Age | Commit message (Collapse) | Author |
|
SMMU_PMCG_IIDR was added in the SMMUv3.3 spec.
For the perf tool to know the specific HW implementation, expose the
PMCG_IIDR contents only when set.
Signed-off-by: John Garry <john.garry@huawei.com>
Link: https://lore.kernel.org/r/1602149181-237415-5-git-send-email-john.garry@huawei.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
To allow userspace to identify the specific implementation of the device,
add an "identifier" sysfs file.
Encoding is as follows (same for all uncore drivers):
hi1620: 0x0
hi1630: 0x30
Signed-off-by: John Garry <john.garry@huawei.com>
Link: https://lore.kernel.org/r/1602149181-237415-2-git-send-email-john.garry@huawei.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
fwnode is checked IS_ERR_OR_NULL in following check by
is_of_node() or is_acpi_device_node(), remove duplicate check.
Signed-off-by: Wang Qing <wangqing@vivo.com>
Link: https://lore.kernel.org/r/1604644902-29655-1-git-send-email-wangqing@vivo.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
DMC-620 PMU supports total 10 counters which each is
independently programmable to different events and can
be started and stopped individually.
Currently, it only supports ACPI. Other platforms feel free to test and add
support for device tree.
Usage example:
#perf stat -e arm_dmc620_10008c000/clk_cycle_count/ -C 0
Get perf event for clk_cycle_count counter.
#perf stat -e arm_dmc620_10008c000/clkdiv2_allocate,mask=0x1f,match=0x2f,
incr=2,invert=1/ -C 0
The above example shows how to specify mask, match, incr,
invert parameters for clkdiv2_allocate event.
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Tuan Phan <tuanphan@os.amperecomputing.com>
Link: https://lore.kernel.org/r/1604518246-6198-1-git-send-email-tuanphan@os.amperecomputing.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The kernel currently clears the tag bits (i.e. bits 56-63) in the fault
address exposed via siginfo.si_addr and sigcontext.fault_address. However,
the tag bits may be needed by tools in order to accurately diagnose
memory errors, such as HWASan [1] or future tools based on the Memory
Tagging Extension (MTE).
Expose these bits via the arch_untagged_si_addr mechanism, so that
they are only exposed to signal handlers with the SA_EXPOSE_TAGBITS
flag set.
[1] http://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://linux-review.googlesource.com/id/Ia8876bad8c798e0a32df7c2ce1256c4771c81446
Link: https://lore.kernel.org/r/0010296597784267472fa13b39f8238d87a72cf8.1605904350.git.pcc@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Architectures that support address tagging, such as arm64, may want to
expose fault address tag bits to the signal handler to help diagnose
memory errors. However, these bits have not been previously set,
and their presence may confuse unaware user applications. Therefore,
introduce a SA_EXPOSE_TAGBITS flag bit in sa_flags that a signal
handler may use to explicitly request that the bits are set.
The generic signal handler APIs expect to receive tagged addresses.
Architectures may specify how to untag addresses in the case where
SA_EXPOSE_TAGBITS is clear by defining the arch_untagged_si_addr
function.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://linux-review.googlesource.com/id/I16dd0ed2081f091fce97be0190cb8caa874c26cb
Link: https://lkml.kernel.org/r/13cf24d00ebdd8e1f55caf1821c7c29d54100191.1605904350.git.pcc@google.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
Define a sa_flags bit, SA_UNSUPPORTED, which will never be supported
in the uapi. The purpose of this flag bit is to allow userspace to
distinguish an old kernel that does not clear unknown sa_flags bits
from a kernel that supports every flag bit.
In other words, if userspace does something like:
act.sa_flags |= SA_UNSUPPORTED;
sigaction(SIGSEGV, &act, 0);
sigaction(SIGSEGV, 0, &oldact);
and finds that SA_UNSUPPORTED remains set in oldact.sa_flags, it means
that the kernel cannot be trusted to have cleared unknown flag bits
from sa_flags, so no assumptions about flag bit support can be made.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Link: https://linux-review.googlesource.com/id/Ic2501ad150a3a79c1cf27fb8c99be342e9dffbcb
Link: https://lkml.kernel.org/r/bda7ddff8895a9bc4ffc5f3cf3d4d37a32118077.1605582887.git.pcc@google.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
Instead of documenting the arch-specific flag values in a comment at
the top where they may be easily overlooked, document them in comments
inline with the definitions in numerical order so that it is clear
why specific values must be chosen for new generic flags and to reduce
the likelihood of conflicts between generic and arch-specific flags.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Link: https://linux-review.googlesource.com/id/I40a129cf7c3a71ba1bfd6d936c544072ee3b7ce6
Link: https://lkml.kernel.org/r/198c8b68c76bf3ed73117d817c7cdf9bc0eb174f.1605582887.git.pcc@google.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
Previously we were not clearing non-uapi flag bits in
sigaction.sa_flags when storing the userspace-provided sa_flags or
when returning them via oldact. Start doing so.
This allows userspace to detect missing support for flag bits and
allows the kernel to use non-uapi bits internally, as we are already
doing in arch/x86 for two flag bits. Now that this change is in
place, we no longer need the code in arch/x86 that was hiding these
bits from userspace, so remove it.
This is technically a userspace-visible behavior change for sigaction, as
the unknown bits returned via oldact.sa_flags are no longer set. However,
we are free to define the behavior for unknown bits exactly because
their behavior is currently undefined, so for now we can define the
meaning of each of them to be "clear the bit in oldact.sa_flags unless
the bit becomes known in the future". Furthermore, this behavior is
consistent with OpenBSD [1], illumos [2] and XNU [3] (FreeBSD [4] and
NetBSD [5] fail the syscall if unknown bits are set). So there is some
precedent for this behavior in other kernels, and in particular in XNU,
which is probably the most popular kernel among those that I looked at,
which means that this change is less likely to be a compatibility issue.
Link: [1] https://github.com/openbsd/src/blob/f634a6a4b5bf832e9c1de77f7894ae2625e74484/sys/kern/kern_sig.c#L278
Link: [2] https://github.com/illumos/illumos-gate/blob/76f19f5fdc974fe5be5c82a556e43a4df93f1de1/usr/src/uts/common/syscall/sigaction.c#L86
Link: [3] https://github.com/apple/darwin-xnu/blob/a449c6a3b8014d9406c2ddbdc81795da24aa7443/bsd/kern/kern_sig.c#L480
Link: [4] https://github.com/freebsd/freebsd/blob/eded70c37057857c6e23fae51f86b8f8f43cd2d0/sys/kern/kern_sig.c#L699
Link: [5] https://github.com/NetBSD/src/blob/3365779becdcedfca206091a645a0e8e22b2946e/sys/kern/sys_sig.c#L473
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://linux-review.googlesource.com/id/I35aab6f5be932505d90f3b3450c083b4db1eca86
Link: https://lkml.kernel.org/r/878dbcb5f47bc9b11881c81f745c0bef5c23f97f.1605235762.git.pcc@google.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
Most architectures with the exception of alpha, mips, parisc and
sparc use the same values for these flags. Move their definitions into
asm-generic/signal-defs.h and allow the architectures with non-standard
values to override them. Also, document the non-standard flag values
in order to make it easier to add new generic flags in the future.
A consequence of this change is that on powerpc and x86, the constants'
values aside from SA_RESETHAND change signedness from unsigned
to signed. This is not expected to impact realistic use of these
constants. In particular the typical use of the constants where they
are or'ed together and assigned to sa_flags (or another int variable)
would not be affected.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Link: https://linux-review.googlesource.com/id/Ia3849f18b8009bf41faca374e701cdca36974528
Link: https://lkml.kernel.org/r/b6d0d1ec34f9ee93e1105f14f288fba5f89d1f24.1605235762.git.pcc@google.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
We currently include signal-defs.h on all architectures except parisc.
Make parisc fall in line. This will make maintenance easier once the
flag bits are moved here.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Acked-by: Helge Deller <deller@gmx.de>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://linux-review.googlesource.com/id/If03a5135fb514fe96548fb74610e6c3586a04064
Link: https://lkml.kernel.org/r/be8f3680ef2d0a1a120994e3ae0b11d82f373279.1605235762.git.pcc@google.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
I believe we can and *should* drop this parisc-specific typedef for
__sighandler_t when compiling a 64-bit kernel. The reasons:
1. We don't have a 64-bit userspace yet, so nothing (on userspace side)
can break.
2. Inside the Linux kernel, this is only used in kernel/signal.c, in
function kernel_sigaction() where the signal handler is compared against
SIG_IGN. SIG_IGN is defined as (__sighandler_t)1), so only the pointers
are compared.
3. Even when a 64-bit userspace gets added at some point, I think
__sighandler_t should be defined what it is: a function pointer struct.
I compiled kernel/signal.c with and without the patch, and the produced code
is identical in both cases.
Signed-off-by: Helge Deller <deller@gmx.de>
Signed-off-by: Peter Collingbourne <pcc@google.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reviewed-by: Peter Collingbourne <pcc@google.com>
Link: https://linux-review.googlesource.com/id/I21c43f21b264f339e3aa395626af838646f62d97
Link: https://lkml.kernel.org/r/a75b8eb7bb9eac1cf73fb119eb53e5892d6e9656.1605235762.git.pcc@google.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
With hardware dirty bit management, calling pte_wrprotect() on a writable,
dirty PTE will lose the dirty state and return a read-only, clean entry.
Move the logic from ptep_set_wrprotect() into pte_wrprotect() to ensure that
the dirty bit is preserved for writable entries, as this is required for
soft-dirty bit management if we enable it in the future.
Cc: <stable@vger.kernel.org>
Fixes: 2f4b829c625e ("arm64: Add support for hardware updates of the access and dirty pte bits")
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20201120143557.6715-3-will@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
pte_accessible() is used by ptep_clear_flush() to figure out whether TLB
invalidation is necessary when unmapping pages for reclaim. Although our
implementation is correct according to the architecture, returning true
only for valid, young ptes in the absence of racing page-table
modifications, this is in fact flawed due to lazy invalidation of old
ptes in ptep_clear_flush_young() where we elide the expensive DSB
instruction for completing the TLB invalidation.
Rather than penalise the aging path, adjust pte_accessible() to return
true for any valid pte, even if the access flag is cleared.
Cc: <stable@vger.kernel.org>
Fixes: 76c714be0e5e ("arm64: pgtable: implement pte_accessible()")
Reported-by: Yu Zhao <yuzhao@google.com>
Acked-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20201120143557.6715-2-will@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Fix following warnings caused by mismatch between
function parameters and function comments.
drivers/acpi/arm64/iort.c:55: warning: Function parameter or member 'iort_node' not described in 'iort_set_fwnode'
drivers/acpi/arm64/iort.c:55: warning: Excess function parameter 'node' description in 'iort_set_fwnode'
drivers/acpi/arm64/iort.c:682: warning: Function parameter or member 'id' not described in 'iort_get_device_domain'
drivers/acpi/arm64/iort.c:682: warning: Function parameter or member 'bus_token' not described in 'iort_get_device_domain'
drivers/acpi/arm64/iort.c:682: warning: Excess function parameter 'req_id' description in 'iort_get_device_domain'
drivers/acpi/arm64/iort.c:1142: warning: Function parameter or member 'dma_size' not described in 'iort_dma_setup'
drivers/acpi/arm64/iort.c:1142: warning: Excess function parameter 'size' description in 'iort_dma_setup'
drivers/acpi/arm64/iort.c:1534: warning: Function parameter or member 'ops' not described in 'iort_add_platform_device'
Signed-off-by: Shiju Jose <shiju.jose@huawei.com>
Acked-by: Hanjun Guo <guohanjun@huawei.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Link: https://lore.kernel.org/r/20201014093139.1580-1-shiju.jose@huawei.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Adding <asm/exception.h> brought in <asm/kprobes.h> which uses
<asm/probes.h>, which uses 'pstate_check_t' so the latter needs to
#include <asm/insn.h> for this typedef.
Fixes this build error:
In file included from arch/arm64/include/asm/kprobes.h:24,
from arch/arm64/include/asm/exception.h:11,
from arch/arm64/kernel/fpsimd.c:35:
arch/arm64/include/asm/probes.h:16:2: error: unknown type name 'pstate_check_t'
16 | pstate_check_t *pstate_cc;
Fixes: c6b90d5cf637 ("arm64/fpsimd: Fix missing-prototypes in fpsimd.c")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Will Deacon <will@kernel.org>
Cc: Tian Tao <tiantao6@hisilicon.com>
Link: https://lore.kernel.org/r/20201123044510.9942-1-rdunlap@infradead.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
We can't really list every setup in common code. On top of that they are
unlikely to stay true for long as things change in the arch trees
independently of this comment.
Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20201119175400.9995-8-nsaenzjulienne@suse.de
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
We recently introduced a 1 GB sized ZONE_DMA to cater for platforms
incorporating masters that can address less than 32 bits of DMA, in
particular the Raspberry Pi 4, which has 4 or 8 GB of DRAM, but has
peripherals that can only address up to 1 GB (and its PCIe host
bridge can only access the bottom 3 GB)
Instructing the DMA layer about these limitations is straight-forward,
even though we had to fix some issues regarding memory limits set in
the IORT for named components, and regarding the handling of ACPI _DMA
methods. However, the DMA layer also needs to be able to allocate
memory that is guaranteed to meet those DMA constraints, for bounce
buffering as well as allocating the backing for consistent mappings.
This is why the 1 GB ZONE_DMA was introduced recently. Unfortunately,
it turns out the having a 1 GB ZONE_DMA as well as a ZONE_DMA32 causes
problems with kdump, and potentially in other places where allocations
cannot cross zone boundaries. Therefore, we should avoid having two
separate DMA zones when possible.
So let's do an early scan of the IORT, and only create the ZONE_DMA
if we encounter any devices that need it. This puts the burden on
the firmware to describe such limitations in the IORT, which may be
redundant (and less precise) if _DMA methods are also being provided.
However, it should be noted that this situation is highly unusual for
arm64 ACPI machines. Also, the DMA subsystem still gives precedence to
the _DMA method if implemented, and so we will not lose the ability to
perform streaming DMA outside the ZONE_DMA if the _DMA method permits
it.
[nsaenz: unified implementation with DT's counterpart]
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Hanjun Guo <guohanjun@huawei.com>
Cc: Jeremy Linton <jeremy.linton@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20201119175400.9995-7-nsaenzjulienne@suse.de
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
We recently introduced a 1 GB sized ZONE_DMA to cater for platforms
incorporating masters that can address less than 32 bits of DMA, in
particular the Raspberry Pi 4, which has 4 or 8 GB of DRAM, but has
peripherals that can only address up to 1 GB (and its PCIe host
bridge can only access the bottom 3 GB)
The DMA layer also needs to be able to allocate memory that is
guaranteed to meet those DMA constraints, for bounce buffering as well
as allocating the backing for consistent mappings. This is why the 1 GB
ZONE_DMA was introduced recently. Unfortunately, it turns out the having
a 1 GB ZONE_DMA as well as a ZONE_DMA32 causes problems with kdump, and
potentially in other places where allocations cannot cross zone
boundaries. Therefore, we should avoid having two separate DMA zones
when possible.
So, with the help of of_dma_get_max_cpu_address() get the topmost
physical address accessible to all DMA masters in system and use that
information to fine-tune ZONE_DMA's size. In the absence of addressing
limited masters ZONE_DMA will span the whole 32-bit address space,
otherwise, in the case of the Raspberry Pi 4 it'll only span the 30-bit
address space, and have ZONE_DMA32 cover the rest of the 32-bit address
space.
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Link: https://lore.kernel.org/r/20201119175400.9995-6-nsaenzjulienne@suse.de
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Introduce a test for of_dma_get_max_cup_address(), it uses the same DT
data as the rest of dma-ranges unit tests.
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Reviewed-by: Rob Herring <robh@kernel.org>
Link: https://lore.kernel.org/r/20201119175400.9995-5-nsaenzjulienne@suse.de
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Introduce of_dma_get_max_cpu_address(), which provides the highest CPU
physical address addressable by all DMA masters in the system. It's
specially useful for setting memory zones sizes at early boot time.
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Reviewed-by: Rob Herring <robh@kernel.org>
Link: https://lore.kernel.org/r/20201119175400.9995-4-nsaenzjulienne@suse.de
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
zone_dma_bits's initialization happens earlier that it's actually
needed, in arm64_memblock_init(). So move it into the more suitable
zone_sizes_init().
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Link: https://lore.kernel.org/r/20201119175400.9995-3-nsaenzjulienne@suse.de
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
crashkernel might reserve memory located in ZONE_DMA. We plan to delay
ZONE_DMA's initialization after unflattening the devicetree and ACPI's
boot table initialization, so move it later in the boot process.
Specifically into bootmem_init() since request_standard_resources()
depends on it.
Signed-off-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Link: https://lore.kernel.org/r/20201119175400.9995-2-nsaenzjulienne@suse.de
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
mem_init() currently relies on knowing the boundaries of the crashkernel
reservation to map such region with page granularity for later
unmapping via set_memory_valid(..., 0). If the crashkernel reservation
is deferred, such boundaries are not known when the linear mapping is
created. Simply parse the command line for "crashkernel" and, if found,
create the linear map with NO_BLOCK_MAPPINGS.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Reviewed-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Acked-by: James Morse <james.morse@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Link: https://lore.kernel.org/r/20201119175556.18681-1-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Currently, the kernel assumes that if RAM starts above 32-bit (or
zone_bits), there is still a ZONE_DMA/DMA32 at the bottom of the RAM and
such constrained devices have a hardwired DMA offset. In practice, we
haven't noticed any such hardware so let's assume that we can expand
ZONE_DMA32 to the available memory if no RAM below 4GB. Similarly,
ZONE_DMA is expanded to the 4GB limit if no RAM addressable by
zone_bits.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Reviewed-by: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Cc: Nicolas Saenz Julienne <nsaenzjulienne@suse.de>
Cc: Robin Murphy <robin.murphy@arm.com>
Link: https://lore.kernel.org/r/20201118185809.1078362-1-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
We don't need to check for MTE support before checking the flag
because it can only be set if the hardware supports MTE. As a result
we can unconditionally check the flag bit which is expected to be in
a register and therefore the check can be done in a single instruction
instead of first needing to load the hwcaps.
On a DragonBoard 845c with a kernel built with CONFIG_ARM64_MTE=y with
the powersave governor this reduces the cost of a kernel entry/exit
(invalid syscall) from 465.1ns to 463.8ns.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Link: https://linux-review.googlesource.com/id/If4dc3501fd4e4f287322f17805509613cfe47d24
Link: https://lore.kernel.org/r/20201118032051.1405907-1-pcc@google.com
[catalin.marinas@arm.com: remove IS_ENABLED(CONFIG_ARM64_MTE)]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
When section mappings are enabled, we allocate vmemmap pages from
physically continuous memory of size PMD_SIZE using
vmemmap_alloc_block_buf(). Section mappings are good to reduce TLB
pressure. But when system is highly fragmented and memory blocks are
being hot-added at runtime, its possible that such physically continuous
memory allocations can fail. Rather than failing the memory hot-add
procedure, add a fallback option to allocate vmemmap pages from
discontinuous pages using vmemmap_populate_basepages().
Signed-off-by: Sudarshan Rajagopalan <sudaraja@codeaurora.org>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Steven Price <steven.price@arm.com>
Link: https://lore.kernel.org/r/d6c06f2ef39bbe6c715b2f6db76eb16155fdcee6.1602722808.git.sudaraja@codeaurora.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Even though support for EFI boot remains entirely optional for arm64,
it is unlikely that we will ever be able to repurpose the image header
fields that the EFI loader relies on, i.e., the magic NOP at offset
0x0 and the PE header address at offset 0x3c.
So let's factor out the differences into a 'efi_signature_nop' macro and
a local symbol representing the PE header address, and move the
conditional definitions into efi-header.S, taking into account whether
CONFIG_EFI is enabled or not. While at it, switch to a signature NOP
that behaves more like a NOP, i.e., one that only clobbers the
flags.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201117124729.12642-4-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
We no longer map the first 64 KB of the kernel image, as there is nothing
there that we ever need to refer back to once the kernel has booted. Even
though facilities like kallsyms are very careful to only refer to the
region that starts at _stext when mapping virtual addresses to symbol
names, let's avoid any confusion by switching to local .L prefixed symbol
names for the EFI header, as none of them have any significance to the
rest of the kernel.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201117124729.12642-3-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
In a previous patch, we increased the size of the EFI PE/COFF header
to 64 KB, which resulted in the _stext symbol to appear at a fixed
offset of 64 KB into the image.
Since 64 KB is also the largest page size we support, this completely
removes the need to map the first 64 KB of the kernel image, given that
it only contains the arm64 Image header and the EFI header, neither of
which we ever access again after booting the kernel. More importantly,
we should avoid an executable mapping of non-executable and not entirely
predictable data, to deal with the unlikely event that we inadvertently
emitted something that looks like an opcode that could be used as a
gadget for speculative execution.
So let's limit the kernel mapping of .text to the [_stext, _etext)
region, which matches the view of generic code (such as kallsyms) when
it reasons about the boundaries of the kernel's .text section.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201117124729.12642-2-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Given that smp_call_function_single() can deadlock when interrupts are
disabled, abort the SMP call if irqs_disabled(). This scenario is
currently not possible given the function's uses, but safeguard this for
potential future uses.
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Cc: Will Deacon <will@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20201113155328.4194-1-ionela.voinescu@arm.com
[catalin.marinas@arm.com: modified following Mark's comment]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
If Activity Monitors (AMUs) are present, two of the counters can be used
to implement support for CPPC's (Collaborative Processor Performance
Control) delivered and reference performance monitoring functionality
using FFH (Functional Fixed Hardware).
Given that counters for a certain CPU can only be read from that CPU,
while FFH operations can be called from any CPU for any of the CPUs, use
smp_call_function_single() to provide the requested values.
Therefore, depending on the register addresses, the following values
are returned:
- 0x0 (DeliveredPerformanceCounterRegister): AMU core counter
- 0x1 (ReferencePerformanceCounterRegister): AMU constant counter
The use of Activity Monitors is hidden behind the generic
cpu_read_{corecnt,constcnt}() functions.
Read functionality for these two registers represents the only current
FFH support for CPPC. Read operations for other register values or write
operation for all registers are unsupported. Therefore, keep CPPC's FFH
unsupported if no CPUs have valid AMU frequency counters. For this
purpose, the get_cpu_with_amu_feat() is introduced.
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201106125334.21570-4-ionela.voinescu@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
In order for the counter validation function to be reused, split
validate_cpu_freq_invariance_counters() into:
- freq_counters_valid(cpu) - check cpu for valid cycle counters
- freq_inv_set_max_ratio(int cpu, u64 max_rate, u64 ref_rate) -
generic function that sets the normalization ratio used by
topology_scale_freq_tick()
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201106125334.21570-3-ionela.voinescu@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
In preparation for other uses of Activity Monitors (AMU) cycle counters,
place counter read functionality in generic functions that can reused:
read_corecnt() and read_constcnt().
As a result, implement update_freq_counters_refs() to replace
init_cpu_freq_invariance_counters() and both initialise and update
the per-cpu reference variables.
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201106125334.21570-2-ionela.voinescu@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
QCOM KRYO2XX Silver cores are Cortex-A53 based and are
susceptible to the 845719 erratum. Add them to the lookup
list to apply the erratum.
Signed-off-by: Konrad Dybcio <konrad.dybcio@somainline.org>
Link: https://lore.kernel.org/r/20201104232218.198800-5-konrad.dybcio@somainline.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
KRYO2XX silver (LITTLE) CPUs are based on Cortex-A53
and they are not affected by spectre-v2.
Signed-off-by: Konrad Dybcio <konrad.dybcio@somainline.org>
Link: https://lore.kernel.org/r/20201104232218.198800-4-konrad.dybcio@somainline.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
QCOM KRYO2XX gold (big) silver (LITTLE) CPU cores are based on
Cortex-A73 and Cortex-A53 respectively and are meltdown safe,
hence add them to kpti_safe_list[].
Signed-off-by: Konrad Dybcio <konrad.dybcio@somainline.org>
Link: https://lore.kernel.org/r/20201104232218.198800-3-konrad.dybcio@somainline.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Add MIDR value for KRYO2XX gold (big) and silver (LITTLE)
CPU cores which are used in Qualcomm Technologies, Inc.
SoCs. This will be used to identify and apply errata
which are applicable for these CPU cores.
Signed-off-by: Konrad Dybcio <konrad.dybcio@somainline.org>
Link: https://lore.kernel.org/r/20201104232218.198800-2-konrad.dybcio@somainline.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
During memory hotplug process, the linear mapping should not be created for
a given memory range if that would fall outside the maximum allowed linear
range. Else it might cause memory corruption in the kernel virtual space.
Maximum linear mapping region is [PAGE_OFFSET..(PAGE_END -1)] accommodating
both its ends but excluding PAGE_END. Max physical range that can be mapped
inside this linear mapping range, must also be derived from its end points.
This ensures that arch_add_memory() validates memory hot add range for its
potential linear mapping requirements, before creating it with
__create_pgd_mapping().
Fixes: 4ab215061554 ("arm64: Add memory hotplug support")
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Link: https://lore.kernel.org/r/1605252614-761-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Commit 8c96400d6a39be7 simplified the page-to-virt and virt-to-page
conversions, based on the assumption that struct page is always 64
bytes in size, in which case we can use a single signed shift to
perform the conversion (provided that the vmemmap array is placed
appropriately in the kernel VA space)
Unfortunately, this assumption turns out not to hold, and so we need
to revert part of this commit, and go back to an affine transformation.
Given that all the quantities involved are compile time constants,
this should not make any practical difference.
Fixes: 8c96400d6a39 ("arm64: mm: make vmemmap region a projection of the linear region")
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20201110180511.29083-1-ardb@kernel.org
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
This adds a validation function that scans the entire boot memory and makes
sure that all early memory sections are online. This check is essential for
the memory notifier to work properly, as it cannot prevent any boot memory
from offlining, if all sections are not online to begin with. Although the
boot section scanning is selectively enabled with DEBUG_VM.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Link: https://lore.kernel.org/r/1604896137-16644-4-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
This enables MEM_OFFLINE memory event handling. It will help intercept any
possible error condition such as if boot memory some how still got offlined
even after an explicit notifier failure, potentially by a future change in
generic hot plug framework. This would help detect such scenarios and help
debug further. While here, also call out the first section being attempted
for offline or got offlined.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Link: https://lore.kernel.org/r/1604896137-16644-3-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
This moves memory notifier registration earlier in the boot process from
device_initcall() to early_initcall() which will help in guarding against
potential early boot memory offline requests. Even though there should not
be any actual offlinig requests till memory block devices are initialized
with memory_dev_init() but then generic init sequence might just change in
future. Hence an early registration for the memory event notifier would be
helpful. While here, just skip the registration if CONFIG_MEMORY_HOTREMOVE
is not enabled and also call out when memory notifier registration fails.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Link: https://lore.kernel.org/r/1604896137-16644-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
As a hardening measure, we currently randomize the placement of
physical memory inside the linear region when KASLR is in effect.
Since the random offset at which to place the available physical
memory inside the linear region is chosen early at boot, it is
based on the memblock description of memory, which does not cover
hotplug memory. The consequence of this is that the randomization
offset may be chosen such that any hotplugged memory located above
memblock_end_of_DRAM() that appears later is pushed off the end of
the linear region, where it cannot be accessed.
So let's limit this randomization of the linear region to ensure
that this can no longer happen, by using the CPU's addressable PA
range instead. As it is guaranteed that no hotpluggable memory will
appear that falls outside of that range, we can safely put this PA
range sized window anywhere in the linear region.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Link: https://lore.kernel.org/r/20201014081857.3288-1-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Mapping between IPI type index and its string is direct without requiring
an additional offset. Hence the existing macro S(x, s) is now redundant
and can just be dropped. This also makes the code clean and simple.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Link: https://lore.kernel.org/r/1604921916-23368-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Depending on configuration options and specific code paths, we either
use the empty_zero_page or the configuration-dependent reserved_ttbr0
as a reserved value for TTBR{0,1}_EL1.
To simplify this code, let's always allocate and use the same
reserved_pg_dir, replacing reserved_ttbr0. Note that this is allocated
(and hence pre-zeroed), and is also marked as read-only in the kernel
Image mapping.
Keeping this separate from the empty_zero_page potentially helps with
robustness as the empty_zero_page is used in a number of cases where a
failure to map it read-only could allow it to become corrupted.
The (presently unused) swapper_pg_end symbol is also removed, and
comments are added wherever we rely on the offsets between the
pre-allocated pg_dirs to keep these cases easily identifiable.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201103102229.8542-1-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The kprobe_step_ctx (kcb->ss_ctx) has ss_pending and match_addr, but
those are redundant because those can be replaced by KPROBE_HIT_SS and
&cur_kprobe->ainsn.api.insn[1] respectively.
To simplify the code, remove the kprobe_step_ctx.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201103134900.337243-2-jean-philippe@linaro.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Stephen reports that commit f4693c2716b3 ("arm64: mm: extend linear region
for 52-bit VA configurations") triggers the following warnings when building
the htmldocs make target of today's linux-next:
Documentation/arm64/memory.rst:35: WARNING: Literal block ends without a blank line; unexpected unindent.
Documentation/arm64/memory.rst:53: WARNING: Literal block ends without a blank line; unexpected unindent.
Let's tweak the memory layout table to work around this.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Fixes: f4693c2716b3 ("arm64: mm: extend linear region for 52-bit VA configurations")
Link: https://lore.kernel.org/r/20201110130851.15751-1-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Commit ce3d31ad3cac ("arm64/smp: Move rcu_cpu_starting() earlier") ensured
that RCU is informed early about incoming CPUs that might end up calling
into printk() before they are online. However, if such a CPU fails the
early CPU feature compatibility checks in check_local_cpu_capabilities(),
then it will be powered off or parked without informing RCU, leading to
an endless stream of stalls:
| rcu: INFO: rcu_preempt detected stalls on CPUs/tasks:
| rcu: 2-O...: (0 ticks this GP) idle=002/1/0x4000000000000000 softirq=0/0 fqs=2593
| (detected by 0, t=5252 jiffies, g=9317, q=136)
| Task dump for CPU 2:
| task:swapper/2 state:R running task stack: 0 pid: 0 ppid: 1 flags:0x00000028
| Call trace:
| ret_from_fork+0x0/0x30
Ensure that the dying CPU invokes rcu_report_dead() prior to being powered
off or parked.
Cc: Qian Cai <cai@redhat.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Suggested-by: Qian Cai <cai@redhat.com>
Link: https://lore.kernel.org/r/20201105222242.GA8842@willie-the-truck
Link: https://lore.kernel.org/r/20201106103602.9849-3-will@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
cpu_psci_cpu_die() is called in the context of the dying CPU, which
will no longer be online or tracked by RCU. It is therefore not generally
safe to call printk() if the PSCI "cpu off" request fails, so remove the
pr_crit() invocation.
Cc: Qian Cai <cai@redhat.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20201106103602.9849-2-will@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|