// SPDX-License-Identifier: GPL-2.0-only /* * Resource Director Technology(RDT) * - Monitoring code * * Copyright (C) 2017 Intel Corporation * * Author: * Vikas Shivappa * * This replaces the cqm.c based on perf but we reuse a lot of * code and datastructures originally from Peter Zijlstra and Matt Fleming. * * More information about RDT be found in the Intel (R) x86 Architecture * Software Developer Manual June 2016, volume 3, section 17.17. */ #define pr_fmt(fmt) "resctrl: " fmt #include #include #include #include #include "internal.h" #define CREATE_TRACE_POINTS #include "monitor_trace.h" /** * struct rmid_entry - dirty tracking for all RMID. * @closid: The CLOSID for this entry. * @rmid: The RMID for this entry. * @busy: The number of domains with cached data using this RMID. * @list: Member of the rmid_free_lru list when busy == 0. * * Depending on the architecture the correct monitor is accessed using * both @closid and @rmid, or @rmid only. * * Take the rdtgroup_mutex when accessing. */ struct rmid_entry { u32 closid; u32 rmid; int busy; struct list_head list; }; /* * @rmid_free_lru - A least recently used list of free RMIDs * These RMIDs are guaranteed to have an occupancy less than the * threshold occupancy */ static LIST_HEAD(rmid_free_lru); /* * @closid_num_dirty_rmid The number of dirty RMID each CLOSID has. * Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined. * Indexed by CLOSID. Protected by rdtgroup_mutex. */ static u32 *closid_num_dirty_rmid; /* * @rmid_limbo_count - count of currently unused but (potentially) * dirty RMIDs. * This counts RMIDs that no one is currently using but that * may have a occupancy value > resctrl_rmid_realloc_threshold. User can * change the threshold occupancy value. */ static unsigned int rmid_limbo_count; /* * @rmid_entry - The entry in the limbo and free lists. */ static struct rmid_entry *rmid_ptrs; /* * This is the threshold cache occupancy in bytes at which we will consider an * RMID available for re-allocation. */ unsigned int resctrl_rmid_realloc_threshold; /* * This is the maximum value for the reallocation threshold, in bytes. */ unsigned int resctrl_rmid_realloc_limit; /* * x86 and arm64 differ in their handling of monitoring. * x86's RMID are independent numbers, there is only one source of traffic * with an RMID value of '1'. * arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of * traffic with a PMG value of '1', one for each CLOSID, meaning the RMID * value is no longer unique. * To account for this, resctrl uses an index. On x86 this is just the RMID, * on arm64 it encodes the CLOSID and RMID. This gives a unique number. * * The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code * must accept an attempt to read every index. */ static inline struct rmid_entry *__rmid_entry(u32 idx) { struct rmid_entry *entry; u32 closid, rmid; entry = &rmid_ptrs[idx]; resctrl_arch_rmid_idx_decode(idx, &closid, &rmid); WARN_ON_ONCE(entry->closid != closid); WARN_ON_ONCE(entry->rmid != rmid); return entry; } static void limbo_release_entry(struct rmid_entry *entry) { lockdep_assert_held(&rdtgroup_mutex); rmid_limbo_count--; list_add_tail(&entry->list, &rmid_free_lru); if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) closid_num_dirty_rmid[entry->closid]--; } /* * Check the RMIDs that are marked as busy for this domain. If the * reported LLC occupancy is below the threshold clear the busy bit and * decrement the count. If the busy count gets to zero on an RMID, we * free the RMID */ void __check_limbo(struct rdt_mon_domain *d, bool force_free) { struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); u32 idx_limit = resctrl_arch_system_num_rmid_idx(); struct rmid_entry *entry; u32 idx, cur_idx = 1; void *arch_mon_ctx; bool rmid_dirty; u64 val = 0; arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID); if (IS_ERR(arch_mon_ctx)) { pr_warn_ratelimited("Failed to allocate monitor context: %ld", PTR_ERR(arch_mon_ctx)); return; } /* * Skip RMID 0 and start from RMID 1 and check all the RMIDs that * are marked as busy for occupancy < threshold. If the occupancy * is less than the threshold decrement the busy counter of the * RMID and move it to the free list when the counter reaches 0. */ for (;;) { idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx); if (idx >= idx_limit) break; entry = __rmid_entry(idx); if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid, QOS_L3_OCCUP_EVENT_ID, &val, arch_mon_ctx)) { rmid_dirty = true; } else { rmid_dirty = (val >= resctrl_rmid_realloc_threshold); /* * x86's CLOSID and RMID are independent numbers, so the entry's * CLOSID is an empty CLOSID (X86_RESCTRL_EMPTY_CLOSID). On Arm the * RMID (PMG) extends the CLOSID (PARTID) space with bits that aren't * used to select the configuration. It is thus necessary to track both * CLOSID and RMID because there may be dependencies between them * on some architectures. */ trace_mon_llc_occupancy_limbo(entry->closid, entry->rmid, d->hdr.id, val); } if (force_free || !rmid_dirty) { clear_bit(idx, d->rmid_busy_llc); if (!--entry->busy) limbo_release_entry(entry); } cur_idx = idx + 1; } resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx); } bool has_busy_rmid(struct rdt_mon_domain *d) { u32 idx_limit = resctrl_arch_system_num_rmid_idx(); return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit; } static struct rmid_entry *resctrl_find_free_rmid(u32 closid) { struct rmid_entry *itr; u32 itr_idx, cmp_idx; if (list_empty(&rmid_free_lru)) return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC); list_for_each_entry(itr, &rmid_free_lru, list) { /* * Get the index of this free RMID, and the index it would need * to be if it were used with this CLOSID. * If the CLOSID is irrelevant on this architecture, the two * index values are always the same on every entry and thus the * very first entry will be returned. */ itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid); cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid); if (itr_idx == cmp_idx) return itr; } return ERR_PTR(-ENOSPC); } /** * resctrl_find_cleanest_closid() - Find a CLOSID where all the associated * RMID are clean, or the CLOSID that has * the most clean RMID. * * MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID * may not be able to allocate clean RMID. To avoid this the allocator will * choose the CLOSID with the most clean RMID. * * When the CLOSID and RMID are independent numbers, the first free CLOSID will * be returned. */ int resctrl_find_cleanest_closid(void) { u32 cleanest_closid = ~0; int i = 0; lockdep_assert_held(&rdtgroup_mutex); if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) return -EIO; for (i = 0; i < closids_supported(); i++) { int num_dirty; if (closid_allocated(i)) continue; num_dirty = closid_num_dirty_rmid[i]; if (num_dirty == 0) return i; if (cleanest_closid == ~0) cleanest_closid = i; if (num_dirty < closid_num_dirty_rmid[cleanest_closid]) cleanest_closid = i; } if (cleanest_closid == ~0) return -ENOSPC; return cleanest_closid; } /* * For MPAM the RMID value is not unique, and has to be considered with * the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which * allows all domains to be managed by a single free list. * Each domain also has a rmid_busy_llc to reduce the work of the limbo handler. */ int alloc_rmid(u32 closid) { struct rmid_entry *entry; lockdep_assert_held(&rdtgroup_mutex); entry = resctrl_find_free_rmid(closid); if (IS_ERR(entry)) return PTR_ERR(entry); list_del(&entry->list); return entry->rmid; } static void add_rmid_to_limbo(struct rmid_entry *entry) { struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); struct rdt_mon_domain *d; u32 idx; lockdep_assert_held(&rdtgroup_mutex); /* Walking r->domains, ensure it can't race with cpuhp */ lockdep_assert_cpus_held(); idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid); entry->busy = 0; list_for_each_entry(d, &r->mon_domains, hdr.list) { /* * For the first limbo RMID in the domain, * setup up the limbo worker. */ if (!has_busy_rmid(d)) cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL, RESCTRL_PICK_ANY_CPU); set_bit(idx, d->rmid_busy_llc); entry->busy++; } rmid_limbo_count++; if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) closid_num_dirty_rmid[entry->closid]++; } void free_rmid(u32 closid, u32 rmid) { u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid); struct rmid_entry *entry; lockdep_assert_held(&rdtgroup_mutex); /* * Do not allow the default rmid to be free'd. Comparing by index * allows architectures that ignore the closid parameter to avoid an * unnecessary check. */ if (!resctrl_arch_mon_capable() || idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID, RESCTRL_RESERVED_RMID)) return; entry = __rmid_entry(idx); if (resctrl_arch_is_llc_occupancy_enabled()) add_rmid_to_limbo(entry); else list_add_tail(&entry->list, &rmid_free_lru); } static struct mbm_state *get_mbm_state(struct rdt_mon_domain *d, u32 closid, u32 rmid, enum resctrl_event_id evtid) { u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid); switch (evtid) { case QOS_L3_MBM_TOTAL_EVENT_ID: return &d->mbm_total[idx]; case QOS_L3_MBM_LOCAL_EVENT_ID: return &d->mbm_local[idx]; default: return NULL; } } static int __mon_event_count(u32 closid, u32 rmid, struct rmid_read *rr) { int cpu = smp_processor_id(); struct rdt_mon_domain *d; struct mbm_state *m; int err, ret; u64 tval = 0; if (rr->first) { resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid); m = get_mbm_state(rr->d, closid, rmid, rr->evtid); if (m) memset(m, 0, sizeof(struct mbm_state)); return 0; } if (rr->d) { /* Reading a single domain, must be on a CPU in that domain. */ if (!cpumask_test_cpu(cpu, &rr->d->hdr.cpu_mask)) return -EINVAL; rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid, rr->evtid, &tval, rr->arch_mon_ctx); if (rr->err) return rr->err; rr->val += tval; return 0; } /* Summing domains that share a cache, must be on a CPU for that cache. */ if (!cpumask_test_cpu(cpu, &rr->ci->shared_cpu_map)) return -EINVAL; /* * Legacy files must report the sum of an event across all * domains that share the same L3 cache instance. * Report success if a read from any domain succeeds, -EINVAL * (translated to "Unavailable" for user space) if reading from * all domains fail for any reason. */ ret = -EINVAL; list_for_each_entry(d, &rr->r->mon_domains, hdr.list) { if (d->ci->id != rr->ci->id) continue; err = resctrl_arch_rmid_read(rr->r, d, closid, rmid, rr->evtid, &tval, rr->arch_mon_ctx); if (!err) { rr->val += tval; ret = 0; } } if (ret) rr->err = ret; return ret; } /* * mbm_bw_count() - Update bw count from values previously read by * __mon_event_count(). * @closid: The closid used to identify the cached mbm_state. * @rmid: The rmid used to identify the cached mbm_state. * @rr: The struct rmid_read populated by __mon_event_count(). * * Supporting function to calculate the memory bandwidth * and delta bandwidth in MBps. The chunks value previously read by * __mon_event_count() is compared with the chunks value from the previous * invocation. This must be called once per second to maintain values in MBps. */ static void mbm_bw_count(u32 closid, u32 rmid, struct rmid_read *rr) { u64 cur_bw, bytes, cur_bytes; struct mbm_state *m; m = get_mbm_state(rr->d, closid, rmid, rr->evtid); if (WARN_ON_ONCE(!m)) return; cur_bytes = rr->val; bytes = cur_bytes - m->prev_bw_bytes; m->prev_bw_bytes = cur_bytes; cur_bw = bytes / SZ_1M; m->prev_bw = cur_bw; } /* * This is scheduled by mon_event_read() to read the CQM/MBM counters * on a domain. */ void mon_event_count(void *info) { struct rdtgroup *rdtgrp, *entry; struct rmid_read *rr = info; struct list_head *head; int ret; rdtgrp = rr->rgrp; ret = __mon_event_count(rdtgrp->closid, rdtgrp->mon.rmid, rr); /* * For Ctrl groups read data from child monitor groups and * add them together. Count events which are read successfully. * Discard the rmid_read's reporting errors. */ head = &rdtgrp->mon.crdtgrp_list; if (rdtgrp->type == RDTCTRL_GROUP) { list_for_each_entry(entry, head, mon.crdtgrp_list) { if (__mon_event_count(entry->closid, entry->mon.rmid, rr) == 0) ret = 0; } } /* * __mon_event_count() calls for newly created monitor groups may * report -EINVAL/Unavailable if the monitor hasn't seen any traffic. * Discard error if any of the monitor event reads succeeded. */ if (ret == 0) rr->err = 0; } static struct rdt_ctrl_domain *get_ctrl_domain_from_cpu(int cpu, struct rdt_resource *r) { struct rdt_ctrl_domain *d; lockdep_assert_cpus_held(); list_for_each_entry(d, &r->ctrl_domains, hdr.list) { /* Find the domain that contains this CPU */ if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask)) return d; } return NULL; } /* * Feedback loop for MBA software controller (mba_sc) * * mba_sc is a feedback loop where we periodically read MBM counters and * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so * that: * * current bandwidth(cur_bw) < user specified bandwidth(user_bw) * * This uses the MBM counters to measure the bandwidth and MBA throttle * MSRs to control the bandwidth for a particular rdtgrp. It builds on the * fact that resctrl rdtgroups have both monitoring and control. * * The frequency of the checks is 1s and we just tag along the MBM overflow * timer. Having 1s interval makes the calculation of bandwidth simpler. * * Although MBA's goal is to restrict the bandwidth to a maximum, there may * be a need to increase the bandwidth to avoid unnecessarily restricting * the L2 <-> L3 traffic. * * Since MBA controls the L2 external bandwidth where as MBM measures the * L3 external bandwidth the following sequence could lead to such a * situation. * * Consider an rdtgroup which had high L3 <-> memory traffic in initial * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but * after some time rdtgroup has mostly L2 <-> L3 traffic. * * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its * throttle MSRs already have low percentage values. To avoid * unnecessarily restricting such rdtgroups, we also increase the bandwidth. */ static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_mon_domain *dom_mbm) { u32 closid, rmid, cur_msr_val, new_msr_val; struct mbm_state *pmbm_data, *cmbm_data; struct rdt_ctrl_domain *dom_mba; enum resctrl_event_id evt_id; struct rdt_resource *r_mba; struct list_head *head; struct rdtgroup *entry; u32 cur_bw, user_bw; r_mba = resctrl_arch_get_resource(RDT_RESOURCE_MBA); evt_id = rgrp->mba_mbps_event; closid = rgrp->closid; rmid = rgrp->mon.rmid; pmbm_data = get_mbm_state(dom_mbm, closid, rmid, evt_id); if (WARN_ON_ONCE(!pmbm_data)) return; dom_mba = get_ctrl_domain_from_cpu(smp_processor_id(), r_mba); if (!dom_mba) { pr_warn_once("Failure to get domain for MBA update\n"); return; } cur_bw = pmbm_data->prev_bw; user_bw = dom_mba->mbps_val[closid]; /* MBA resource doesn't support CDP */ cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE); /* * For Ctrl groups read data from child monitor groups. */ head = &rgrp->mon.crdtgrp_list; list_for_each_entry(entry, head, mon.crdtgrp_list) { cmbm_data = get_mbm_state(dom_mbm, entry->closid, entry->mon.rmid, evt_id); if (WARN_ON_ONCE(!cmbm_data)) return; cur_bw += cmbm_data->prev_bw; } /* * Scale up/down the bandwidth linearly for the ctrl group. The * bandwidth step is the bandwidth granularity specified by the * hardware. * Always increase throttling if current bandwidth is above the * target set by user. * But avoid thrashing up and down on every poll by checking * whether a decrease in throttling is likely to push the group * back over target. E.g. if currently throttling to 30% of bandwidth * on a system with 10% granularity steps, check whether moving to * 40% would go past the limit by multiplying current bandwidth by * "(30 + 10) / 30". */ if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) { new_msr_val = cur_msr_val - r_mba->membw.bw_gran; } else if (cur_msr_val < MAX_MBA_BW && (user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) { new_msr_val = cur_msr_val + r_mba->membw.bw_gran; } else { return; } resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val); } static void mbm_update_one_event(struct rdt_resource *r, struct rdt_mon_domain *d, u32 closid, u32 rmid, enum resctrl_event_id evtid) { struct rmid_read rr = {0}; rr.r = r; rr.d = d; rr.evtid = evtid; rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid); if (IS_ERR(rr.arch_mon_ctx)) { pr_warn_ratelimited("Failed to allocate monitor context: %ld", PTR_ERR(rr.arch_mon_ctx)); return; } __mon_event_count(closid, rmid, &rr); /* * If the software controller is enabled, compute the * bandwidth for this event id. */ if (is_mba_sc(NULL)) mbm_bw_count(closid, rmid, &rr); resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx); } static void mbm_update(struct rdt_resource *r, struct rdt_mon_domain *d, u32 closid, u32 rmid) { /* * This is protected from concurrent reads from user as both * the user and overflow handler hold the global mutex. */ if (resctrl_arch_is_mbm_total_enabled()) mbm_update_one_event(r, d, closid, rmid, QOS_L3_MBM_TOTAL_EVENT_ID); if (resctrl_arch_is_mbm_local_enabled()) mbm_update_one_event(r, d, closid, rmid, QOS_L3_MBM_LOCAL_EVENT_ID); } /* * Handler to scan the limbo list and move the RMIDs * to free list whose occupancy < threshold_occupancy. */ void cqm_handle_limbo(struct work_struct *work) { unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL); struct rdt_mon_domain *d; cpus_read_lock(); mutex_lock(&rdtgroup_mutex); d = container_of(work, struct rdt_mon_domain, cqm_limbo.work); __check_limbo(d, false); if (has_busy_rmid(d)) { d->cqm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask, RESCTRL_PICK_ANY_CPU); schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo, delay); } mutex_unlock(&rdtgroup_mutex); cpus_read_unlock(); } /** * cqm_setup_limbo_handler() - Schedule the limbo handler to run for this * domain. * @dom: The domain the limbo handler should run for. * @delay_ms: How far in the future the handler should run. * @exclude_cpu: Which CPU the handler should not run on, * RESCTRL_PICK_ANY_CPU to pick any CPU. */ void cqm_setup_limbo_handler(struct rdt_mon_domain *dom, unsigned long delay_ms, int exclude_cpu) { unsigned long delay = msecs_to_jiffies(delay_ms); int cpu; cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu); dom->cqm_work_cpu = cpu; if (cpu < nr_cpu_ids) schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay); } void mbm_handle_overflow(struct work_struct *work) { unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL); struct rdtgroup *prgrp, *crgrp; struct rdt_mon_domain *d; struct list_head *head; struct rdt_resource *r; cpus_read_lock(); mutex_lock(&rdtgroup_mutex); /* * If the filesystem has been unmounted this work no longer needs to * run. */ if (!resctrl_mounted || !resctrl_arch_mon_capable()) goto out_unlock; r = resctrl_arch_get_resource(RDT_RESOURCE_L3); d = container_of(work, struct rdt_mon_domain, mbm_over.work); list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { mbm_update(r, d, prgrp->closid, prgrp->mon.rmid); head = &prgrp->mon.crdtgrp_list; list_for_each_entry(crgrp, head, mon.crdtgrp_list) mbm_update(r, d, crgrp->closid, crgrp->mon.rmid); if (is_mba_sc(NULL)) update_mba_bw(prgrp, d); } /* * Re-check for housekeeping CPUs. This allows the overflow handler to * move off a nohz_full CPU quickly. */ d->mbm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask, RESCTRL_PICK_ANY_CPU); schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay); out_unlock: mutex_unlock(&rdtgroup_mutex); cpus_read_unlock(); } /** * mbm_setup_overflow_handler() - Schedule the overflow handler to run for this * domain. * @dom: The domain the overflow handler should run for. * @delay_ms: How far in the future the handler should run. * @exclude_cpu: Which CPU the handler should not run on, * RESCTRL_PICK_ANY_CPU to pick any CPU. */ void mbm_setup_overflow_handler(struct rdt_mon_domain *dom, unsigned long delay_ms, int exclude_cpu) { unsigned long delay = msecs_to_jiffies(delay_ms); int cpu; /* * When a domain comes online there is no guarantee the filesystem is * mounted. If not, there is no need to catch counter overflow. */ if (!resctrl_mounted || !resctrl_arch_mon_capable()) return; cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu); dom->mbm_work_cpu = cpu; if (cpu < nr_cpu_ids) schedule_delayed_work_on(cpu, &dom->mbm_over, delay); } static int dom_data_init(struct rdt_resource *r) { u32 idx_limit = resctrl_arch_system_num_rmid_idx(); u32 num_closid = resctrl_arch_get_num_closid(r); struct rmid_entry *entry = NULL; int err = 0, i; u32 idx; mutex_lock(&rdtgroup_mutex); if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { u32 *tmp; /* * If the architecture hasn't provided a sanitised value here, * this may result in larger arrays than necessary. Resctrl will * use a smaller system wide value based on the resources in * use. */ tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL); if (!tmp) { err = -ENOMEM; goto out_unlock; } closid_num_dirty_rmid = tmp; } rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL); if (!rmid_ptrs) { if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { kfree(closid_num_dirty_rmid); closid_num_dirty_rmid = NULL; } err = -ENOMEM; goto out_unlock; } for (i = 0; i < idx_limit; i++) { entry = &rmid_ptrs[i]; INIT_LIST_HEAD(&entry->list); resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid); list_add_tail(&entry->list, &rmid_free_lru); } /* * RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and * are always allocated. These are used for the rdtgroup_default * control group, which will be setup later in resctrl_init(). */ idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID, RESCTRL_RESERVED_RMID); entry = __rmid_entry(idx); list_del(&entry->list); out_unlock: mutex_unlock(&rdtgroup_mutex); return err; } static void dom_data_exit(struct rdt_resource *r) { mutex_lock(&rdtgroup_mutex); if (!r->mon_capable) goto out_unlock; if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { kfree(closid_num_dirty_rmid); closid_num_dirty_rmid = NULL; } kfree(rmid_ptrs); rmid_ptrs = NULL; out_unlock: mutex_unlock(&rdtgroup_mutex); } static struct mon_evt llc_occupancy_event = { .name = "llc_occupancy", .evtid = QOS_L3_OCCUP_EVENT_ID, }; static struct mon_evt mbm_total_event = { .name = "mbm_total_bytes", .evtid = QOS_L3_MBM_TOTAL_EVENT_ID, }; static struct mon_evt mbm_local_event = { .name = "mbm_local_bytes", .evtid = QOS_L3_MBM_LOCAL_EVENT_ID, }; /* * Initialize the event list for the resource. * * Note that MBM events are also part of RDT_RESOURCE_L3 resource * because as per the SDM the total and local memory bandwidth * are enumerated as part of L3 monitoring. */ static void l3_mon_evt_init(struct rdt_resource *r) { INIT_LIST_HEAD(&r->evt_list); if (resctrl_arch_is_llc_occupancy_enabled()) list_add_tail(&llc_occupancy_event.list, &r->evt_list); if (resctrl_arch_is_mbm_total_enabled()) list_add_tail(&mbm_total_event.list, &r->evt_list); if (resctrl_arch_is_mbm_local_enabled()) list_add_tail(&mbm_local_event.list, &r->evt_list); } /** * resctrl_mon_resource_init() - Initialise global monitoring structures. * * Allocate and initialise global monitor resources that do not belong to a * specific domain. i.e. the rmid_ptrs[] used for the limbo and free lists. * Called once during boot after the struct rdt_resource's have been configured * but before the filesystem is mounted. * Resctrl's cpuhp callbacks may be called before this point to bring a domain * online. * * Returns 0 for success, or -ENOMEM. */ int resctrl_mon_resource_init(void) { struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); int ret; if (!r->mon_capable) return 0; ret = dom_data_init(r); if (ret) return ret; l3_mon_evt_init(r); if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_TOTAL_EVENT_ID)) { mbm_total_event.configurable = true; resctrl_file_fflags_init("mbm_total_bytes_config", RFTYPE_MON_INFO | RFTYPE_RES_CACHE); } if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_LOCAL_EVENT_ID)) { mbm_local_event.configurable = true; resctrl_file_fflags_init("mbm_local_bytes_config", RFTYPE_MON_INFO | RFTYPE_RES_CACHE); } if (resctrl_arch_is_mbm_local_enabled()) mba_mbps_default_event = QOS_L3_MBM_LOCAL_EVENT_ID; else if (resctrl_arch_is_mbm_total_enabled()) mba_mbps_default_event = QOS_L3_MBM_TOTAL_EVENT_ID; return 0; } void resctrl_mon_resource_exit(void) { struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); dom_data_exit(r); }