Age | Commit message (Collapse) | Author |
|
Add the ixgbe driver code implementing ndo_ll_poll.
Adds ndo_ll_poll method and locking between it and the napi poll.
When receiving a packet we use skb_mark_ll to record the napi it came from.
Add each napi to the napi_hash right after netif_napi_add().
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: Jesse Brandeburg <jesse.brandeburg@intel.com>
Signed-off-by: Eliezer Tamir <eliezer.tamir@linux.intel.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Adds low latency socket poll support for TCP.
In tcp_v[46]_rcv() add a call to sk_mark_ll() to copy the napi_id
from the skb to the sk.
In tcp_recvmsg(), when there is no data in the socket we busy-poll.
This is a good example of how to add busy-poll support to more protocols.
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: Jesse Brandeburg <jesse.brandeburg@intel.com>
Signed-off-by: Eliezer Tamir <eliezer.tamir@linux.intel.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Tested-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Add upport for busy-polling on UDP sockets.
In __udp[46]_lib_rcv add a call to sk_mark_ll() to copy the napi_id
from the skb into the sk.
This is done at the earliest possible moment, right after we identify
which socket this skb is for.
In __skb_recv_datagram When there is no data and the user
tries to read we busy poll.
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: Jesse Brandeburg <jesse.brandeburg@intel.com>
Signed-off-by: Eliezer Tamir <eliezer.tamir@linux.intel.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Tested-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Adds an ndo_ll_poll method and the code that supports it.
This method can be used by low latency applications to busy-poll
Ethernet device queues directly from the socket code.
sysctl_net_ll_poll controls how many microseconds to poll.
Default is zero (disabled).
Individual protocol support will be added by subsequent patches.
Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com>
Signed-off-by: Jesse Brandeburg <jesse.brandeburg@intel.com>
Signed-off-by: Eliezer Tamir <eliezer.tamir@linux.intel.com>
Acked-by: Eric Dumazet <edumazet@google.com>
Tested-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Adds a napi_id and a hashing mechanism to lookup a napi by id.
This will be used by subsequent patches to implement low latency
Ethernet device polling.
Based on a code sample by Eric Dumazet.
Signed-off-by: Eliezer Tamir <eliezer.tamir@linux.intel.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Tested-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The stop machine logic can lock up if all but one of the migration
threads make it through the disable-irq step and the one remaining
thread gets stuck in __do_softirq. The reason __do_softirq can hang is
that it has a bail-out based on jiffies timeout, but in the lockup case,
jiffies itself is not incremented.
To work around this, re-add the max_restart counter in __do_irq and stop
processing irqs after 10 restarts.
Thanks to Tejun Heo and Rusty Russell and others for helping me track
this down.
This was introduced in 3.9 by commit c10d73671ad3 ("softirq: reduce
latencies").
It may be worth looking into ath9k to see if it has issues with its irq
handler at a later date.
The hang stack traces look something like this:
------------[ cut here ]------------
WARNING: at kernel/watchdog.c:245 watchdog_overflow_callback+0x9c/0xa7()
Watchdog detected hard LOCKUP on cpu 2
Modules linked in: ath9k ath9k_common ath9k_hw ath mac80211 cfg80211 nfsv4 auth_rpcgss nfs fscache nf_nat_ipv4 nf_nat veth 8021q garp stp mrp llc pktgen lockd sunrpc]
Pid: 23, comm: migration/2 Tainted: G C 3.9.4+ #11
Call Trace:
<NMI> warn_slowpath_common+0x85/0x9f
warn_slowpath_fmt+0x46/0x48
watchdog_overflow_callback+0x9c/0xa7
__perf_event_overflow+0x137/0x1cb
perf_event_overflow+0x14/0x16
intel_pmu_handle_irq+0x2dc/0x359
perf_event_nmi_handler+0x19/0x1b
nmi_handle+0x7f/0xc2
do_nmi+0xbc/0x304
end_repeat_nmi+0x1e/0x2e
<<EOE>>
cpu_stopper_thread+0xae/0x162
smpboot_thread_fn+0x258/0x260
kthread+0xc7/0xcf
ret_from_fork+0x7c/0xb0
---[ end trace 4947dfa9b0a4cec3 ]---
BUG: soft lockup - CPU#1 stuck for 22s! [migration/1:17]
Modules linked in: ath9k ath9k_common ath9k_hw ath mac80211 cfg80211 nfsv4 auth_rpcgss nfs fscache nf_nat_ipv4 nf_nat veth 8021q garp stp mrp llc pktgen lockd sunrpc]
irq event stamp: 835637905
hardirqs last enabled at (835637904): __do_softirq+0x9f/0x257
hardirqs last disabled at (835637905): apic_timer_interrupt+0x6d/0x80
softirqs last enabled at (5654720): __do_softirq+0x1ff/0x257
softirqs last disabled at (5654725): irq_exit+0x5f/0xbb
CPU 1
Pid: 17, comm: migration/1 Tainted: G WC 3.9.4+ #11 To be filled by O.E.M. To be filled by O.E.M./To be filled by O.E.M.
RIP: tasklet_hi_action+0xf0/0xf0
Process migration/1
Call Trace:
<IRQ>
__do_softirq+0x117/0x257
irq_exit+0x5f/0xbb
smp_apic_timer_interrupt+0x8a/0x98
apic_timer_interrupt+0x72/0x80
<EOI>
printk+0x4d/0x4f
stop_machine_cpu_stop+0x22c/0x274
cpu_stopper_thread+0xae/0x162
smpboot_thread_fn+0x258/0x260
kthread+0xc7/0xcf
ret_from_fork+0x7c/0xb0
Signed-off-by: Ben Greear <greearb@candelatech.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Pekka Riikonen <priikone@iki.fi>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/ericvh/v9fs
Pull net/9p bug fix from Eric Van Hensbergen:
"zero copy error fix"
* tag '9p-3.10-bug-fix-1' of git://git.kernel.org/pub/scm/linux/kernel/git/ericvh/v9fs:
net/9p: Handle error in zero copy request correctly for 9p2000.u
|
|
In (bc6bcb5 netfilter: xt_TCPOPTSTRIP: fix possible mangling beyond
packet boundary), the use of tcp_hdr was introduced. However, we
cannot assume that skb->transport_header is set for non-local packets.
Cc: Florian Westphal <fw@strlen.de>
Reported-by: Phil Oester <kernel@linuxace.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
|
|
Patrik writes:
Two fixes for memory leaks split into Cedarview and Poulsbo versions,
and a fix for properly setting the pipe base when using fbdev. It's on
my todo-list to start unifying the chips since they are very similar,
but until then I'd like to split them up in case there are side-effects
on Cedarview that I cannot currently test.
airled: Verified pull from github matches what I expected.
* 'gma500-fixes' of git://github.com/patjak/drm-gma500:
drm/gma500/cdv: Fix cursor gem obj referencing on cdv
drm/gma500/psb: Fix cursor gem obj referencing on psb
drm/gma500/cdv: Unpin framebuffer on crtc disable
drm/gma500/psb: Unpin framebuffer on crtc disable
drm/gma500: Add fb gtt offset to fb base
|
|
Complier may generate codes that re-read the tun->numqueues during
tun_select_queue(). This may be a race if vlan->numqueues were changed in the
same time and can lead unexpected result (e.g. very huge value).
We need prevent the compiler from generating such codes by adding an
ACCESS_ONCE() to make sure tun->numqueues were only read once.
Bug were introduced by commit c8d68e6be1c3b242f1c598595830890b65cea64a
(tuntap: multiqueue support).
Reported-by: Michael S. Tsirkin <mst@redhat.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Jason Wang <jasowang@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
When we decide not use zero-copy, msg.control should be set to NULL otherwise
macvtap/tap may set zerocopy callbacks which may decrease the kref of ubufs
wrongly.
Bug were introduced by commit cedb9bdce099206290a2bdd02ce47a7b253b6a84
(vhost-net: skip head management if no outstanding).
This solves the following warnings:
WARNING: at include/linux/kref.h:47 handle_tx+0x477/0x4b0 [vhost_net]()
Modules linked in: vhost_net macvtap macvlan tun nfsd exportfs bridge stp llc openvswitch kvm_amd kvm bnx2 megaraid_sas [last unloaded: tun]
CPU: 5 PID: 8670 Comm: vhost-8668 Not tainted 3.10.0-rc2+ #1566
Hardware name: Dell Inc. PowerEdge R715/00XHKG, BIOS 1.5.2 04/19/2011
ffffffffa0198323 ffff88007c9ebd08 ffffffff81796b73 ffff88007c9ebd48
ffffffff8103d66b 000000007b773e20 ffff8800779f0000 ffff8800779f43f0
ffff8800779f8418 000000000000015c 0000000000000062 ffff88007c9ebd58
Call Trace:
[<ffffffff81796b73>] dump_stack+0x19/0x1e
[<ffffffff8103d66b>] warn_slowpath_common+0x6b/0xa0
[<ffffffff8103d6b5>] warn_slowpath_null+0x15/0x20
[<ffffffffa0197627>] handle_tx+0x477/0x4b0 [vhost_net]
[<ffffffffa0197690>] handle_tx_kick+0x10/0x20 [vhost_net]
[<ffffffffa019541e>] vhost_worker+0xfe/0x1a0 [vhost_net]
[<ffffffffa0195320>] ? vhost_attach_cgroups_work+0x30/0x30 [vhost_net]
[<ffffffffa0195320>] ? vhost_attach_cgroups_work+0x30/0x30 [vhost_net]
[<ffffffff81061f46>] kthread+0xc6/0xd0
[<ffffffff81061e80>] ? kthread_freezable_should_stop+0x70/0x70
[<ffffffff817a1aec>] ret_from_fork+0x7c/0xb0
[<ffffffff81061e80>] ? kthread_freezable_should_stop+0x70/0x70
Signed-off-by: Jason Wang <jasowang@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Newer Broadcom BCM63xx SoCs: 6328, 6362 and 6368 have an integrated switch
which needs to be driven slightly differently from the traditional
external switches. This patch introduces changes in arch/mips/bcm63xx in order
to:
- register a bcm63xx_enetsw driver instead of bcm63xx_enet driver
- update DMA channels configuration & state RAM base addresses
- add a new platform data configuration knob to define the number of
ports per switch/device and force link on some ports
- define the required switch registers
On the driver side, the following changes are required:
- the switch ports need to be polled to ensure the link is up and
running and RX/TX can properly work
- basic switch configuration needs to be performed for the switch to
forward packets to the CPU
- update the MIB counters since the integrated
Signed-off-by: Maxime Bizon <mbizon@freebox.fr>
Signed-off-by: Jonas Gorski <jogo@openwrt.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The current bcm63xx_enet driver always uses bcmenet_shared_base whenever
it needs to access DMA channel configuration space or access the DMA
channel state RAM. Split these register in 3 parts to be more accurate:
- global DMA configuration
- per DMA channel configuration space
- per DMA channel state RAM space
This is preliminary to support new chips where the global DMA
configuration remains the same, but there is a varying number of DMA
channels located at a different memory offset.
Signed-off-by: Maxime Bizon <mbizon@freebox.fr>
Signed-off-by: Jonas Gorski <jogo@openwrt.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Implement the rset_nway ethtool callback which uses libphy generic
autonegotiation restart function.
Signed-off-by: Maxime Bizon <mbizon@freebox.fr>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch reworks the UEFI anti-bricking code, including an effective
reversion of cc5a080c and 31ff2f20. It turns out that calling
QueryVariableInfo() from boot services results in some firmware
implementations jumping to physical addresses even after entering virtual
mode, so until we have 1:1 mappings for UEFI runtime space this isn't
going to work so well.
Reverting these gets us back to the situation where we'd refuse to create
variables on some systems because they classify deleted variables as "used"
until the firmware triggers a garbage collection run, which they won't do
until they reach a lower threshold. This results in it being impossible to
install a bootloader, which is unhelpful.
Feedback from Samsung indicates that the firmware doesn't need more than
5KB of storage space for its own purposes, so that seems like a reasonable
threshold. However, there's still no guarantee that a platform will attempt
garbage collection merely because it drops below this threshold. It seems
that this is often only triggered if an attempt to write generates a
genuine EFI_OUT_OF_RESOURCES error. We can force that by attempting to
create a variable larger than the remaining space. This should fail, but if
it somehow succeeds we can then immediately delete it.
I've tested this on the UEFI machines I have available, but I don't have
a Samsung and so can't verify that it avoids the bricking problem.
Signed-off-by: Matthew Garrett <matthew.garrett@nebula.com>
Signed-off-by: Lee, Chun-Y <jlee@suse.com> [ dummy variable cleanup ]
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
In Steven Rostedt's words:
> I've been debugging the last couple of days why my tests have been
> locking up. One of my tracing tests, runs all available tracers. The
> lockup always happened with the mmiotrace, which is used to trace
> interactions between priority drivers and the kernel. But to do this
> easily, when the tracer gets registered, it disables all but the boot
> CPUs. The lockup always happened after it got done disabling the CPUs.
>
> Then I decided to try this:
>
> while :; do
> for i in 1 2 3; do
> echo 0 > /sys/devices/system/cpu/cpu$i/online
> done
> for i in 1 2 3; do
> echo 1 > /sys/devices/system/cpu/cpu$i/online
> done
> done
>
> Well, sure enough, that locked up too, with the same users. Doing a
> sysrq-w (showing all blocked tasks):
>
> [ 2991.344562] task PC stack pid father
> [ 2991.344562] rcu_preempt D ffff88007986fdf8 0 10 2 0x00000000
> [ 2991.344562] ffff88007986fc98 0000000000000002 ffff88007986fc48 0000000000000908
> [ 2991.344562] ffff88007986c280 ffff88007986ffd8 ffff88007986ffd8 00000000001d3c80
> [ 2991.344562] ffff880079248a40 ffff88007986c280 0000000000000000 00000000fffd4295
> [ 2991.344562] Call Trace:
> [ 2991.344562] [<ffffffff815437ba>] schedule+0x64/0x66
> [ 2991.344562] [<ffffffff81541750>] schedule_timeout+0xbc/0xf9
> [ 2991.344562] [<ffffffff8154bec0>] ? ftrace_call+0x5/0x2f
> [ 2991.344562] [<ffffffff81049513>] ? cascade+0xa8/0xa8
> [ 2991.344562] [<ffffffff815417ab>] schedule_timeout_uninterruptible+0x1e/0x20
> [ 2991.344562] [<ffffffff810c980c>] rcu_gp_kthread+0x502/0x94b
> [ 2991.344562] [<ffffffff81062791>] ? __init_waitqueue_head+0x50/0x50
> [ 2991.344562] [<ffffffff810c930a>] ? rcu_gp_fqs+0x64/0x64
> [ 2991.344562] [<ffffffff81061cdb>] kthread+0xb1/0xb9
> [ 2991.344562] [<ffffffff81091e31>] ? lock_release_holdtime.part.23+0x4e/0x55
> [ 2991.344562] [<ffffffff81061c2a>] ? __init_kthread_worker+0x58/0x58
> [ 2991.344562] [<ffffffff8154c1dc>] ret_from_fork+0x7c/0xb0
> [ 2991.344562] [<ffffffff81061c2a>] ? __init_kthread_worker+0x58/0x58
> [ 2991.344562] kworker/0:1 D ffffffff81a30680 0 47 2 0x00000000
> [ 2991.344562] Workqueue: events cpuset_hotplug_workfn
> [ 2991.344562] ffff880078dbbb58 0000000000000002 0000000000000006 00000000000000d8
> [ 2991.344562] ffff880078db8100 ffff880078dbbfd8 ffff880078dbbfd8 00000000001d3c80
> [ 2991.344562] ffff8800779ca5c0 ffff880078db8100 ffffffff81541fcf 0000000000000000
> [ 2991.344562] Call Trace:
> [ 2991.344562] [<ffffffff81541fcf>] ? __mutex_lock_common+0x3d4/0x609
> [ 2991.344562] [<ffffffff815437ba>] schedule+0x64/0x66
> [ 2991.344562] [<ffffffff81543a39>] schedule_preempt_disabled+0x18/0x24
> [ 2991.344562] [<ffffffff81541fcf>] __mutex_lock_common+0x3d4/0x609
> [ 2991.344562] [<ffffffff8103d11b>] ? get_online_cpus+0x3c/0x50
> [ 2991.344562] [<ffffffff8103d11b>] ? get_online_cpus+0x3c/0x50
> [ 2991.344562] [<ffffffff815422ff>] mutex_lock_nested+0x3b/0x40
> [ 2991.344562] [<ffffffff8103d11b>] get_online_cpus+0x3c/0x50
> [ 2991.344562] [<ffffffff810af7e6>] rebuild_sched_domains_locked+0x6e/0x3a8
> [ 2991.344562] [<ffffffff810b0ec6>] rebuild_sched_domains+0x1c/0x2a
> [ 2991.344562] [<ffffffff810b109b>] cpuset_hotplug_workfn+0x1c7/0x1d3
> [ 2991.344562] [<ffffffff810b0ed9>] ? cpuset_hotplug_workfn+0x5/0x1d3
> [ 2991.344562] [<ffffffff81058e07>] process_one_work+0x2d4/0x4d1
> [ 2991.344562] [<ffffffff81058d3a>] ? process_one_work+0x207/0x4d1
> [ 2991.344562] [<ffffffff8105964c>] worker_thread+0x2e7/0x3b5
> [ 2991.344562] [<ffffffff81059365>] ? rescuer_thread+0x332/0x332
> [ 2991.344562] [<ffffffff81061cdb>] kthread+0xb1/0xb9
> [ 2991.344562] [<ffffffff81061c2a>] ? __init_kthread_worker+0x58/0x58
> [ 2991.344562] [<ffffffff8154c1dc>] ret_from_fork+0x7c/0xb0
> [ 2991.344562] [<ffffffff81061c2a>] ? __init_kthread_worker+0x58/0x58
> [ 2991.344562] bash D ffffffff81a4aa80 0 2618 2612 0x10000000
> [ 2991.344562] ffff8800379abb58 0000000000000002 0000000000000006 0000000000000c2c
> [ 2991.344562] ffff880077fea140 ffff8800379abfd8 ffff8800379abfd8 00000000001d3c80
> [ 2991.344562] ffff8800779ca5c0 ffff880077fea140 ffffffff81541fcf 0000000000000000
> [ 2991.344562] Call Trace:
> [ 2991.344562] [<ffffffff81541fcf>] ? __mutex_lock_common+0x3d4/0x609
> [ 2991.344562] [<ffffffff815437ba>] schedule+0x64/0x66
> [ 2991.344562] [<ffffffff81543a39>] schedule_preempt_disabled+0x18/0x24
> [ 2991.344562] [<ffffffff81541fcf>] __mutex_lock_common+0x3d4/0x609
> [ 2991.344562] [<ffffffff81530078>] ? rcu_cpu_notify+0x2f5/0x86e
> [ 2991.344562] [<ffffffff81530078>] ? rcu_cpu_notify+0x2f5/0x86e
> [ 2991.344562] [<ffffffff815422ff>] mutex_lock_nested+0x3b/0x40
> [ 2991.344562] [<ffffffff81530078>] rcu_cpu_notify+0x2f5/0x86e
> [ 2991.344562] [<ffffffff81091c99>] ? __lock_is_held+0x32/0x53
> [ 2991.344562] [<ffffffff81548912>] notifier_call_chain+0x6b/0x98
> [ 2991.344562] [<ffffffff810671fd>] __raw_notifier_call_chain+0xe/0x10
> [ 2991.344562] [<ffffffff8103cf64>] __cpu_notify+0x20/0x32
> [ 2991.344562] [<ffffffff8103cf8d>] cpu_notify_nofail+0x17/0x36
> [ 2991.344562] [<ffffffff815225de>] _cpu_down+0x154/0x259
> [ 2991.344562] [<ffffffff81522710>] cpu_down+0x2d/0x3a
> [ 2991.344562] [<ffffffff81526351>] store_online+0x4e/0xe7
> [ 2991.344562] [<ffffffff8134d764>] dev_attr_store+0x20/0x22
> [ 2991.344562] [<ffffffff811b3c5f>] sysfs_write_file+0x108/0x144
> [ 2991.344562] [<ffffffff8114c5ef>] vfs_write+0xfd/0x158
> [ 2991.344562] [<ffffffff8114c928>] SyS_write+0x5c/0x83
> [ 2991.344562] [<ffffffff8154c494>] tracesys+0xdd/0xe2
>
> As well as held locks:
>
> [ 3034.728033] Showing all locks held in the system:
> [ 3034.728033] 1 lock held by rcu_preempt/10:
> [ 3034.728033] #0: (rcu_preempt_state.onoff_mutex){+.+...}, at: [<ffffffff810c9471>] rcu_gp_kthread+0x167/0x94b
> [ 3034.728033] 4 locks held by kworker/0:1/47:
> [ 3034.728033] #0: (events){.+.+.+}, at: [<ffffffff81058d3a>] process_one_work+0x207/0x4d1
> [ 3034.728033] #1: (cpuset_hotplug_work){+.+.+.}, at: [<ffffffff81058d3a>] process_one_work+0x207/0x4d1
> [ 3034.728033] #2: (cpuset_mutex){+.+.+.}, at: [<ffffffff810b0ec1>] rebuild_sched_domains+0x17/0x2a
> [ 3034.728033] #3: (cpu_hotplug.lock){+.+.+.}, at: [<ffffffff8103d11b>] get_online_cpus+0x3c/0x50
> [ 3034.728033] 1 lock held by mingetty/2563:
> [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8
> [ 3034.728033] 1 lock held by mingetty/2565:
> [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8
> [ 3034.728033] 1 lock held by mingetty/2569:
> [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8
> [ 3034.728033] 1 lock held by mingetty/2572:
> [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8
> [ 3034.728033] 1 lock held by mingetty/2575:
> [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8
> [ 3034.728033] 7 locks held by bash/2618:
> [ 3034.728033] #0: (sb_writers#5){.+.+.+}, at: [<ffffffff8114bc3f>] file_start_write+0x2a/0x2c
> [ 3034.728033] #1: (&buffer->mutex#2){+.+.+.}, at: [<ffffffff811b3b93>] sysfs_write_file+0x3c/0x144
> [ 3034.728033] #2: (s_active#54){.+.+.+}, at: [<ffffffff811b3c3e>] sysfs_write_file+0xe7/0x144
> [ 3034.728033] #3: (x86_cpu_hotplug_driver_mutex){+.+.+.}, at: [<ffffffff810217c2>] cpu_hotplug_driver_lock+0x17/0x19
> [ 3034.728033] #4: (cpu_add_remove_lock){+.+.+.}, at: [<ffffffff8103d196>] cpu_maps_update_begin+0x17/0x19
> [ 3034.728033] #5: (cpu_hotplug.lock){+.+.+.}, at: [<ffffffff8103cfd8>] cpu_hotplug_begin+0x2c/0x6d
> [ 3034.728033] #6: (rcu_preempt_state.onoff_mutex){+.+...}, at: [<ffffffff81530078>] rcu_cpu_notify+0x2f5/0x86e
> [ 3034.728033] 1 lock held by bash/2980:
> [ 3034.728033] #0: (&ldata->atomic_read_lock){+.+...}, at: [<ffffffff8131e28a>] n_tty_read+0x252/0x7e8
>
> Things looked a little weird. Also, this is a deadlock that lockdep did
> not catch. But what we have here does not look like a circular lock
> issue:
>
> Bash is blocked in rcu_cpu_notify():
>
> 1961 /* Exclude any attempts to start a new grace period. */
> 1962 mutex_lock(&rsp->onoff_mutex);
>
>
> kworker is blocked in get_online_cpus(), which makes sense as we are
> currently taking down a CPU.
>
> But rcu_preempt is not blocked on anything. It is simply sleeping in
> rcu_gp_kthread (really rcu_gp_init) here:
>
> 1453 #ifdef CONFIG_PROVE_RCU_DELAY
> 1454 if ((prandom_u32() % (rcu_num_nodes * 8)) == 0 &&
> 1455 system_state == SYSTEM_RUNNING)
> 1456 schedule_timeout_uninterruptible(2);
> 1457 #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
>
> And it does this while holding the onoff_mutex that bash is waiting for.
>
> Doing a function trace, it showed me where it happened:
>
> [ 125.940066] rcu_pree-10 3.... 28384115273: schedule_timeout_uninterruptible <-rcu_gp_kthread
> [...]
> [ 125.940066] rcu_pree-10 3d..3 28384202439: sched_switch: prev_comm=rcu_preempt prev_pid=10 prev_prio=120 prev_state=D ==> next_comm=watchdog/3 next_pid=38 next_prio=120
>
> The watchdog ran, and then:
>
> [ 125.940066] watchdog-38 3d..3 28384692863: sched_switch: prev_comm=watchdog/3 prev_pid=38 prev_prio=120 prev_state=P ==> next_comm=modprobe next_pid=2848 next_prio=118
>
> Not sure what modprobe was doing, but shortly after that:
>
> [ 125.940066] modprobe-2848 3d..3 28385041749: sched_switch: prev_comm=modprobe prev_pid=2848 prev_prio=118 prev_state=R+ ==> next_comm=migration/3 next_pid=40 next_prio=0
>
> Where the migration thread took down the CPU:
>
> [ 125.940066] migratio-40 3d..3 28389148276: sched_switch: prev_comm=migration/3 prev_pid=40 prev_prio=0 prev_state=P ==> next_comm=swapper/3 next_pid=0 next_prio=120
>
> which finally did:
>
> [ 125.940066] <idle>-0 3...1 28389282142: arch_cpu_idle_dead <-cpu_startup_entry
> [ 125.940066] <idle>-0 3...1 28389282548: native_play_dead <-arch_cpu_idle_dead
> [ 125.940066] <idle>-0 3...1 28389282924: play_dead_common <-native_play_dead
> [ 125.940066] <idle>-0 3...1 28389283468: idle_task_exit <-play_dead_common
> [ 125.940066] <idle>-0 3...1 28389284644: amd_e400_remove_cpu <-play_dead_common
>
>
> CPU 3 is now offline, the rcu_preempt thread that ran on CPU 3 is still
> doing a schedule_timeout_uninterruptible() and it registered it's
> timeout to the timer base for CPU 3. You would think that it would get
> migrated right? The issue here is that the timer migration happens at
> the CPU notifier for CPU_DEAD. The problem is that the rcu notifier for
> CPU_DOWN is blocked waiting for the onoff_mutex to be released, which is
> held by the thread that just put itself into a uninterruptible sleep,
> that wont wake up until the CPU_DEAD notifier of the timer
> infrastructure is called, which wont happen until the rcu notifier
> finishes. Here's our deadlock!
This commit breaks this deadlock cycle by substituting a shorter udelay()
for the previous schedule_timeout_uninterruptible(), while at the same
time increasing the probability of the delay. This maintains the intensity
of the testing.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
|
|
This commit fixes a lockdep-detected deadlock by moving a wake_up()
call out from a rnp->lock critical section. Please see below for
the long version of this story.
On Tue, 2013-05-28 at 16:13 -0400, Dave Jones wrote:
> [12572.705832] ======================================================
> [12572.750317] [ INFO: possible circular locking dependency detected ]
> [12572.796978] 3.10.0-rc3+ #39 Not tainted
> [12572.833381] -------------------------------------------------------
> [12572.862233] trinity-child17/31341 is trying to acquire lock:
> [12572.870390] (rcu_node_0){..-.-.}, at: [<ffffffff811054ff>] rcu_read_unlock_special+0x9f/0x4c0
> [12572.878859]
> but task is already holding lock:
> [12572.894894] (&ctx->lock){-.-...}, at: [<ffffffff811390ed>] perf_lock_task_context+0x7d/0x2d0
> [12572.903381]
> which lock already depends on the new lock.
>
> [12572.927541]
> the existing dependency chain (in reverse order) is:
> [12572.943736]
> -> #4 (&ctx->lock){-.-...}:
> [12572.960032] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0
> [12572.968337] [<ffffffff816ebc90>] _raw_spin_lock+0x40/0x80
> [12572.976633] [<ffffffff8113c987>] __perf_event_task_sched_out+0x2e7/0x5e0
> [12572.984969] [<ffffffff81088953>] perf_event_task_sched_out+0x93/0xa0
> [12572.993326] [<ffffffff816ea0bf>] __schedule+0x2cf/0x9c0
> [12573.001652] [<ffffffff816eacfe>] schedule_user+0x2e/0x70
> [12573.009998] [<ffffffff816ecd64>] retint_careful+0x12/0x2e
> [12573.018321]
> -> #3 (&rq->lock){-.-.-.}:
> [12573.034628] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0
> [12573.042930] [<ffffffff816ebc90>] _raw_spin_lock+0x40/0x80
> [12573.051248] [<ffffffff8108e6a7>] wake_up_new_task+0xb7/0x260
> [12573.059579] [<ffffffff810492f5>] do_fork+0x105/0x470
> [12573.067880] [<ffffffff81049686>] kernel_thread+0x26/0x30
> [12573.076202] [<ffffffff816cee63>] rest_init+0x23/0x140
> [12573.084508] [<ffffffff81ed8e1f>] start_kernel+0x3f1/0x3fe
> [12573.092852] [<ffffffff81ed856f>] x86_64_start_reservations+0x2a/0x2c
> [12573.101233] [<ffffffff81ed863d>] x86_64_start_kernel+0xcc/0xcf
> [12573.109528]
> -> #2 (&p->pi_lock){-.-.-.}:
> [12573.125675] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0
> [12573.133829] [<ffffffff816ebe9b>] _raw_spin_lock_irqsave+0x4b/0x90
> [12573.141964] [<ffffffff8108e881>] try_to_wake_up+0x31/0x320
> [12573.150065] [<ffffffff8108ebe2>] default_wake_function+0x12/0x20
> [12573.158151] [<ffffffff8107bbf8>] autoremove_wake_function+0x18/0x40
> [12573.166195] [<ffffffff81085398>] __wake_up_common+0x58/0x90
> [12573.174215] [<ffffffff81086909>] __wake_up+0x39/0x50
> [12573.182146] [<ffffffff810fc3da>] rcu_start_gp_advanced.isra.11+0x4a/0x50
> [12573.190119] [<ffffffff810fdb09>] rcu_start_future_gp+0x1c9/0x1f0
> [12573.198023] [<ffffffff810fe2c4>] rcu_nocb_kthread+0x114/0x930
> [12573.205860] [<ffffffff8107a91d>] kthread+0xed/0x100
> [12573.213656] [<ffffffff816f4b1c>] ret_from_fork+0x7c/0xb0
> [12573.221379]
> -> #1 (&rsp->gp_wq){..-.-.}:
> [12573.236329] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0
> [12573.243783] [<ffffffff816ebe9b>] _raw_spin_lock_irqsave+0x4b/0x90
> [12573.251178] [<ffffffff810868f3>] __wake_up+0x23/0x50
> [12573.258505] [<ffffffff810fc3da>] rcu_start_gp_advanced.isra.11+0x4a/0x50
> [12573.265891] [<ffffffff810fdb09>] rcu_start_future_gp+0x1c9/0x1f0
> [12573.273248] [<ffffffff810fe2c4>] rcu_nocb_kthread+0x114/0x930
> [12573.280564] [<ffffffff8107a91d>] kthread+0xed/0x100
> [12573.287807] [<ffffffff816f4b1c>] ret_from_fork+0x7c/0xb0
Notice the above call chain.
rcu_start_future_gp() is called with the rnp->lock held. Then it calls
rcu_start_gp_advance, which does a wakeup.
You can't do wakeups while holding the rnp->lock, as that would mean
that you could not do a rcu_read_unlock() while holding the rq lock, or
any lock that was taken while holding the rq lock. This is because...
(See below).
> [12573.295067]
> -> #0 (rcu_node_0){..-.-.}:
> [12573.309293] [<ffffffff810b8d36>] __lock_acquire+0x1786/0x1af0
> [12573.316568] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0
> [12573.323825] [<ffffffff816ebc90>] _raw_spin_lock+0x40/0x80
> [12573.331081] [<ffffffff811054ff>] rcu_read_unlock_special+0x9f/0x4c0
> [12573.338377] [<ffffffff810760a6>] __rcu_read_unlock+0x96/0xa0
> [12573.345648] [<ffffffff811391b3>] perf_lock_task_context+0x143/0x2d0
> [12573.352942] [<ffffffff8113938e>] find_get_context+0x4e/0x1f0
> [12573.360211] [<ffffffff811403f4>] SYSC_perf_event_open+0x514/0xbd0
> [12573.367514] [<ffffffff81140e49>] SyS_perf_event_open+0x9/0x10
> [12573.374816] [<ffffffff816f4dd4>] tracesys+0xdd/0xe2
Notice the above trace.
perf took its own ctx->lock, which can be taken while holding the rq
lock. While holding this lock, it did a rcu_read_unlock(). The
perf_lock_task_context() basically looks like:
rcu_read_lock();
raw_spin_lock(ctx->lock);
rcu_read_unlock();
Now, what looks to have happened, is that we scheduled after taking that
first rcu_read_lock() but before taking the spin lock. When we scheduled
back in and took the ctx->lock, the following rcu_read_unlock()
triggered the "special" code.
The rcu_read_unlock_special() takes the rnp->lock, which gives us a
possible deadlock scenario.
CPU0 CPU1 CPU2
---- ---- ----
rcu_nocb_kthread()
lock(rq->lock);
lock(ctx->lock);
lock(rnp->lock);
wake_up();
lock(rq->lock);
rcu_read_unlock();
rcu_read_unlock_special();
lock(rnp->lock);
lock(ctx->lock);
**** DEADLOCK ****
> [12573.382068]
> other info that might help us debug this:
>
> [12573.403229] Chain exists of:
> rcu_node_0 --> &rq->lock --> &ctx->lock
>
> [12573.424471] Possible unsafe locking scenario:
>
> [12573.438499] CPU0 CPU1
> [12573.445599] ---- ----
> [12573.452691] lock(&ctx->lock);
> [12573.459799] lock(&rq->lock);
> [12573.467010] lock(&ctx->lock);
> [12573.474192] lock(rcu_node_0);
> [12573.481262]
> *** DEADLOCK ***
>
> [12573.501931] 1 lock held by trinity-child17/31341:
> [12573.508990] #0: (&ctx->lock){-.-...}, at: [<ffffffff811390ed>] perf_lock_task_context+0x7d/0x2d0
> [12573.516475]
> stack backtrace:
> [12573.530395] CPU: 1 PID: 31341 Comm: trinity-child17 Not tainted 3.10.0-rc3+ #39
> [12573.545357] ffffffff825b4f90 ffff880219f1dbc0 ffffffff816e375b ffff880219f1dc00
> [12573.552868] ffffffff816dfa5d ffff880219f1dc50 ffff88023ce4d1f8 ffff88023ce4ca40
> [12573.560353] 0000000000000001 0000000000000001 ffff88023ce4d1f8 ffff880219f1dcc0
> [12573.567856] Call Trace:
> [12573.575011] [<ffffffff816e375b>] dump_stack+0x19/0x1b
> [12573.582284] [<ffffffff816dfa5d>] print_circular_bug+0x200/0x20f
> [12573.589637] [<ffffffff810b8d36>] __lock_acquire+0x1786/0x1af0
> [12573.596982] [<ffffffff810918f5>] ? sched_clock_cpu+0xb5/0x100
> [12573.604344] [<ffffffff810b9851>] lock_acquire+0x91/0x1f0
> [12573.611652] [<ffffffff811054ff>] ? rcu_read_unlock_special+0x9f/0x4c0
> [12573.619030] [<ffffffff816ebc90>] _raw_spin_lock+0x40/0x80
> [12573.626331] [<ffffffff811054ff>] ? rcu_read_unlock_special+0x9f/0x4c0
> [12573.633671] [<ffffffff811054ff>] rcu_read_unlock_special+0x9f/0x4c0
> [12573.640992] [<ffffffff811390ed>] ? perf_lock_task_context+0x7d/0x2d0
> [12573.648330] [<ffffffff810b429e>] ? put_lock_stats.isra.29+0xe/0x40
> [12573.655662] [<ffffffff813095a0>] ? delay_tsc+0x90/0xe0
> [12573.662964] [<ffffffff810760a6>] __rcu_read_unlock+0x96/0xa0
> [12573.670276] [<ffffffff811391b3>] perf_lock_task_context+0x143/0x2d0
> [12573.677622] [<ffffffff81139070>] ? __perf_event_enable+0x370/0x370
> [12573.684981] [<ffffffff8113938e>] find_get_context+0x4e/0x1f0
> [12573.692358] [<ffffffff811403f4>] SYSC_perf_event_open+0x514/0xbd0
> [12573.699753] [<ffffffff8108cd9d>] ? get_parent_ip+0xd/0x50
> [12573.707135] [<ffffffff810b71fd>] ? trace_hardirqs_on_caller+0xfd/0x1c0
> [12573.714599] [<ffffffff81140e49>] SyS_perf_event_open+0x9/0x10
> [12573.721996] [<ffffffff816f4dd4>] tracesys+0xdd/0xe2
This commit delays the wakeup via irq_work(), which is what
perf and ftrace use to perform wakeups in critical sections.
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
|
|
__DECLARE_TRACE_RCU() currently creates an _rcuidle() tracepoint which
may safely be invoked from what RCU considers to be an idle CPU.
However, these _rcuidle() tracepoints may -not- be invoked from the
handler of an irq taken from idle, because rcu_idle_enter() zeroes
RCU's nesting-level counter, so that the rcu_irq_exit() returning to
idle will trigger a WARN_ON_ONCE().
This commit therefore substitutes rcu_irq_enter() for rcu_idle_exit()
and rcu_irq_exit() for rcu_idle_enter() in order to make the _rcuidle()
tracepoints usable from irq handlers as well as from process context.
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
|
|
Pablo Neira Ayuso says:
====================
The following patchset contains four fixes for Netfilter and one fix
for IPVS, they are:
* Fix data leak to user-space via getsockopt IP_VS_SO_GET_DESTS, from
Dan Carpenter.
* Fix xt_TCPMSS if no TCP MSS is specified in syn packets, to avoid the
violation of RFC879, from Phil Oester.
* Fix incomplete dump of objects via nfnetlink_acct and nfnetlink_cttimeout,
from myself.
* Fix missing HW protocol in packets passed to user-space via NFQUEUE,
from myself.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
Pull spi fixes from Mark Brown:
"A few nasty issues, particularly a race with the interrupt controller
in the xilinx driver, together with a couple of more minor fixes and a
much needed move of the mailing list away from sourceforge."
* tag 'spi-v3.10-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi:
spi: hspi: fixup long delay time
spi: spi-xilinx: Remove ISR race condition
spi: topcliff-pch: fix error return code in pch_spi_probe()
spi: topcliff-pch: Pass correct pointer to free_irq()
spi: Move mailing list to vger
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen
Pull xen fixes from Konrad Rzeszutek Wilk:
"Two bug-fixes for regressions:
- xen/tmem stopped working after a certain combination of
modprobe/swapon was used
- cpu online/offlining would trigger WARN_ON."
* tag 'stable/for-linus-3.10-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen:
xen/tmem: Don't over-write tmem_frontswap_poolid after tmem_frontswap_init set it.
xen/smp: Fixup NOHZ per cpu data when onlining an offline CPU.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/broonie/regmap
Pull regmap fixes from Mark Brown:
"The biggest fix here is Lars-Peter's fix for custom locking callbacks
which is pretty localised but important for those devices that use the
feature. Otherwise we've got a couple of fairly small cleanups which
would have been sent sooner were it not for letting Lars-Peter's patch
soak for a while"
* tag 'regmap-v3.10-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/regmap:
regmap: rbtree: Fixed node range check on sync
regmap: regcache: Fixup locking for custom lock callbacks
regmap: debugfs: Check return value of regmap_write()
|
|
Pull crypto fixes from Herbert Xu:
"This fixes a build problem in sahara and temporarily disables two new
optimisations because of performance regressions until a permanent fix
is ready"
* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: sahara - fix building as module
crypto: blowfish - disable AVX2 implementation
crypto: twofish - disable AVX2 implementation
|
|
Support for rt2800 device is broken since my
'rt2x00: rt2x00dev: use rt2x00dev->tx->limit'
patch. The changelog of that commit says that the
TX data queue is initialized already when the
rt2x00lib_probe_hw() function is called.
However as Jakub noticed it, this statement is not
correct. The queue->limit field is initialized in
the rt2x00queue_alloc_entries routine and that is
not yet called when rt2x00lib_probe_hw() runs.
Because the value of tx->limit contains zero, the
driver tries to allocate a kernel fifo with zero
size and kfifo_alloc rejects that with -EINVAL.
PCI: Enabling device 0000:01:00.0 (0000 -> 0002)
ieee80211 phy1: rt2x00_set_rt: Info - RT chipset 3071, rev 021c detected
ieee80211 phy1: rt2x00_set_rf: Info - RF chipset 0008 detected
ieee80211 phy1: rt2x00lib_probe_dev: Error - Failed to initialize hw
rt2800pci: probe of 0000:01:00.0 failed with error -22
Move the data_queue field initialization from
the rt2x00queue_alloc_entries routine into the
rt2x00queue_init function. The initialization
code is not strictly related to the allocation,
and the change ensures that the queue_data fields
can be used in the probe routines.
The patch also introduces a helper function in
order to be able to get the correct data_queue_desc
structure for a given queue. This helper is only
needed temporarily and it will be removed later.
Reported-by: Jakub Kicinski <moorray@wp.pl>
Signed-off-by: Gabor Juhos <juhosg@openwrt.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
|
|
GCC 4.8 is spitting out uninitialized-variable warnings against
"drivers/net/wireless/rtlwifi/rtl8192de/dm.c".
drivers/net/wireless/rtlwifi/rtl8192de/dm.c:941:31:
error: 'ofdm_index_old[1]' may be used uninitialized in this
function [-Werror=maybe-uninitialized]
rtlpriv->dm.ofdm_index[i] = ofdm_index_old[i];
This patch adds initialization to the variable and properly sets its value.
Signed-off-by: Yunlian Jiang <yunlian@google.com>
Acked-by: Larry Finger <Larry.Finger@lwfinger.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/iwlwifi/iwlwifi-next
|
|
Check for allocation failures and return -ENOMEM. The caller
already expects it.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
|
|
This has only one caller and rates[] is an array with
IEEE80211_TX_MAX_RATES (4) elements.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
|
|
The optional debugfs interface to the vendor's engineering tools wasn't
bounds checking at all, which made it trivial to perform a buffer
overflow if this interface was compiled in and then explicitly enabled
at runtime.
This patch checks both the length supplied as part of the data to ensure
it is sane, and also the amount of data compared to the remaining buffer
space. If either is too large, fail immediately.
(This bug was spotted by Dan Carpenter <dan.carpenter@oracle.com>)
Signed-off-by: Solomon Peachy <pizza@shaftnet.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
|
|
goto after return is wrong.
The other code in this block needs to set an
error value then goto an error release block.
This one doesn't need to release anything and
was likely a copy/paste remainder.
Signed-off-by: Joe Perches <joe@perches.com>
Acked-By: Solomon Peachy <pizza@shaftnet.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
|
|
Do not use uninitialised termios data to determine when to configure the
device at open.
This also prevents stack data from leaking to userspace in the OOM error
path.
Cc: stable@vger.kernel.org
Signed-off-by: Johan Hovold <jhovold@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Do not use uninitialised termios data to determine when to configure the
device at open.
Cc: stable@vger.kernel.org
Signed-off-by: Johan Hovold <jhovold@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Do not use uninitialised termios data to determine when to configure the
device at open.
This also prevents stack data from leaking to userspace.
Cc: stable@vger.kernel.org
Signed-off-by: Johan Hovold <jhovold@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
arch_ftrace_update_code and ftrace_modify_all_code are only
available if CONFIG_DYNAMIC_FTRACE is selected.
Fixes the following build problem on MIPS randconfig:
arch/mips/kernel/ftrace.c: In function 'arch_ftrace_update_code':
arch/mips/kernel/ftrace.c:31:2: error: implicit declaration of function
'ftrace_modify_all_code' [-Werror=implicit-function-declaration]
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Acked-by: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/5435/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
The kvm_* symbols are only available if KVM is selected.
Fixes the following linking problem on a randconfig:
arch/mips/built-in.o: In function `local_flush_tlb_mm':
(.text+0x18a94): undefined reference to `kvm_local_flush_tlb_all'
arch/mips/built-in.o: In function `local_flush_tlb_range':
(.text+0x18d0c): undefined reference to `kvm_local_flush_tlb_all'
kernel/built-in.o: In function `__schedule':
core.c:(.sched.text+0x2a00): undefined reference to `kvm_local_flush_tlb_all'
mm/built-in.o: In function `use_mm':
(.text+0x30214): undefined reference to `kvm_local_flush_tlb_all'
fs/built-in.o: In function `flush_old_exec':
(.text+0xf0a0): undefined reference to `kvm_local_flush_tlb_all'
make: *** [vmlinux] Error 1
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Acked-by: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/5437/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
Only an interrupt can wake the core from 'wait', enable interrupts
locally before executing 'wait'.
[ralf@linux-mips.org: This leave the race between an interrupt that's
setting TIF_NEED_RESCHEd and entering the WAIT status. but at least it's
going to bring Alchemy back from the dead, so I'm going to apply this
patch.]
Signed-off-by: Manuel Lauss <manuel.lauss@gmail.com>
Cc: Linux-MIPS <linux-mips@linux-mips.org>
Cc: Maciej W. Rozycki <macro@linux-mips.org>
Patchwork: https://patchwork.linux-mips.org/patch/5408/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
set it.
Commit 10a7a0771399a57a297fca9615450dbb3f88081a ("xen: tmem: enable Xen
tmem shim to be built/loaded as a module") allows the tmem module
to be loaded any time. For this work the frontswap API had to
be able to asynchronously to call tmem_frontswap_init before
or after the swap image had been set. That was added in git
commit 905cd0e1bf9ffe82d6906a01fd974ea0f70be97a
("mm: frontswap: lazy initialization to allow tmem backends to build/run as modules").
Which means we could do this (The common case):
modprobe tmem [so calls frontswap_register_ops, no ->init]
modifies tmem_frontswap_poolid = -1
swapon /dev/xvda1 [__frontswap_init, calls -> init, tmem_frontswap_poolid is
< 0 so tmem hypercall done]
Or the failing one:
swapon /dev/xvda1 [calls __frontswap_init, sets the need_init bitmap]
modprobe tmem [calls frontswap_register_ops, -->init calls, finds out
tmem_frontswap_poolid is 0, does not make a hypercall.
Later in the module_init, sets tmem_frontswap_poolid=-1]
Which meant that in the failing case we would not call the hypercall
to initialize the pool and never be able to make any frontswap
backend calls.
Moving the frontswap_register_ops after setting the tmem_frontswap_poolid
fixes it.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Bob Liu <bob.liu@oracle.com>
|
|
All architectures must implement IRQ functions. Since various
dependencies on !S390 were removed, there are various drivers that can
be selected but will fail to link. Provide a dummy implementation of
these functions for the !PCI case.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: stable@vger.kernel.org # 3.9
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
The entry struct has a 2 byte hole after ->port and another 4 byte
hole after ->stats.outpkts. You must have CAP_NET_ADMIN in your
namespace to hit this information leak.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Julian Anastasov <ja@ssi.bg>
Signed-off-by: Simon Horman <horms@verge.net.au>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
|
|
With the introduction of ACPI scan handlers, ACPI device objects
with an ACPI scan handler attached to them must not be bound to
by ACPI drivers any more. Unfortunately, however, the ACPI video
driver attempts to do just that if there is a _ROM ACPI control
method defined under a device object with an ACPI scan handler.
Prevent that from happening by making the video driver's "add"
routine check if the device object already has an ACPI scan handler
attached to it and return an error code in that case.
That is not sufficient, though, because acpi_bus_driver_init() would
then clear the device object's driver_data that may be set by its
scan handler, so for the fix to work acpi_bus_driver_init() has to be
modified to leave driver_data as is on errors.
References: https://bugzilla.kernel.org/show_bug.cgi?id=58091
Bisected-and-tested-by: Dmitry S. Demin <dmitryy.demin@gmail.com>
Reported-and-tested-by: Jason Cassell <bluesloth600@gmail.com>
Tracked-down-by: Aaron Lu <aaron.lu@intel.com>
Cc: 3.9+ <stable@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Aaron Lu <aaron.lu@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
In
commit 53d3b4d7778daf15900867336c85d3f8dd70600c
Author: Egbert Eich <eich@suse.de>
Date: Tue Jun 4 17:13:21 2013 +0200
drm/i915/sdvo: Use &intel_sdvo->ddc instead of intel_sdvo->i2c for DDC
Egbert Eich fixed a long-standing bug where we simply used a
non-working i2c controller to read the EDID for SDVO-LVDS panels.
Unfortunately some machines seem to not be able to cope with the mode
provided in the EDID. Specifically they seem to not be able to cope
with a 4x pixel mutliplier instead of a 2x one, which seems to have
been worked around by slightly changing the panels native mode in the
VBT so that the dotclock is just barely above 50MHz.
Since it took forever to notice the breakage it's fairly safe to
assume that at least for SDVO-LVDS panels the VBT contains fairly sane
data. So just switch around the order and use VBT modes first.
v2: Also add EDID modes just in case, and spell Egbert correctly.
v3: Elaborate a bit more about what's going on on Chris' machine.
Cc: Egbert Eich <eich@suse.de>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=65524
Cc: stable@vger.kernel.org
Reported-and-tested-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
|
|
sdvo->hotplug_active is initialised during intel_sdvo_setup_outputs(),
and so we never enabled the hotplug interrupts on SDVO as we were
checking too early.
This regression has been introduced somewhere in the hpd rework for
the storm detection and handling starting with
commit 1d843f9de4e6dc6a899b6f07f106c00da09925e6
Author: Egbert Eich <eich@suse.de>
Date: Mon Feb 25 12:06:49 2013 -0500
DRM/I915: Add enum hpd_pin to intel_encoder.
and the follow-up patches to use the new encoder->hpd_pin variable for
the different irq setup functions.
The problem is that encoder->hpd_pin was set up _before_ the output
setup was done and so before we could assess the hotplug capabilities
of the outputs on an sdvo encoder.
Reported-by: Alex Fiestas <afiestas@kde.org>
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=58405
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
[danvet: Add regression note.]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
|
|
A broken conditional would lead to SDVOC waiting upon hotplug events on
SDVOB - and so miss all activity on its SDVO port.
This regression has been introduced in
commit 1d843f9de4e6dc6a899b6f07f106c00da09925e6
Author: Egbert Eich <eich@suse.de>
Date: Mon Feb 25 12:06:49 2013 -0500
DRM/I915: Add enum hpd_pin to intel_encoder.
References: https://bugs.freedesktop.org/show_bug.cgi?id=58405
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
[danvet: Add regression note.]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
|
|
The bridge loop avoidance has a hook to handle address updates of the
originator. These should not be handled when bridge loop avoidance is
disabled - it might send some bridge loop avoidance packets which should
not appear if bla is disabled.
Signed-off-by: Simon Wunderlich <simon@open-mesh.com>
Signed-off-by: Marek Lindner <lindner_marek@yahoo.de>
Signed-off-by: Antonio Quartulli <ordex@autistici.org>
|