summaryrefslogtreecommitdiff
path: root/kernel/rcu
AgeCommit message (Collapse)Author
2024-08-11context_tracking, rcu: Rename ct_dynticks_nmi_nesting() into ct_nmi_nesting()Valentin Schneider
The context_tracking.state RCU_DYNTICKS subvariable has been renamed to RCU_WATCHING, and the 'dynticks' prefix can be dropped without losing any meaning. Suggested-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Valentin Schneider <vschneid@redhat.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-08-11context_tracking, rcu: Rename struct context_tracking .dynticks_nmi_nesting ↵Valentin Schneider
into .nmi_nesting The context_tracking.state RCU_DYNTICKS subvariable has been renamed to RCU_WATCHING, and the 'dynticks' prefix can be dropped without losing any meaning. [ neeraj.upadhyay: Fix htmldocs build error reported by Stephen Rothwell ] Suggested-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Valentin Schneider <vschneid@redhat.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-08-11context_tracking, rcu: Rename ct_dynticks_nesting_cpu() into ct_nesting_cpu()Valentin Schneider
The context_tracking.state RCU_DYNTICKS subvariable has been renamed to RCU_WATCHING, and the 'dynticks' prefix can be dropped without losing any meaning. Suggested-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Valentin Schneider <vschneid@redhat.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-08-11context_tracking, rcu: Rename ct_dynticks_nesting() into ct_nesting()Valentin Schneider
The context_tracking.state RCU_DYNTICKS subvariable has been renamed to RCU_WATCHING, reflect that change in the related helpers. Suggested-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Valentin Schneider <vschneid@redhat.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-08-11context_tracking, rcu: Rename struct context_tracking .dynticks_nesting into ↵Valentin Schneider
.nesting The context_tracking.state RCU_DYNTICKS subvariable has been renamed to RCU_WATCHING, reflect that change in the related helpers. [ neeraj.upadhyay: Fix htmldocs build error reported by Stephen Rothwell ] Suggested-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Valentin Schneider <vschneid@redhat.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29rcu/kfree: Warn on unexpected tail statePaul E. McKenney
Within the rcu_sr_normal_gp_cleanup_work() function, there is an acquire load from rcu_state.srs_done_tail, which is expected to be non-NULL. This commit adds a WARN_ON_ONCE() to check this expectation. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29rcutorture: Make rcu_torture_write_types() print number of update typesPaul E. McKenney
This commit follows the list of update types with their count, resulting in console output like this: rcu_torture_write_types: Testing conditional GPs. rcu_torture_write_types: Testing conditional expedited GPs. rcu_torture_write_types: Testing conditional full-state GPs. rcu_torture_write_types: Testing expedited GPs. rcu_torture_write_types: Testing asynchronous GPs. rcu_torture_write_types: Testing polling GPs. rcu_torture_write_types: Testing polling full-state GPs. rcu_torture_write_types: Testing polling expedited GPs. rcu_torture_write_types: Testing polling full-state expedited GPs. rcu_torture_write_types: Testing normal GPs. rcu_torture_write_types: Testing 10 update types This commit adds the final line giving the count. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29rcutorture: Generic test for NUM_ACTIVE_*RCU_POLL*Paul E. McKenney
The rcutorture test suite has specific tests for both of the NUM_ACTIVE_RCU_POLL_OLDSTATE and NUM_ACTIVE_RCU_POLL_FULL_OLDSTATE macros provided for RCU polled grace periods. However, with the advent of NUM_ACTIVE_SRCU_POLL_OLDSTATE, a more generic test is needed. This commit therefore adds ->poll_active and ->poll_active_full fields to the rcu_torture_ops structure and converts the existing specific tests to use these fields, when present. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29rcutorture: Add SRCU ->same_gp_state and ->get_comp_state functionsPaul E. McKenney
This commit points the SRCU ->same_gp_state and ->get_comp_state fields to same_state_synchronize_srcu() and get_completed_synchronize_srcu(), allowing them to be tested. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29rcutorture: Remove redundant rcu_torture_ops get_gp_completed fieldsPaul E. McKenney
The rcu_torture_ops structure's ->get_gp_completed and ->get_gp_completed_full fields are redundant with its ->get_comp_state and ->get_comp_state_full fields. This commit therefore removes the former in favor of the latter. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29rcu/nocb: Remove SEGCBLIST_RCU_COREFrederic Weisbecker
RCU core can't be running anymore while in the middle of (de-)offloading since this sort of transition now only applies to offline CPUs. The SEGCBLIST_RCU_CORE state can therefore be removed. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29rcu/nocb: Remove halfway (de-)offloading handling from rcu_coreFrederic Weisbecker
RCU core can't be running anymore while in the middle of (de-)offloading since this sort of transition now only applies to offline CPUs. The locked callback acceleration handling during the transition can therefore be removed, along with concurrent batch execution. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29rcu/nocb: Remove halfway (de-)offloading handling from rcu_core()'s QS reportingFrederic Weisbecker
RCU core can't be running anymore while in the middle of (de-)offloading since this sort of transition now only applies to offline CPUs. The locked callback acceleration handling during the transition can therefore be removed. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29rcu/nocb: Remove halfway (de-)offloading handling from bypassFrederic Weisbecker
Bypass enqueue can't happen anymore in the middle of (de-)offloading since this sort of transition now only applies to offline CPUs. The related safety check can therefore be removed. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29rcu/nocb: (De-)offload callbacks on offline CPUs onlyFrederic Weisbecker
Currently callbacks can be (de-)offloaded only on online CPUs. This involves an overly elaborated state machine in order to make sure that callbacks are always handled during the process while ensuring synchronization between rcu_core and NOCB kthreads. The only potential user of NOCB (de-)offloading appears to be a nohz_full toggling interface through cpusets. And the general agreement is now to work toward toggling the nohz_full state on offline CPUs to simplify the whole picture. Therefore, convert the (de-)offloading to only support offline CPUs. This involves the following changes: * Call rcu_barrier() before deoffloading. An offline offloaded CPU may still carry callbacks in its queue ignored by rcutree_migrate_callbacks(). Those callbacks must all be flushed before switching to a regular queue because no more kthreads will handle those before the CPU ever gets re-onlined. This means that further calls to rcu_barrier() will find an empty queue until the CPU goes through rcutree_report_cpu_starting(). As a result it is guaranteed that further rcu_barrier() won't try to lock the nocb_lock for that target and thus won't risk an imbalance. Therefore barrier_mutex doesn't need to be locked anymore upon deoffloading. * Assume the queue is empty before offloading, as rcutree_migrate_callbacks() took care of everything. This means that further calls to rcu_barrier() will find an empty queue until the CPU goes through rcutree_report_cpu_starting(). As a result it is guaranteed that further rcu_barrier() won't risk a nocb_lock imbalance. Therefore barrier_mutex doesn't need to be locked anymore upon offloading. * No need to flush bypass anymore. Further simplifications will follow in upcoming patches. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29rcu/nocb: Introduce nocb mutexFrederic Weisbecker
The barrier_mutex is used currently to protect (de-)offloading operations and prevent from nocb_lock locking imbalance in rcu_barrier() and shrinker, and also from misordered RCU barrier invocation. Now since RCU (de-)offloading is going to happen on offline CPUs, an RCU barrier will have to be executed while transitionning from offloaded to de-offloaded state. And this can't happen while holding the barrier_mutex. Introduce a NOCB mutex to protect (de-)offloading transitions. The barrier_mutex is still held for now when necessary to avoid barrier callbacks reordering and nocb_lock imbalance. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29rcu/nocb: Assert no callbacks while nocb kthread allocation failsFrederic Weisbecker
When a NOCB CPU fails to create a nocb kthread on bringup, the CPU is then deoffloaded. The barrier mutex is locked at this stage. It is typically used to protect against concurrent (de-)offloading and/or concurrent rcu_barrier() that would otherwise risk a nocb locking imbalance. However: * rcu_barrier() can't run concurrently if it's the boot CPU on early boot-up. * rcu_barrier() can run concurrently if it's a secondary CPU but it is expected to see 0 callbacks on this target because it's the first time it boots. * (de-)offloading can't happen concurrently with smp_init(), as rcutorture is initialized later, at least not before device_initcall(), and userspace isn't available yet. * (de-)offloading can't happen concurrently with cpu_up(), courtesy of cpu_hotplug_lock. But: * The lazy shrinker might run concurrently with cpu_up(). It shouldn't try to grab the nocb_lock and risk an imbalance due to lazy_len supposed to be 0 but be extra cautious. * Also be cautious against resume from hibernation potential subtleties. So keep the locking and add some assertions and comments. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29rcu/nocb: Move nocb field at the end of state structFrederic Weisbecker
nocb_is_setup is a rarely used field, mostly on boot and CPU hotplug. It shouldn't occupy the middle of the rcu state hot fields cacheline. Move it to the end and build it conditionally while at it. More cold NOCB fields are to come. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29rcu/nocb: Introduce RCU_NOCB_LOCKDEP_WARN()Frederic Weisbecker
Checking for races against concurrent (de-)offloading implies the creation of !CONFIG_RCU_NOCB_CPU stubs to check if each relevant lock is held. For now this only implies the nocb_lock but more are to be expected. Create instead a NOCB specific version of RCU_LOCKDEP_WARN() to avoid the proliferation of stubs. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29context_tracking, rcu: Rename ct_dynticks_cpu_acquire() into ↵Valentin Schneider
ct_rcu_watching_cpu_acquire() The context_tracking.state RCU_DYNTICKS subvariable has been renamed to RCU_WATCHING, reflect that change in the related helpers. Signed-off-by: Valentin Schneider <vschneid@redhat.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29context_tracking, rcu: Rename ct_dynticks_cpu() into ct_rcu_watching_cpu()Valentin Schneider
The context_tracking.state RCU_DYNTICKS subvariable has been renamed to RCU_WATCHING, reflect that change in the related helpers. Signed-off-by: Valentin Schneider <vschneid@redhat.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29context_tracking, rcu: Rename ct_dynticks() into ct_rcu_watching()Valentin Schneider
The context_tracking.state RCU_DYNTICKS subvariable has been renamed to RCU_WATCHING, reflect that change in the related helpers. Signed-off-by: Valentin Schneider <vschneid@redhat.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-29context_tracking, rcu: Rename RCU_DYNTICKS_IDX into CT_RCU_WATCHINGValentin Schneider
The symbols relating to the CT_STATE part of context_tracking.state are now all prefixed with CT_STATE. The RCU dynticks counter part of that atomic variable still involves symbols with different prefixes, align them all to be prefixed with CT_RCU_WATCHING. Suggested-by: "Paul E. McKenney" <paulmck@kernel.org> Signed-off-by: Valentin Schneider <vschneid@redhat.com> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-07-04Merge branches 'doc.2024.06.06a', 'fixes.2024.07.04a', 'mb.2024.06.28a', ↵Paul E. McKenney
'nocb.2024.06.03a', 'rcu-tasks.2024.06.06a', 'rcutorture.2024.06.06a' and 'srcu.2024.06.18a' into HEAD doc.2024.06.06a: Documentation updates. fixes.2024.07.04a: Miscellaneous fixes. mb.2024.06.28a: Grace-period memory-barrier redundancy removal. nocb.2024.06.03a: No-CB CPU updates. rcu-tasks.2024.06.06a: RCU-Tasks updates. rcutorture.2024.06.06a: Torture-test updates. srcu.2024.06.18a: SRCU polled-grace-period updates.
2024-07-04rcu: Fix rcu_barrier() VS post CPUHP_TEARDOWN_CPU invocationFrederic Weisbecker
When rcu_barrier() calls rcu_rdp_cpu_online() and observes a CPU off rnp->qsmaskinitnext, it means that all accesses from the offline CPU preceding the CPUHP_TEARDOWN_CPU are visible to RCU barrier, including callbacks expiration and counter updates. However interrupts can still fire after stop_machine() re-enables interrupts and before rcutree_report_cpu_dead(). The related accesses happening between CPUHP_TEARDOWN_CPU and rnp->qsmaskinitnext clearing are _NOT_ guaranteed to be seen by rcu_barrier() without proper ordering, especially when callbacks are invoked there to the end, making rcutree_migrate_callback() bypass barrier_lock. The following theoretical race example can make rcu_barrier() hang: CPU 0 CPU 1 ----- ----- //cpu_down() smpboot_park_threads() //ksoftirqd is parked now <IRQ> rcu_sched_clock_irq() invoke_rcu_core() do_softirq() rcu_core() rcu_do_batch() // callback storm // rcu_do_batch() returns // before completing all // of them // do_softirq also returns early because of // timeout. It defers to ksoftirqd but // it's parked </IRQ> stop_machine() take_cpu_down() rcu_barrier() spin_lock(barrier_lock) // observes rcu_segcblist_n_cbs(&rdp->cblist) != 0 <IRQ> do_softirq() rcu_core() rcu_do_batch() //completes all pending callbacks //smp_mb() implied _after_ callback number dec </IRQ> rcutree_report_cpu_dead() rnp->qsmaskinitnext &= ~rdp->grpmask; rcutree_migrate_callback() // no callback, early return without locking // barrier_lock //observes !rcu_rdp_cpu_online(rdp) rcu_barrier_entrain() rcu_segcblist_entrain() // Observe rcu_segcblist_n_cbs(rsclp) == 0 // because no barrier between reading // rnp->qsmaskinitnext and rsclp->len rcu_segcblist_add_len() smp_mb__before_atomic() // will now observe the 0 count and empty // list, but too late, we enqueue regardless WRITE_ONCE(rsclp->len, rsclp->len + v); // ignored barrier callback // rcu barrier stall... This could be solved with a read memory barrier, enforcing the message passing between rnp->qsmaskinitnext and rsclp->len, matching the full memory barrier after rsclp->len addition in rcu_segcblist_add_len() performed at the end of rcu_do_batch(). However the rcu_barrier() is complicated enough and probably doesn't need too many more subtleties. CPU down is a slowpath and the barrier_lock seldom contended. Solve the issue with unconditionally locking the barrier_lock on rcutree_migrate_callbacks(). This makes sure that either rcu_barrier() sees the empty queue or its entrained callback will be migrated. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2024-07-04rcu: Eliminate lockless accesses to rcu_sync->gp_countOleg Nesterov
The rcu_sync structure's ->gp_count field is always accessed under the protection of that same structure's ->rss_lock field, with the exception of a pair of WARN_ON_ONCE() calls just prior to acquiring that lock in functions rcu_sync_exit() and rcu_sync_dtor(). These lockless accesses are unnecessary and impair KCSAN's ability to catch bugs that might be inserted via other lockless accesses. This commit therefore moves those WARN_ON_ONCE() calls under the lock. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2024-07-04rcu: Add rcutree.nohz_full_patience_delay to reduce nohz_full OS jitterPaul E. McKenney
If a CPU is running either a userspace application or a guest OS in nohz_full mode, it is possible for a system call to occur just as an RCU grace period is starting. If that CPU also has the scheduling-clock tick enabled for any reason (such as a second runnable task), and if the system was booted with rcutree.use_softirq=0, then RCU can add insult to injury by awakening that CPU's rcuc kthread, resulting in yet another task and yet more OS jitter due to switching to that task, running it, and switching back. In addition, in the common case where that system call is not of excessively long duration, awakening the rcuc task is pointless. This pointlessness is due to the fact that the CPU will enter an extended quiescent state upon returning to the userspace application or guest OS. In this case, the rcuc kthread cannot do anything that the main RCU grace-period kthread cannot do on its behalf, at least if it is given a few additional milliseconds (for example, given the time duration specified by rcutree.jiffies_till_first_fqs, give or take scheduling delays). This commit therefore adds a rcutree.nohz_full_patience_delay kernel boot parameter that specifies the grace period age (in milliseconds, rounded to jiffies) before which RCU will refrain from awakening the rcuc kthread. Preliminary experimentation suggests a value of 1000, that is, one second. Increasing rcutree.nohz_full_patience_delay will increase grace-period latency and in turn increase memory footprint, so systems with constrained memory might choose a smaller value. Systems with less-aggressive OS-jitter requirements might choose the default value of zero, which keeps the traditional immediate-wakeup behavior, thus avoiding increases in grace-period latency. [ paulmck: Apply Leonardo Bras feedback. ] Link: https://lore.kernel.org/all/20240328171949.743211-1-leobras@redhat.com/ Reported-by: Leonardo Bras <leobras@redhat.com> Suggested-by: Leonardo Bras <leobras@redhat.com> Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Leonardo Bras <leobras@redhat.com>
2024-06-28rcu/exp: Remove redundant full memory barrier at the end of GPFrederic Weisbecker
A full memory barrier is necessary at the end of the expedited grace period to order: 1) The grace period completion (pictured by the GP sequence number) with all preceding accesses. This pairs with rcu_seq_end() performed by the concurrent kworker. 2) The grace period completion and subsequent post-GP update side accesses. Pairs again against rcu_seq_end(). This full barrier is already provided by the final sync_exp_work_done() test, making the subsequent explicit one redundant. Remove it and improve comments. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-06-28rcu: Remove full memory barrier on RCU stall printoutFrederic Weisbecker
RCU stall printout fetches the EQS state of a CPU with a preceding full memory barrier. However there is nothing to order this read against at this debugging stage. It is inherently racy when performed remotely. Do a plain read instead. This was the last user of rcu_dynticks_snap(). Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-06-28rcu: Remove full memory barrier on boot time eqs sanity checkFrederic Weisbecker
When the boot CPU initializes the per-CPU data on behalf of all possible CPUs, a sanity check is performed on each of them to make sure none is initialized in an extended quiescent state. This check involves a full memory barrier which is useless at this early boot stage. Do a plain access instead. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
2024-06-28rcu/exp: Remove superfluous full memory barrier upon first EQS snapshotFrederic Weisbecker
When the grace period kthread checks the extended quiescent state counter of a CPU, full ordering is necessary to ensure that either: * If the GP kthread observes the remote target in an extended quiescent state, then that target must observe all accesses prior to the current grace period, including the current grace period sequence number, once it exits that extended quiescent state. or: * If the GP kthread observes the remote target NOT in an extended quiescent state, then the target further entering in an extended quiescent state must observe all accesses prior to the current grace period, including the current grace period sequence number, once it enters that extended quiescent state. This ordering is enforced through a full memory barrier placed right before taking the first EQS snapshot. However this is superfluous because the snapshot is taken while holding the target's rnp lock which provides the necessary ordering through its chain of smp_mb__after_unlock_lock(). Remove the needless explicit barrier before the snapshot and put a comment about the implicit barrier newly relied upon here. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2024-06-28rcu: Remove superfluous full memory barrier upon first EQS snapshotFrederic Weisbecker
When the grace period kthread checks the extended quiescent state counter of a CPU, full ordering is necessary to ensure that either: * If the GP kthread observes the remote target in an extended quiescent state, then that target must observe all accesses prior to the current grace period, including the current grace period sequence number, once it exits that extended quiescent state. or: * If the GP kthread observes the remote target NOT in an extended quiescent state, then the target further entering in an extended quiescent state must observe all accesses prior to the current grace period, including the current grace period sequence number, once it enters that extended quiescent state. This ordering is enforced through a full memory barrier placed right before taking the first EQS snapshot. However this is superfluous because the snapshot is taken while holding the target's rnp lock which provides the necessary ordering through its chain of smp_mb__after_unlock_lock(). Remove the needless explicit barrier before the snapshot and put a comment about the implicit barrier newly relied upon here. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2024-06-28rcu: Remove full ordering on second EQS snapshotFrederic Weisbecker
When the grace period kthread checks the extended quiescent state counter of a CPU, full ordering is necessary to ensure that either: * If the GP kthread observes the remote target in an extended quiescent state, then that target must observe all accesses prior to the current grace period, including the current grace period sequence number, once it exits that extended quiescent state. Also the GP kthread must observe all accesses performed by the target prior it entering in EQS. or: * If the GP kthread observes the remote target NOT in an extended quiescent state, then the target further entering in an extended quiescent state must observe all accesses prior to the current grace period, including the current grace period sequence number, once it enters that extended quiescent state. Also the GP kthread later observing that EQS must also observe all accesses performed by the target prior it entering in EQS. This ordering is explicitly performed both on the first EQS snapshot and on the second one as well through the combination of a preceding full barrier followed by an acquire read. However the second snapshot's full memory barrier is redundant and not needed to enforce the above guarantees: GP kthread Remote target ---- ----- // Access prior GP WRITE_ONCE(A, 1) // first snapshot smp_mb() x = smp_load_acquire(EQS) // Access prior GP WRITE_ONCE(B, 1) // EQS enter // implied full barrier by atomic_add_return() atomic_add_return(RCU_DYNTICKS_IDX, EQS) // implied full barrier by atomic_add_return() READ_ONCE(A) // second snapshot y = smp_load_acquire(EQS) z = READ_ONCE(B) If the GP kthread above fails to observe the remote target in EQS (x not in EQS), the remote target will observe A == 1 after further entering in EQS. Then the second snapshot taken by the GP kthread only need to be an acquire read in order to observe z == 1. Therefore remove the needless full memory barrier on second snapshot. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2024-06-18srcu: Fill out polled grace-period APIsPaul E. McKenney
This commit adds the get_completed_synchronize_srcu() and the same_state_synchronize_srcu() functions. The first returns a cookie that is always interpreted as corresponding to an expired grace period. The second does an equality comparison of a pair of cookies. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Cc: Kent Overstreet <kent.overstreet@linux.dev>
2024-06-18srcu: Update cleanup_srcu_struct() commentPaul E. McKenney
Now that we have polled SRCU grace periods, a grace period can be started by start_poll_synchronize_srcu() as well as call_srcu(), synchronize_srcu(), and synchronize_srcu_expedited(). This commit therefore calls out this new start_poll_synchronize_srcu() possibility in the comment on the WARN_ON(). Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2024-06-18srcu: Disable interrupts directly in srcu_gp_end()Paul E. McKenney
Interrupts are enabled in srcu_gp_end(), so this commit switches from spin_lock_irqsave_rcu_node() and spin_unlock_irqrestore_rcu_node() to spin_lock_irq_rcu_node() and spin_unlock_irq_rcu_node(). Link: https://lore.kernel.org/all/febb13ab-a4bb-48b4-8e97-7e9f7749e6da@moroto.mountain/ Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2024-06-18rcu: Disable interrupts directly in rcu_gp_init()Paul E. McKenney
Interrupts are enabled in rcu_gp_init(), so this commit switches from local_irq_save() and local_irq_restore() to local_irq_disable() and local_irq_enable(). Link: https://lore.kernel.org/all/febb13ab-a4bb-48b4-8e97-7e9f7749e6da@moroto.mountain/ Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2024-06-18rcu/tree: Reduce wake up for synchronize_rcu() common caseJoel Fernandes (Google)
In the synchronize_rcu() common case, we will have less than SR_MAX_USERS_WAKE_FROM_GP number of users per GP. Waking up the kworker is pointless just to free the last injected wait head since at that point, all the users have already been awakened. Introduce a new counter to track this and prevent the wakeup in the common case. [ paulmck: Remove atomic_dec_return_release in cannot-happen state. ] Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2024-06-06rcu/tasks: Fix stale task snaphot for Tasks TraceFrederic Weisbecker
When RCU-TASKS-TRACE pre-gp takes a snapshot of the current task running on all online CPUs, no explicit ordering synchronizes properly with a context switch. This lack of ordering can permit the new task to miss pre-grace-period update-side accesses. The following diagram, courtesy of Paul, shows the possible bad scenario: CPU 0 CPU 1 ----- ----- // Pre-GP update side access WRITE_ONCE(*X, 1); smp_mb(); r0 = rq->curr; RCU_INIT_POINTER(rq->curr, TASK_B) spin_unlock(rq) rcu_read_lock_trace() r1 = X; /* ignore TASK_B */ Either r0==TASK_B or r1==1 is needed but neither is guaranteed. One possible solution to solve this is to wait for an RCU grace period at the beginning of the RCU-tasks-trace grace period before taking the current tasks snaphot. However this would introduce large additional latencies to RCU-tasks-trace grace periods. Another solution is to lock the target runqueue while taking the current task snapshot. This ensures that the update side sees the latest context switch and subsequent context switches will see the pre-grace-period update side accesses. This commit therefore adds runqueue locking to cpu_curr_snapshot(). Fixes: e386b6725798 ("rcu-tasks: Eliminate RCU Tasks Trace IPIs to online CPUs") Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2024-06-06rcutorture: Add missing MODULE_DESCRIPTION() macrosJeff Johnson
Fix the following 'make W=1' warnings: WARNING: modpost: missing MODULE_DESCRIPTION() in kernel/rcu/rcutorture.o WARNING: modpost: missing MODULE_DESCRIPTION() in kernel/rcu/rcuscale.o WARNING: modpost: missing MODULE_DESCRIPTION() in kernel/rcu/refscale.o Signed-off-by: Jeff Johnson <quic_jjohnson@quicinc.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2024-06-06rcutorture: Fix rcu_torture_fwd_cb_cr() data racePaul E. McKenney
On powerpc systems, spinlock acquisition does not order prior stores against later loads. This means that this statement: rfcp->rfc_next = NULL; Can be reordered to follow this statement: WRITE_ONCE(*rfcpp, rfcp); Which is then a data race with rcu_torture_fwd_prog_cr(), specifically, this statement: rfcpn = READ_ONCE(rfcp->rfc_next) KCSAN located this data race, which represents a real failure on powerpc. Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Acked-by: Marco Elver <elver@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: <kasan-dev@googlegroups.com>
2024-06-03rcutorture: Make rcutorture support srcu double call testZqiang
This commit allows rcutorture to test double-call_srcu() when the CONFIG_DEBUG_OBJECTS_RCU_HEAD Kconfig option is enabled. The non-raw sdp structure's ->spinlock will be acquired in call_srcu(), hence this commit also removes the current IRQ and preemption disabling so as to avoid lockdep complaints. Link: https://lore.kernel.org/all/20240407112714.24460-1-qiang.zhang1211@gmail.com/ Signed-off-by: Zqiang <qiang.zhang1211@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2024-06-03Revert "rcu-tasks: Fix synchronize_rcu_tasks() VS zap_pid_ns_processes()"Frederic Weisbecker
This reverts commit 28319d6dc5e2ffefa452c2377dd0f71621b5bff0. The race it fixed was subject to conditions that don't exist anymore since: 1612160b9127 ("rcu-tasks: Eliminate deadlocks involving do_exit() and RCU tasks") This latter commit removes the use of SRCU that used to cover the RCU-tasks blind spot on exit between the tasklist's removal and the final preemption disabling. The task is now placed instead into a temporary list inside which voluntary sleeps are accounted as RCU-tasks quiescent states. This would disarm the deadlock initially reported against PID namespace exit. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2024-06-03rcu/nocb: Remove buggy bypass lock contention mitigationFrederic Weisbecker
The bypass lock contention mitigation assumes there can be at most 2 contenders on the bypass lock, following this scheme: 1) One kthread takes the bypass lock 2) Another one spins on it and increment the contended counter 3) A third one (a bypass enqueuer) sees the contended counter on and busy loops waiting on it to decrement. However this assumption is wrong. There can be only one CPU to find the lock contended because call_rcu() (the bypass enqueuer) is the only bypass lock acquire site that may not already hold the NOCB lock beforehand, all the other sites must first contend on the NOCB lock. Therefore step 2) is impossible. The other problem is that the mitigation assumes that contenders all belong to the same rdp CPU, which is also impossible for a raw spinlock. In theory the warning could trigger if the enqueuer holds the bypass lock and another CPU flushes the bypass queue concurrently but this is prevented from all flush users: 1) NOCB kthreads only flush if they successfully _tried_ to lock the bypass lock. So no contention management here. 2) Flush on callbacks migration happen remotely when the CPU is offline. No concurrency against bypass enqueue. 3) Flush on deoffloading happen either locally with IRQs disabled or remotely when the CPU is not yet online. No concurrency against bypass enqueue. 4) Flush on barrier entrain happen either locally with IRQs disabled or remotely when the CPU is offline. No concurrency against bypass enqueue. For those reasons, the bypass lock contention mitigation isn't needed and is even wrong. Remove it but keep the warning reporting a contended bypass lock on a remote CPU, to keep unexpected contention awareness. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2024-06-03rcu/nocb: Use kthread parking instead of ad-hoc implementationFrederic Weisbecker
Upon NOCB deoffloading, the rcuo kthread must be forced to sleep until the corresponding rdp is ever offloaded again. The deoffloader clears the SEGCBLIST_OFFLOADED flag, wakes up the rcuo kthread which then notices that change and clears in turn its SEGCBLIST_KTHREAD_CB flag before going to sleep, until it ever sees the SEGCBLIST_OFFLOADED flag again, should a re-offloading happen. Upon NOCB offloading, the rcuo kthread must be forced to wake up and handle callbacks until the corresponding rdp is ever deoffloaded again. The offloader sets the SEGCBLIST_OFFLOADED flag, wakes up the rcuo kthread which then notices that change and sets in turn its SEGCBLIST_KTHREAD_CB flag before going to check callbacks, until it ever sees the SEGCBLIST_OFFLOADED flag cleared again, should a de-offloading happen again. This is all a crude ad-hoc and error-prone kthread (un-)parking re-implementation. Consolidate the behaviour with the appropriate API instead. [ paulmck: Apply Qiang Zhang feedback provided in Link: below. ] Link: https://lore.kernel.org/all/20240509074046.15629-1-qiang.zhang1211@gmail.com/ Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2024-05-01Merge branches 'fixes.2024.04.15a', 'misc.2024.04.12a', ↵Uladzislau Rezki (Sony)
'rcu-sync-normal-improve.2024.04.15a', 'rcu-tasks.2024.04.15a' and 'rcutorture.2024.04.15a' into rcu-merge.2024.04.15a fixes.2024.04.15a: RCU fixes misc.2024.04.12a: Miscellaneous fixes rcu-sync-normal-improve.2024.04.15a: Improving synchronize_rcu() call rcu-tasks.2024.04.15a: Tasks RCU updates rcutorture.2024.04.15a: Torture-test updates
2024-04-16rcutorture: Use rcu_gp_slow_register/unregister() only for rcutype testZqiang
The rcu_gp_slow_register/unregister() is only useful in tests where torture_type=rcu, so this commit therefore generates ->gp_slow_register() and ->gp_slow_unregister() function pointers in the rcu_torture_ops structure, and slows grace periods only when these function pointers exist. Signed-off-by: Zqiang <qiang.zhang1211@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
2024-04-16rcutorture: Fix invalid context warning when enable srcu barrier testingZqiang
When the torture_type is set srcu or srcud and cb_barrier is non-zero, running the rcutorture test will trigger the following warning: [ 163.910989][ C1] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 [ 163.910994][ C1] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 0, name: swapper/1 [ 163.910999][ C1] preempt_count: 10001, expected: 0 [ 163.911002][ C1] RCU nest depth: 0, expected: 0 [ 163.911005][ C1] INFO: lockdep is turned off. [ 163.911007][ C1] irq event stamp: 30964 [ 163.911010][ C1] hardirqs last enabled at (30963): [<ffffffffabc7df52>] do_idle+0x362/0x500 [ 163.911018][ C1] hardirqs last disabled at (30964): [<ffffffffae616eff>] sysvec_call_function_single+0xf/0xd0 [ 163.911025][ C1] softirqs last enabled at (0): [<ffffffffabb6475f>] copy_process+0x16ff/0x6580 [ 163.911033][ C1] softirqs last disabled at (0): [<0000000000000000>] 0x0 [ 163.911038][ C1] Preemption disabled at: [ 163.911039][ C1] [<ffffffffacf1964b>] stack_depot_save_flags+0x24b/0x6c0 [ 163.911063][ C1] CPU: 1 PID: 0 Comm: swapper/1 Tainted: G W 6.8.0-rc4-rt4-yocto-preempt-rt+ #3 1e39aa9a737dd024a3275c4f835a872f673a7d3a [ 163.911071][ C1] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014 [ 163.911075][ C1] Call Trace: [ 163.911078][ C1] <IRQ> [ 163.911080][ C1] dump_stack_lvl+0x88/0xd0 [ 163.911089][ C1] dump_stack+0x10/0x20 [ 163.911095][ C1] __might_resched+0x36f/0x530 [ 163.911105][ C1] rt_spin_lock+0x82/0x1c0 [ 163.911112][ C1] spin_lock_irqsave_ssp_contention+0xb8/0x100 [ 163.911121][ C1] srcu_gp_start_if_needed+0x782/0xf00 [ 163.911128][ C1] ? _raw_spin_unlock_irqrestore+0x46/0x70 [ 163.911136][ C1] ? debug_object_active_state+0x336/0x470 [ 163.911148][ C1] ? __pfx_srcu_gp_start_if_needed+0x10/0x10 [ 163.911156][ C1] ? __pfx_lock_release+0x10/0x10 [ 163.911165][ C1] ? __pfx_rcu_torture_barrier_cbf+0x10/0x10 [ 163.911188][ C1] __call_srcu+0x9f/0xe0 [ 163.911196][ C1] call_srcu+0x13/0x20 [ 163.911201][ C1] srcu_torture_call+0x1b/0x30 [ 163.911224][ C1] rcu_torture_barrier1cb+0x4a/0x60 [ 163.911247][ C1] __flush_smp_call_function_queue+0x267/0xca0 [ 163.911256][ C1] ? __pfx_rcu_torture_barrier1cb+0x10/0x10 [ 163.911281][ C1] generic_smp_call_function_single_interrupt+0x13/0x20 [ 163.911288][ C1] __sysvec_call_function_single+0x7d/0x280 [ 163.911295][ C1] sysvec_call_function_single+0x93/0xd0 [ 163.911302][ C1] </IRQ> [ 163.911304][ C1] <TASK> [ 163.911308][ C1] asm_sysvec_call_function_single+0x1b/0x20 [ 163.911313][ C1] RIP: 0010:default_idle+0x17/0x20 [ 163.911326][ C1] RSP: 0018:ffff888001997dc8 EFLAGS: 00000246 [ 163.911333][ C1] RAX: 0000000000000000 RBX: dffffc0000000000 RCX: ffffffffae618b51 [ 163.911337][ C1] RDX: 0000000000000000 RSI: ffffffffaea80920 RDI: ffffffffaec2de80 [ 163.911342][ C1] RBP: ffff888001997dc8 R08: 0000000000000001 R09: ffffed100d740cad [ 163.911346][ C1] R10: ffffed100d740cac R11: ffff88806ba06563 R12: 0000000000000001 [ 163.911350][ C1] R13: ffffffffafe460c0 R14: ffffffffafe460c0 R15: 0000000000000000 [ 163.911358][ C1] ? ct_kernel_exit.constprop.3+0x121/0x160 [ 163.911369][ C1] ? lockdep_hardirqs_on+0xc4/0x150 [ 163.911376][ C1] arch_cpu_idle+0x9/0x10 [ 163.911383][ C1] default_idle_call+0x7a/0xb0 [ 163.911390][ C1] do_idle+0x362/0x500 [ 163.911398][ C1] ? __pfx_do_idle+0x10/0x10 [ 163.911404][ C1] ? complete_with_flags+0x8b/0xb0 [ 163.911416][ C1] cpu_startup_entry+0x58/0x70 [ 163.911423][ C1] start_secondary+0x221/0x280 [ 163.911430][ C1] ? __pfx_start_secondary+0x10/0x10 [ 163.911440][ C1] secondary_startup_64_no_verify+0x17f/0x18b [ 163.911455][ C1] </TASK> This commit therefore use smp_call_on_cpu() instead of smp_call_function_single(), make rcu_torture_barrier1cb() invoked happens on task-context. Signed-off-by: Zqiang <qiang.zhang1211@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
2024-04-16rcutorture: Make stall-tasks directly exit when rcutorture tests endZqiang
When the rcutorture tests start to exit, the rcu_torture_cleanup() is invoked to stop kthreads and release resources, if the stall-task kthreads exist, cpu-stall has started and the rcutorture.stall_cpu is set to a larger value, the rcu_torture_cleanup() will be blocked for a long time and the hung-task may occur, this commit therefore add kthread_should_stop() to the loop of cpu-stall operation, when rcutorture tests ends, no need to wait for cpu-stall to end, exit directly. Use the following command to test: insmod rcutorture.ko torture_type=srcu fwd_progress=0 stat_interval=4 stall_cpu_block=1 stall_cpu=200 stall_cpu_holdoff=10 read_exit_burst=0 object_debug=1 rmmod rcutorture [15361.918610] INFO: task rmmod:878 blocked for more than 122 seconds. [15361.918613] Tainted: G W 6.8.0-rc2-yoctodev-standard+ #25 [15361.918615] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [15361.918616] task:rmmod state:D stack:0 pid:878 tgid:878 ppid:773 flags:0x00004002 [15361.918621] Call Trace: [15361.918623] <TASK> [15361.918626] __schedule+0xc0d/0x28f0 [15361.918631] ? __pfx___schedule+0x10/0x10 [15361.918635] ? rcu_is_watching+0x19/0xb0 [15361.918638] ? schedule+0x1f6/0x290 [15361.918642] ? __pfx_lock_release+0x10/0x10 [15361.918645] ? schedule+0xc9/0x290 [15361.918648] ? schedule+0xc9/0x290 [15361.918653] ? trace_preempt_off+0x54/0x100 [15361.918657] ? schedule+0xc9/0x290 [15361.918661] schedule+0xd0/0x290 [15361.918665] schedule_timeout+0x56d/0x7d0 [15361.918669] ? debug_smp_processor_id+0x1b/0x30 [15361.918672] ? rcu_is_watching+0x19/0xb0 [15361.918676] ? __pfx_schedule_timeout+0x10/0x10 [15361.918679] ? debug_smp_processor_id+0x1b/0x30 [15361.918683] ? rcu_is_watching+0x19/0xb0 [15361.918686] ? wait_for_completion+0x179/0x4c0 [15361.918690] ? __pfx_lock_release+0x10/0x10 [15361.918693] ? __kasan_check_write+0x18/0x20 [15361.918696] ? wait_for_completion+0x9d/0x4c0 [15361.918700] ? _raw_spin_unlock_irq+0x36/0x50 [15361.918703] ? wait_for_completion+0x179/0x4c0 [15361.918707] ? _raw_spin_unlock_irq+0x36/0x50 [15361.918710] ? wait_for_completion+0x179/0x4c0 [15361.918714] ? trace_preempt_on+0x54/0x100 [15361.918718] ? wait_for_completion+0x179/0x4c0 [15361.918723] wait_for_completion+0x181/0x4c0 [15361.918728] ? __pfx_wait_for_completion+0x10/0x10 [15361.918738] kthread_stop+0x152/0x470 [15361.918742] _torture_stop_kthread+0x44/0xc0 [torture 7af7f9cbba28271a10503b653f9e05d518fbc8c3] [15361.918752] rcu_torture_cleanup+0x2ac/0xe90 [rcutorture f2cb1f556ee7956270927183c4c2c7749a336529] [15361.918766] ? __pfx_rcu_torture_cleanup+0x10/0x10 [rcutorture f2cb1f556ee7956270927183c4c2c7749a336529] [15361.918777] ? __kasan_check_write+0x18/0x20 [15361.918781] ? __mutex_unlock_slowpath+0x17c/0x670 [15361.918789] ? __might_fault+0xcd/0x180 [15361.918793] ? find_module_all+0x104/0x1d0 [15361.918799] __x64_sys_delete_module+0x2a4/0x3f0 [15361.918803] ? __pfx___x64_sys_delete_module+0x10/0x10 [15361.918807] ? syscall_exit_to_user_mode+0x149/0x280 Signed-off-by: Zqiang <qiang.zhang1211@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
2024-04-16rcutorture: Removing redundant function pointer initializationZqiang
For these rcu_torture_ops structure's objects defined by using static, if the value of the function pointer in its member is not set, the default value will be NULL, this commit therefore remove the pre-existing initialization of function pointers to NULL. Signed-off-by: Zqiang <qiang.zhang1211@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>