/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _FS_RESCTRL_INTERNAL_H #define _FS_RESCTRL_INTERNAL_H #include #include #include #include #define CQM_LIMBOCHECK_INTERVAL 1000 /** * cpumask_any_housekeeping() - Choose any CPU in @mask, preferring those that * aren't marked nohz_full * @mask: The mask to pick a CPU from. * @exclude_cpu:The CPU to avoid picking. * * Returns a CPU from @mask, but not @exclude_cpu. If there are housekeeping * CPUs that don't use nohz_full, these are preferred. Pass * RESCTRL_PICK_ANY_CPU to avoid excluding any CPUs. * * When a CPU is excluded, returns >= nr_cpu_ids if no CPUs are available. */ static inline unsigned int cpumask_any_housekeeping(const struct cpumask *mask, int exclude_cpu) { unsigned int cpu; /* Try to find a CPU that isn't nohz_full to use in preference */ if (tick_nohz_full_enabled()) { cpu = cpumask_any_andnot_but(mask, tick_nohz_full_mask, exclude_cpu); if (cpu < nr_cpu_ids) return cpu; } return cpumask_any_but(mask, exclude_cpu); } struct rdt_fs_context { struct kernfs_fs_context kfc; bool enable_cdpl2; bool enable_cdpl3; bool enable_mba_mbps; bool enable_debug; }; static inline struct rdt_fs_context *rdt_fc2context(struct fs_context *fc) { struct kernfs_fs_context *kfc = fc->fs_private; return container_of(kfc, struct rdt_fs_context, kfc); } /** * struct mon_evt - Entry in the event list of a resource * @evtid: event id * @name: name of the event * @configurable: true if the event is configurable * @list: entry in &rdt_resource->evt_list */ struct mon_evt { enum resctrl_event_id evtid; char *name; bool configurable; struct list_head list; }; /** * struct mon_data - Monitoring details for each event file. * @list: Member of the global @mon_data_kn_priv_list list. * @rid: Resource id associated with the event file. * @evtid: Event id associated with the event file. * @sum: Set when event must be summed across multiple * domains. * @domid: When @sum is zero this is the domain to which * the event file belongs. When @sum is one this * is the id of the L3 cache that all domains to be * summed share. * * Pointed to by the kernfs kn->priv field of monitoring event files. * Readers and writers must hold rdtgroup_mutex. */ struct mon_data { struct list_head list; enum resctrl_res_level rid; enum resctrl_event_id evtid; int domid; bool sum; }; /** * struct rmid_read - Data passed across smp_call*() to read event count. * @rgrp: Resource group for which the counter is being read. If it is a parent * resource group then its event count is summed with the count from all * its child resource groups. * @r: Resource describing the properties of the event being read. * @d: Domain that the counter should be read from. If NULL then sum all * domains in @r sharing L3 @ci.id * @evtid: Which monitor event to read. * @first: Initialize MBM counter when true. * @ci: Cacheinfo for L3. Only set when @d is NULL. Used when summing domains. * @err: Error encountered when reading counter. * @val: Returned value of event counter. If @rgrp is a parent resource group, * @val includes the sum of event counts from its child resource groups. * If @d is NULL, @val includes the sum of all domains in @r sharing @ci.id, * (summed across child resource groups if @rgrp is a parent resource group). * @arch_mon_ctx: Hardware monitor allocated for this read request (MPAM only). */ struct rmid_read { struct rdtgroup *rgrp; struct rdt_resource *r; struct rdt_mon_domain *d; enum resctrl_event_id evtid; bool first; struct cacheinfo *ci; int err; u64 val; void *arch_mon_ctx; }; extern struct list_head resctrl_schema_all; extern bool resctrl_mounted; enum rdt_group_type { RDTCTRL_GROUP = 0, RDTMON_GROUP, RDT_NUM_GROUP, }; /** * enum rdtgrp_mode - Mode of a RDT resource group * @RDT_MODE_SHAREABLE: This resource group allows sharing of its allocations * @RDT_MODE_EXCLUSIVE: No sharing of this resource group's allocations allowed * @RDT_MODE_PSEUDO_LOCKSETUP: Resource group will be used for Pseudo-Locking * @RDT_MODE_PSEUDO_LOCKED: No sharing of this resource group's allocations * allowed AND the allocations are Cache Pseudo-Locked * @RDT_NUM_MODES: Total number of modes * * The mode of a resource group enables control over the allowed overlap * between allocations associated with different resource groups (classes * of service). User is able to modify the mode of a resource group by * writing to the "mode" resctrl file associated with the resource group. * * The "shareable", "exclusive", and "pseudo-locksetup" modes are set by * writing the appropriate text to the "mode" file. A resource group enters * "pseudo-locked" mode after the schemata is written while the resource * group is in "pseudo-locksetup" mode. */ enum rdtgrp_mode { RDT_MODE_SHAREABLE = 0, RDT_MODE_EXCLUSIVE, RDT_MODE_PSEUDO_LOCKSETUP, RDT_MODE_PSEUDO_LOCKED, /* Must be last */ RDT_NUM_MODES, }; /** * struct mongroup - store mon group's data in resctrl fs. * @mon_data_kn: kernfs node for the mon_data directory * @parent: parent rdtgrp * @crdtgrp_list: child rdtgroup node list * @rmid: rmid for this rdtgroup */ struct mongroup { struct kernfs_node *mon_data_kn; struct rdtgroup *parent; struct list_head crdtgrp_list; u32 rmid; }; /** * struct rdtgroup - store rdtgroup's data in resctrl file system. * @kn: kernfs node * @rdtgroup_list: linked list for all rdtgroups * @closid: closid for this rdtgroup * @cpu_mask: CPUs assigned to this rdtgroup * @flags: status bits * @waitcount: how many cpus expect to find this * group when they acquire rdtgroup_mutex * @type: indicates type of this rdtgroup - either * monitor only or ctrl_mon group * @mon: mongroup related data * @mode: mode of resource group * @mba_mbps_event: input monitoring event id when mba_sc is enabled * @plr: pseudo-locked region */ struct rdtgroup { struct kernfs_node *kn; struct list_head rdtgroup_list; u32 closid; struct cpumask cpu_mask; int flags; atomic_t waitcount; enum rdt_group_type type; struct mongroup mon; enum rdtgrp_mode mode; enum resctrl_event_id mba_mbps_event; struct pseudo_lock_region *plr; }; /* rdtgroup.flags */ #define RDT_DELETED 1 /* rftype.flags */ #define RFTYPE_FLAGS_CPUS_LIST 1 /* * Define the file type flags for base and info directories. */ #define RFTYPE_INFO BIT(0) #define RFTYPE_BASE BIT(1) #define RFTYPE_CTRL BIT(4) #define RFTYPE_MON BIT(5) #define RFTYPE_TOP BIT(6) #define RFTYPE_RES_CACHE BIT(8) #define RFTYPE_RES_MB BIT(9) #define RFTYPE_DEBUG BIT(10) #define RFTYPE_CTRL_INFO (RFTYPE_INFO | RFTYPE_CTRL) #define RFTYPE_MON_INFO (RFTYPE_INFO | RFTYPE_MON) #define RFTYPE_TOP_INFO (RFTYPE_INFO | RFTYPE_TOP) #define RFTYPE_CTRL_BASE (RFTYPE_BASE | RFTYPE_CTRL) #define RFTYPE_MON_BASE (RFTYPE_BASE | RFTYPE_MON) /* List of all resource groups */ extern struct list_head rdt_all_groups; extern int max_name_width; /** * struct rftype - describe each file in the resctrl file system * @name: File name * @mode: Access mode * @kf_ops: File operations * @flags: File specific RFTYPE_FLAGS_* flags * @fflags: File specific RFTYPE_* flags * @seq_show: Show content of the file * @write: Write to the file */ struct rftype { char *name; umode_t mode; const struct kernfs_ops *kf_ops; unsigned long flags; unsigned long fflags; int (*seq_show)(struct kernfs_open_file *of, struct seq_file *sf, void *v); /* * write() is the generic write callback which maps directly to * kernfs write operation and overrides all other operations. * Maximum write size is determined by ->max_write_len. */ ssize_t (*write)(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off); }; /** * struct mbm_state - status for each MBM counter in each domain * @prev_bw_bytes: Previous bytes value read for bandwidth calculation * @prev_bw: The most recent bandwidth in MBps */ struct mbm_state { u64 prev_bw_bytes; u32 prev_bw; }; extern struct mutex rdtgroup_mutex; static inline const char *rdt_kn_name(const struct kernfs_node *kn) { return rcu_dereference_check(kn->name, lockdep_is_held(&rdtgroup_mutex)); } extern struct rdtgroup rdtgroup_default; extern struct dentry *debugfs_resctrl; extern enum resctrl_event_id mba_mbps_default_event; void rdt_last_cmd_clear(void); void rdt_last_cmd_puts(const char *s); __printf(1, 2) void rdt_last_cmd_printf(const char *fmt, ...); struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn); void rdtgroup_kn_unlock(struct kernfs_node *kn); int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name); int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, umode_t mask); ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off); int rdtgroup_schemata_show(struct kernfs_open_file *of, struct seq_file *s, void *v); ssize_t rdtgroup_mba_mbps_event_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off); int rdtgroup_mba_mbps_event_show(struct kernfs_open_file *of, struct seq_file *s, void *v); bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_ctrl_domain *d, unsigned long cbm, int closid, bool exclusive); unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, struct rdt_ctrl_domain *d, unsigned long cbm); enum rdtgrp_mode rdtgroup_mode_by_closid(int closid); int rdtgroup_tasks_assigned(struct rdtgroup *r); int closids_supported(void); void closid_free(int closid); int alloc_rmid(u32 closid); void free_rmid(u32 closid, u32 rmid); void resctrl_mon_resource_exit(void); void mon_event_count(void *info); int rdtgroup_mondata_show(struct seq_file *m, void *arg); void mon_event_read(struct rmid_read *rr, struct rdt_resource *r, struct rdt_mon_domain *d, struct rdtgroup *rdtgrp, cpumask_t *cpumask, int evtid, int first); int resctrl_mon_resource_init(void); void mbm_setup_overflow_handler(struct rdt_mon_domain *dom, unsigned long delay_ms, int exclude_cpu); void mbm_handle_overflow(struct work_struct *work); bool is_mba_sc(struct rdt_resource *r); void cqm_setup_limbo_handler(struct rdt_mon_domain *dom, unsigned long delay_ms, int exclude_cpu); void cqm_handle_limbo(struct work_struct *work); bool has_busy_rmid(struct rdt_mon_domain *d); void __check_limbo(struct rdt_mon_domain *d, bool force_free); void resctrl_file_fflags_init(const char *config, unsigned long fflags); void rdt_staged_configs_clear(void); bool closid_allocated(unsigned int closid); int resctrl_find_cleanest_closid(void); #ifdef CONFIG_RESCTRL_FS_PSEUDO_LOCK int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp); int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp); bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_ctrl_domain *d, unsigned long cbm); bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_ctrl_domain *d); int rdt_pseudo_lock_init(void); void rdt_pseudo_lock_release(void); int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp); void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp); #else static inline int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp) { return -EOPNOTSUPP; } static inline int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp) { return -EOPNOTSUPP; } static inline bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_ctrl_domain *d, unsigned long cbm) { return false; } static inline bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_ctrl_domain *d) { return false; } static inline int rdt_pseudo_lock_init(void) { return 0; } static inline void rdt_pseudo_lock_release(void) { } static inline int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp) { return -EOPNOTSUPP; } static inline void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp) { } #endif /* CONFIG_RESCTRL_FS_PSEUDO_LOCK */ #endif /* _FS_RESCTRL_INTERNAL_H */