_ctrls; } /* Update controls according to the resolution set */ state = v4l2_subdev_lock_and_get_active_state(&sensor->sd); ret = vd56g3_update_controls(sensor); v4l2_subdev_unlock_state(state); if (ret) { dev_err(sensor->dev, "Controls update failed: %d\n", ret); goto err_ctrls; } return 0; err_ctrls: v4l2_ctrl_handler_free(sensor->sd.ctrl_handler); err_media: media_entity_cleanup(&sensor->sd.entity); return ret; } static void vd56g3_subdev_cleanup(struct vd56g3 *sensor) { v4l2_async_unregister_subdev(&sensor->sd); v4l2_subdev_cleanup(&sensor->sd); media_entity_cleanup(&sensor->sd.entity); v4l2_ctrl_handler_free(sensor->sd.ctrl_handler); } static int vd56g3_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct vd56g3 *sensor; int ret; sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL); if (!sensor) return -ENOMEM; v4l2_i2c_subdev_init(&sensor->sd, client, &vd56g3_subdev_ops); sensor->dev = dev; ret = vd56g3_parse_dt(sensor); if (ret) return dev_err_probe(dev, ret, "Failed to parse Device Tree\n"); /* Get (and check) resources : power regs, ext clock, reset gpio */ ret = vd56g3_get_regulators(sensor); if (ret) return dev_err_probe(dev, ret, "Failed to get regulators\n"); sensor->xclk = devm_clk_get(dev, NULL); if (IS_ERR(sensor->xclk)) return dev_err_probe(dev, PTR_ERR(sensor->xclk), "Failed to get xclk\n"); sensor->xclk_freq = clk_get_rate(sensor->xclk); ret = vd56g3_prepare_clock_tree(sensor); if (ret) return ret; sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(sensor->reset_gpio)) return dev_err_probe(dev, PTR_ERR(sensor->reset_gpio), "Failed to get reset gpio\n"); sensor->regmap = devm_cci_regmap_init_i2c(client, 16); if (IS_ERR(sensor->regmap)) return dev_err_probe(dev, PTR_ERR(sensor->regmap), "Failed to init regmap\n"); /* Power ON */ ret = vd56g3_power_on(dev); if (ret) return dev_err_probe(dev, ret, "Sensor power on failed\n"); /* Enable PM runtime with autosuspend (sensor being ON, set active) */ pm_runtime_set_active(dev); pm_runtime_get_noresume(dev); pm_runtime_enable(dev); pm_runtime_set_autosuspend_delay(dev, 1000); pm_runtime_use_autosuspend(dev); /* Check HW model/version */ ret = vd56g3_detect(sensor); if (ret) { dev_err(dev, "Sensor detect failed: %d\n", ret); goto err_power_off; } /* Initialize & register subdev (v4l2_i2c subdev already initialized) */ ret = vd56g3_subdev_init(sensor); if (ret) { dev_err(dev, "V4l2 init failed: %d\n", ret); goto err_power_off; } ret = v4l2_async_register_subdev(&sensor->sd); if (ret) { dev_err(dev, "Async subdev register failed: %d\n", ret); goto err_subdev; } /* Sensor could now be powered off (after the autosuspend delay) */ pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); dev_dbg(dev, "Successfully probe %s sensor\n", (sensor->is_mono) ? "vd56g3" : "vd66gy"); return 0; err_subdev: vd56g3_subdev_cleanup(sensor); err_power_off: pm_runtime_disable(dev); pm_runtime_put_noidle(dev); pm_runtime_dont_use_autosuspend(dev); vd56g3_power_off(dev); return ret; } static void vd56g3_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct vd56g3 *sensor = to_vd56g3(sd); vd56g3_subdev_cleanup(sensor); pm_runtime_disable(sensor->dev); if (!pm_runtime_status_suspended(sensor->dev)) vd56g3_power_off(sensor->dev); pm_runtime_set_suspended(sensor->dev); pm_runtime_dont_use_autosuspend(sensor->dev); } static const struct of_device_id vd56g3_dt_ids[] = { { .compatible = "st,vd56g3", .data = (void *)VD56G3_MODEL_VD56G3 }, { .compatible = "st,vd66gy", .data = (void *)VD56G3_MODEL_VD66GY }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, vd56g3_dt_ids); static struct i2c_driver vd56g3_i2c_driver = { .driver = { .name = "vd56g3", .of_match_table = vd56g3_dt_ids, .pm = &vd56g3_pm_ops, }, .probe = vd56g3_probe, .remove = vd56g3_remove, }; module_i2c_driver(vd56g3_i2c_driver); MODULE_AUTHOR("Benjamin Mugnier "); MODULE_AUTHOR("Mickael Guene "); MODULE_AUTHOR("Sylvain Petinot "); MODULE_DESCRIPTION("ST VD56G3 sensor driver"); MODULE_LICENSE("GPL");