summaryrefslogtreecommitdiff
path: root/kernel/sched/fair.c
AgeCommit message (Collapse)Author
2023-08-28Merge tag 'sched-core-2023-08-28' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: - The biggest change is introduction of a new iteration of the SCHED_FAIR interactivity code: the EEVDF ("Earliest Eligible Virtual Deadline First") scheduler EEVDF too is a virtual-time scheduler, with two parameters (weight and relative deadline), compared to CFS that had weight only. It completely reworks the base scheduler: placement, preemption, picking -- everything LWN.net, as usual, has a terrific writeup about EEVDF: https://lwn.net/Articles/925371/ Preemption (both tick and wakeup) is driven by testing against a fresh pick. Because the tree is now effectively an interval tree, and the selection is no longer the 'leftmost' task, over-scheduling is less of a problem. A lot of the CFS heuristics are removed or replaced by more natural latency-space parameters & constructs In terms of expected performance regressions: we will and can fix everything where a 'good' workload misbehaves with the new scheduler, but EEVDF inevitably changes workload scheduling in a binary fashion, hopefully for the better in the overwhelming majority of cases, but in some cases it won't, especially in adversarial loads that got lucky with the previous code, such as some variants of hackbench. We are trying hard to err on the side of fixing all performance regressions, but we expect some inevitable post-release iterations of that process - Improve load-balancing on hybrid x86 systems: enable cluster scheduling (again) - Improve & fix bandwidth-scheduling on nohz systems - Improve bandwidth-throttling - Use lock guards to simplify and de-goto-ify control flow - Misc improvements, cleanups and fixes * tag 'sched-core-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits) sched/eevdf/doc: Modify the documented knob to base_slice_ns as well sched/eevdf: Curb wakeup-preemption sched: Simplify sched_core_cpu_{starting,deactivate}() sched: Simplify try_steal_cookie() sched: Simplify sched_tick_remote() sched: Simplify sched_exec() sched: Simplify ttwu() sched: Simplify wake_up_if_idle() sched: Simplify: migrate_swap_stop() sched: Simplify sysctl_sched_uclamp_handler() sched: Simplify get_nohz_timer_target() sched/rt: sysctl_sched_rr_timeslice show default timeslice after reset sched/rt: Fix sysctl_sched_rr_timeslice intial value sched/fair: Block nohz tick_stop when cfs bandwidth in use sched, cgroup: Restore meaning to hierarchical_quota MAINTAINERS: Add Peter explicitly to the psi section sched/psi: Select KERNFS as needed sched/topology: Align group flags when removing degenerate domain sched/fair: remove util_est boosting sched/fair: Propagate enqueue flags into place_entity() ...
2023-08-17sched/eevdf: Curb wakeup-preemptionPeter Zijlstra
Mike and others noticed that EEVDF does like to over-schedule quite a bit -- which does hurt performance of a number of benchmarks / workloads. In particular, what seems to cause over-scheduling is that when lag is of the same order (or larger) than the request / slice then placement will not only cause the task to be placed left of current, but also with a smaller deadline than current, which causes immediate preemption. [ notably, lag bounds are relative to HZ ] Mike suggested we stick to picking 'current' for as long as it's eligible to run, giving it uninterrupted runtime until it reaches parity with the pack. Augment Mike's suggestion by only allowing it to exhaust it's initial request. One random data point: echo NO_RUN_TO_PARITY > /debug/sched/features perf stat -a -e context-switches --repeat 10 -- perf bench sched messaging -g 20 -t -l 5000 3,723,554 context-switches ( +- 0.56% ) 9.5136 +- 0.0394 seconds time elapsed ( +- 0.41% ) echo RUN_TO_PARITY > /debug/sched/features perf stat -a -e context-switches --repeat 10 -- perf bench sched messaging -g 20 -t -l 5000 2,556,535 context-switches ( +- 0.51% ) 9.2427 +- 0.0302 seconds time elapsed ( +- 0.33% ) Suggested-by: Mike Galbraith <umgwanakikbuti@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20230816134059.GC982867@hirez.programming.kicks-ass.net
2023-08-10Merge branch 'sched/eevdf' into sched/coreIngo Molnar
Pick up the EEVDF work into the main branch - it's looking good so far. Conflicts: kernel/sched/features.h Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-08-02sched/fair: Block nohz tick_stop when cfs bandwidth in usePhil Auld
CFS bandwidth limits and NOHZ full don't play well together. Tasks can easily run well past their quotas before a remote tick does accounting. This leads to long, multi-period stalls before such tasks can run again. Currently, when presented with these conflicting requirements the scheduler is favoring nohz_full and letting the tick be stopped. However, nohz tick stopping is already best-effort, there are a number of conditions that can prevent it, whereas cfs runtime bandwidth is expected to be enforced. Make the scheduler favor bandwidth over stopping the tick by setting TICK_DEP_BIT_SCHED when the only running task is a cfs task with runtime limit enabled. We use cfs_b->hierarchical_quota to determine if the task requires the tick. Add check in pick_next_task_fair() as well since that is where we have a handle on the task that is actually going to be running. Add check in sched_can_stop_tick() to cover some edge cases such as nr_running going from 2->1 and the 1 remains the running task. Reviewed-By: Ben Segall <bsegall@google.com> Signed-off-by: Phil Auld <pauld@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230712133357.381137-3-pauld@redhat.com
2023-08-02sched, cgroup: Restore meaning to hierarchical_quotaPhil Auld
In cgroupv2 cfs_b->hierarchical_quota is set to -1 for all task groups due to the previous fix simply taking the min. It should reflect a limit imposed at that level or by an ancestor. Even though cgroupv2 does not require child quota to be less than or equal to that of its ancestors the task group will still be constrained by such a quota so this should be shown here. Cgroupv1 continues to set this correctly. In both cases, add initialization when a new task group is created based on the current parent's value (or RUNTIME_INF in the case of root_task_group). Otherwise, the field is wrong until a quota is changed after creation and __cfs_schedulable() is called. Fixes: c53593e5cb69 ("sched, cgroup: Don't reject lower cpu.max on ancestors") Signed-off-by: Phil Auld <pauld@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ben Segall <bsegall@google.com> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20230714125746.812891-1-pauld@redhat.com
2023-07-31Revert "sched/fair: Move unused stub functions to header"Peter Zijlstra
Revert commit 7aa55f2a5902 ("sched/fair: Move unused stub functions to header"), for while it has the right Changelog, the actual patch content a revert of the previous 4 patches: f7df852ad6db ("sched: Make task_vruntime_update() prototype visible") c0bdfd72fbfb ("sched/fair: Hide unused init_cfs_bandwidth() stub") 378be384e01f ("sched: Add schedule_user() declaration") d55ebae3f312 ("sched: Hide unused sched_update_scaling()") So in effect this is a revert of a revert and re-applies those patches. Fixes: 7aa55f2a5902 ("sched/fair: Move unused stub functions to header") Reported-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-26sched/fair: remove util_est boostingVincent Guittot
There is no need to use runnable_avg when estimating util_est and that even generates wrong behavior because one includes blocked tasks whereas the other one doesn't. This can lead to accounting twice the waking task p, once with the blocked runnable_avg and another one when adding its util_est. cpu's runnable_avg is already used when computing util_avg which is then compared with util_est. In some situation, feec will not select prev_cpu but another one on the same performance domain because of higher max_util Fixes: 7d0583cf9ec7 ("sched/fair, cpufreq: Introduce 'runnable boosting'") Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20230706135144.324311-1-vincent.guittot@linaro.org
2023-07-19sched/fair: Propagate enqueue flags into place_entity()Peter Zijlstra
This allows place_entity() to consider ENQUEUE_WAKEUP and ENQUEUE_MIGRATED. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124604.274010996@infradead.org
2023-07-19sched/debug: Rename sysctl_sched_min_granularity to sysctl_sched_base_slicePeter Zijlstra
EEVDF uses this tunable as the base request/slice -- make sure the name reflects this. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124604.205287511@infradead.org
2023-07-19sched/fair: Commit to EEVDFPeter Zijlstra
EEVDF is a better defined scheduling policy, as a result it has less heuristics/tunables. There is no compelling reason to keep CFS around. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124604.137187212@infradead.org
2023-07-19sched/smp: Use lag to simplify cross-runqueue placementPeter Zijlstra
Using lag is both more correct and simpler when moving between runqueues. Notable, min_vruntime() was invented as a cheap approximation of avg_vruntime() for this very purpose (SMP migration). Since we now have the real thing; use it. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124604.068911180@infradead.org
2023-07-19sched/fair: Commit to lag based placementPeter Zijlstra
Removes the FAIR_SLEEPERS code in favour of the new LAG based placement. Specifically, the whole FAIR_SLEEPER thing was a very crude approximation to make up for the lack of lag based placement, specifically the 'service owed' part. This is important for things like 'starve' and 'hackbench'. One side effect of FAIR_SLEEPER is that it caused 'small' unfairness, specifically, by always ignoring up-to 'thresh' sleeptime it would have a 50%/50% time distribution for a 50% sleeper vs a 100% runner, while strictly speaking this should (of course) result in a 33%/67% split (as CFS will also do if the sleep period exceeds 'thresh'). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124604.000198861@infradead.org
2023-07-19sched/fair: Implement an EEVDF-like scheduling policyPeter Zijlstra
Where CFS is currently a WFQ based scheduler with only a single knob, the weight. The addition of a second, latency oriented parameter, makes something like WF2Q or EEVDF based a much better fit. Specifically, EEVDF does EDF like scheduling in the left half of the tree -- those entities that are owed service. Except because this is a virtual time scheduler, the deadlines are in virtual time as well, which is what allows over-subscription. EEVDF has two parameters: - weight, or time-slope: which is mapped to nice just as before - request size, or slice length: which is used to compute the virtual deadline as: vd_i = ve_i + r_i/w_i Basically, by setting a smaller slice, the deadline will be earlier and the task will be more eligible and ran earlier. Tick driven preemption is driven by request/slice completion; while wakeup preemption is driven by the deadline. Because the tree is now effectively an interval tree, and the selection is no longer 'leftmost', over-scheduling is less of a problem. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124603.931005524@infradead.org
2023-07-19sched/fair: Add lag based placementPeter Zijlstra
With the introduction of avg_vruntime, it is possible to approximate lag (the entire purpose of introducing it in fact). Use this to do lag based placement over sleep+wake. Specifically, the FAIR_SLEEPERS thing places things too far to the left and messes up the deadline aspect of EEVDF. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124603.794929315@infradead.org
2023-07-19sched/fair: Remove sched_feat(START_DEBIT)Peter Zijlstra
With the introduction of avg_vruntime() there is no need to use worse approximations. Take the 0-lag point as starting point for inserting new tasks. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124603.722361178@infradead.org
2023-07-19sched/fair: Add cfs_rq::avg_vruntimePeter Zijlstra
In order to move to an eligibility based scheduling policy, we need to have a better approximation of the ideal scheduler. Specifically, for a virtual time weighted fair queueing based scheduler the ideal scheduler will be the weighted average of the individual virtual runtimes (math in the comment). As such, compute the weighted average to approximate the ideal scheduler -- note that the approximation is in the individual task behaviour, which isn't strictly conformant. Specifically consider adding a task with a vruntime left of center, in this case the average will move backwards in time -- something the ideal scheduler would of course never do. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124603.654144274@infradead.org
2023-07-19Merge tag 'v6.5-rc2' into sched/core, to pick up fixesIngo Molnar
Sync with upstream fixes before applying EEVDF. Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-07-17sched: add WF_CURRENT_CPU and externise ttwuPeter Oskolkov
Add WF_CURRENT_CPU wake flag that advices the scheduler to move the wakee to the current CPU. This is useful for fast on-CPU context switching use cases. In addition, make ttwu external rather than static so that the flag could be passed to it from outside of sched/core.c. Signed-off-by: Peter Oskolkov <posk@google.com> Signed-off-by: Andrei Vagin <avagin@google.com> Acked-by: "Peter Zijlstra (Intel)" <peterz@infradead.org> Link: https://lore.kernel.org/r/20230308073201.3102738-3-avagin@google.com Signed-off-by: Kees Cook <keescook@chromium.org>
2023-07-13sched/fair: Stabilize asym cpu capacity system idle cpu selectionVincent Guittot
select_idle_capacity() not only looks for an idle cpu that fits for the waking task but also for cpu with highest bandwidth when no cpu fits. Start the loop with target cpu so it will be selected 1st when no cpu fits but several cpus shared the same bandwidth. Starting with target cpu prevents the task to migrate between cpus with same bandwidth at every wakeup when no cpu fits. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20230711081359.868862-1-vincent.guittot@linaro.org
2023-07-13sched/fair: Consider the idle state of the whole core for load balanceRicardo Neri
should_we_balance() traverses the group_balance_mask (AND'ed with lb_env:: cpus) starting from lower numbered CPUs looking for the first idle CPU. In hybrid x86 systems, the siblings of SMT cores get CPU numbers, before non-SMT cores: [0, 1] [2, 3] [4, 5] 6 7 8 9 b i b i b i b i i i In the figure above, CPUs in brackets are siblings of an SMT core. The rest are non-SMT cores. 'b' indicates a busy CPU, 'i' indicates an idle CPU. We should let a CPU on a fully idle core get the first chance to idle load balance as it has more CPU capacity than a CPU on an idle SMT CPU with busy sibling. So for the figure above, if we are running should_we_balance() to CPU 1, we should return false to let CPU 7 on idle core to have a chance first to idle load balance. A partially busy (i.e., of type group_has_spare) local group with SMT  cores will often have only one SMT sibling busy. If the destination CPU is a non-SMT core, partially busy, lower-numbered, SMT cores should not be considered when finding the first idle CPU.  However, in should_we_balance(), when we encounter idle SMT first in partially busy core, we prematurely break the search for the first idle CPU. Higher-numbered, non-SMT cores is not given the chance to have idle balance done on their behalf. Those CPUs will only be considered for idle balancing by chance via CPU_NEWLY_IDLE. Instead, consider the idle state of the whole SMT core. Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Co-developed-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/807bdd05331378ea3bf5956bda87ded1036ba769.1688770494.git.tim.c.chen@linux.intel.com
2023-07-13sched/fair: Implement prefer sibling imbalance calculation between ↵Tim C Chen
asymmetric groups In the current prefer sibling load balancing code, there is an implicit assumption that the busiest sched group and local sched group are equivalent, hence the tasks to be moved is simply the difference in number of tasks between the two groups (i.e. imbalance) divided by two. However, we may have different number of cores between the cluster groups, say when we take CPU offline or we have hybrid groups. In that case, we should balance between the two groups such that #tasks/#cores ratio is the same between the same between both groups. Hence the imbalance computed will need to reflect this. Adjust the sibling imbalance computation to take into account of the above considerations. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/4eacbaa236e680687dae2958378a6173654113df.1688770494.git.tim.c.chen@linux.intel.com
2023-07-13sched/fair: Determine active load balance for SMT sched groupsTim C Chen
On hybrid CPUs with scheduling cluster enabled, we will need to consider balancing between SMT CPU cluster, and Atom core cluster. Below shows such a hybrid x86 CPU with 4 big cores and 8 atom cores. Each scheduling cluster span a L2 cache. --L2-- --L2-- --L2-- --L2-- ----L2---- -----L2------ [0, 1] [2, 3] [4, 5] [5, 6] [7 8 9 10] [11 12 13 14] Big Big Big Big Atom Atom core core core core Module Module If the busiest group is a big core with both SMT CPUs busy, we should active load balance if destination group has idle CPU cores. Such condition is considered by asym_active_balance() in load balancing but not considered when looking for busiest group and computing load imbalance. Add this consideration in find_busiest_group() and calculate_imbalance(). In addition, update the logic determining the busier group when one group is SMT and the other group is non SMT but both groups are partially busy with idle CPU. The busier group should be the group with idle cores rather than the group with one busy SMT CPU. We do not want to make the SMT group the busiest one to pull the only task off SMT CPU and causing the whole core to go empty. Otherwise suppose in the search for the busiest group, we first encounter an SMT group with 1 task and set it as the busiest. The destination group is an atom cluster with 1 task and we next encounter an atom cluster group with 3 tasks, we will not pick this atom cluster over the SMT group, even though we should. As a result, we do not load balance the busier Atom cluster (with 3 tasks) towards the local atom cluster (with 1 task). And it doesn't make sense to pick the 1 task SMT group as the busier group as we also should not pull task off the SMT towards the 1 task atom cluster and make the SMT core completely empty. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/e24f35d142308790f69be65930b82794ef6658a2.1688770494.git.tim.c.chen@linux.intel.com
2023-07-13sched: add throttled time stat for throttled childrenJosh Don
We currently export the total throttled time for cgroups that are given a bandwidth limit. This patch extends this accounting to also account the total time that each children cgroup has been throttled. This is useful to understand the degree to which children have been affected by the throttling control. Children which are not runnable during the entire throttled period, for example, will not show any self-throttling time during this period. Expose this in a new interface, 'cpu.stat.local', which is similar to how non-hierarchical events are accounted in 'memory.events.local'. Signed-off-by: Josh Don <joshdon@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20230620183247.737942-2-joshdon@google.com
2023-07-13sched: don't account throttle time for empty groupsJosh Don
It is easy for a cfs_rq to become throttled even when it has no enqueued entities (for example, if we have just put_prev()'d the last runnable task of the cfs_rq, and the cfs_rq is out of quota). Avoid accounting this time towards total throttle time, since it otherwise falsely inflates the stats. Note that the dequeue path is special, since we normally disallow migrations when a task is in a throttled hierarchy (see throttled_lb_pair()). Signed-off-by: Josh Don <joshdon@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230620183247.737942-1-joshdon@google.com
2023-07-10sched/fair: Use recent_used_cpu to test p->cpus_ptrMiaohe Lin
When checking whether a recently used CPU can be a potential idle candidate, recent_used_cpu should be used to test p->cpus_ptr as p->recent_used_cpu is not equal to recent_used_cpu and candidate decision is made based on recent_used_cpu here. Fixes: 89aafd67f28c ("sched/fair: Use prev instead of new target as recent_used_cpu") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Phil Auld <pauld@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20230620080747.359122-1-linmiaohe@huawei.com
2023-06-16sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle()Hao Jia
After commit 8ad075c2eb1f ("sched: Async unthrottling for cfs bandwidth"), we may update the rq clock multiple times in the loop of __cfsb_csd_unthrottle(). A prior (although less common) instance of this problem exists in unthrottle_offline_cfs_rqs(). Cure both by ensuring update_rq_clock() is called before the loop and setting RQCF_ACT_SKIP during the loop, to supress further updates. The alternative would be pulling update_rq_clock() out of unthrottle_cfs_rq(), but that gives an even bigger mess. Fixes: 8ad075c2eb1f ("sched: Async unthrottling for cfs bandwidth") Reviewed-By: Ben Segall <bsegall@google.com> Suggested-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Hao Jia <jiahao.os@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20230613082012.49615-4-jiahao.os@bytedance.com
2023-06-16sched/fair: Rename variable cpu_util eff_utilTom Rix
cppcheck reports kernel/sched/fair.c:7436:17: style: Local variable 'cpu_util' shadows outer function [shadowFunction] unsigned long cpu_util; ^ Clean this up by renaming the variable to eff_util Signed-off-by: Tom Rix <trix@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Link: https://lore.kernel.org/r/20230611122535.183654-1-trix@redhat.com
2023-06-05sched/fair, cpufreq: Introduce 'runnable boosting'Dietmar Eggemann
The responsiveness of the Per Entity Load Tracking (PELT) util_avg in mobile devices is still considered too low for utilization changes during task ramp-up. In Android this manifests in the fact that the first frames of a UI activity are very prone to be jankframes (a frame which doesn't meet the required frame rendering time, e.g. 16ms@60Hz) since the CPU frequency is normally low at this point and has to ramp up quickly. The beginning of an UI activity is also characterized by the occurrence of CPU contention, especially on little CPUs. Current little CPUs can have an original CPU capacity of only ~ 150 which means that the actual CPU capacity at lower frequency can even be much smaller. Schedutil maps CPU util_avg into CPU frequency request via: util = effective_cpu_util(..., cpu_util_cfs(cpu), ...) -> util = map_util_perf(util) -> freq = map_util_freq(util, ...) CPU contention for CFS tasks can be detected by 'CPU runnable > CPU utililization' in cpu_util_cfs_boost() -> cpu_util(..., boost = 1). Schedutil uses 'runnable boosting' by calling cpu_util_cfs_boost(). To be in sync with schedutil's CPU frequency selection, Energy Aware Scheduling (EAS) also calls cpu_util(..., boost = 1) during max util detection. Moreover, 'runnable boosting' is also used in load-balance for busiest CPU selection when the migration type is 'migrate_util', i.e. only at sched domains which don't have the SD_SHARE_PKG_RESOURCES flag set. Suggested-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20230515115735.296329-3-dietmar.eggemann@arm.com
2023-06-05sched/fair: Refactor CPU utilization functionsDietmar Eggemann
There is a lot of code duplication in cpu_util_next() & cpu_util_cfs(). Remove this by allowing cpu_util_next() to be called with p = NULL. Rename cpu_util_next() to cpu_util() since the '_next' suffix is no longer necessary to distinct cpu utilization related functions. Implement cpu_util_cfs(cpu) as cpu_util(cpu, p = NULL, -1). This will allow to code future related cpu util changes only in one place, namely in cpu_util(). Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20230515115735.296329-2-dietmar.eggemann@arm.com
2023-06-05sched/fair: Don't balance task to its current running CPUYicong Yang
We've run into the case that the balancer tries to balance a migration disabled task and trigger the warning in set_task_cpu() like below: ------------[ cut here ]------------ WARNING: CPU: 7 PID: 0 at kernel/sched/core.c:3115 set_task_cpu+0x188/0x240 Modules linked in: hclgevf xt_CHECKSUM ipt_REJECT nf_reject_ipv4 <...snip> CPU: 7 PID: 0 Comm: swapper/7 Kdump: loaded Tainted: G O 6.1.0-rc4+ #1 Hardware name: Huawei TaiShan 2280 V2/BC82AMDC, BIOS 2280-V2 CS V5.B221.01 12/09/2021 pstate: 604000c9 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : set_task_cpu+0x188/0x240 lr : load_balance+0x5d0/0xc60 sp : ffff80000803bc70 x29: ffff80000803bc70 x28: ffff004089e190e8 x27: ffff004089e19040 x26: ffff007effcabc38 x25: 0000000000000000 x24: 0000000000000001 x23: ffff80000803be84 x22: 000000000000000c x21: ffffb093e79e2a78 x20: 000000000000000c x19: ffff004089e19040 x18: 0000000000000000 x17: 0000000000001fad x16: 0000000000000030 x15: 0000000000000000 x14: 0000000000000003 x13: 0000000000000000 x12: 0000000000000000 x11: 0000000000000001 x10: 0000000000000400 x9 : ffffb093e4cee530 x8 : 00000000fffffffe x7 : 0000000000ce168a x6 : 000000000000013e x5 : 00000000ffffffe1 x4 : 0000000000000001 x3 : 0000000000000b2a x2 : 0000000000000b2a x1 : ffffb093e6d6c510 x0 : 0000000000000001 Call trace: set_task_cpu+0x188/0x240 load_balance+0x5d0/0xc60 rebalance_domains+0x26c/0x380 _nohz_idle_balance.isra.0+0x1e0/0x370 run_rebalance_domains+0x6c/0x80 __do_softirq+0x128/0x3d8 ____do_softirq+0x18/0x24 call_on_irq_stack+0x2c/0x38 do_softirq_own_stack+0x24/0x3c __irq_exit_rcu+0xcc/0xf4 irq_exit_rcu+0x18/0x24 el1_interrupt+0x4c/0xe4 el1h_64_irq_handler+0x18/0x2c el1h_64_irq+0x74/0x78 arch_cpu_idle+0x18/0x4c default_idle_call+0x58/0x194 do_idle+0x244/0x2b0 cpu_startup_entry+0x30/0x3c secondary_start_kernel+0x14c/0x190 __secondary_switched+0xb0/0xb4 ---[ end trace 0000000000000000 ]--- Further investigation shows that the warning is superfluous, the migration disabled task is just going to be migrated to its current running CPU. This is because that on load balance if the dst_cpu is not allowed by the task, we'll re-select a new_dst_cpu as a candidate. If no task can be balanced to dst_cpu we'll try to balance the task to the new_dst_cpu instead. In this case when the migration disabled task is not on CPU it only allows to run on its current CPU, load balance will select its current CPU as new_dst_cpu and later triggers the warning above. The new_dst_cpu is chosen from the env->dst_grpmask. Currently it contains CPUs in sched_group_span() and if we have overlapped groups it's possible to run into this case. This patch makes env->dst_grpmask of group_balance_mask() which exclude any CPUs from the busiest group and solve the issue. For balancing in a domain with no overlapped groups the behaviour keeps same as before. Suggested-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Yicong Yang <yangyicong@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20230530082507.10444-1-yangyicong@huawei.com
2023-05-30sched/fair: Move unused stub functions to headerArnd Bergmann
These four functions have a normal definition for CONFIG_FAIR_GROUP_SCHED, and empty one that is only referenced when FAIR_GROUP_SCHED is disabled but CGROUP_SCHED is still enabled. If both are turned off, the functions are still defined but the misisng prototype causes a W=1 warning: kernel/sched/fair.c:12544:6: error: no previous prototype for 'free_fair_sched_group' kernel/sched/fair.c:12546:5: error: no previous prototype for 'alloc_fair_sched_group' kernel/sched/fair.c:12553:6: error: no previous prototype for 'online_fair_sched_group' kernel/sched/fair.c:12555:6: error: no previous prototype for 'unregister_fair_sched_group' Move the alternatives into the header as static inline functions with the correct combination of #ifdef checks to avoid the warning without adding even more complexity. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20230522195021.3456768-6-arnd@kernel.org
2023-05-30sched/fair: Hide unused init_cfs_bandwidth() stubArnd Bergmann
init_cfs_bandwidth() is only used when CONFIG_FAIR_GROUP_SCHED is enabled, and without this causes a W=1 warning for the missing prototype: kernel/sched/fair.c:6131:6: error: no previous prototype for 'init_cfs_bandwidth' The normal implementation is only defined for CONFIG_CFS_BANDWIDTH, so the stub exists when CFS_BANDWIDTH is disabled but FAIR_GROUP_SCHED is enabled. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20230522195021.3456768-4-arnd@kernel.org
2023-05-30sched: Hide unused sched_update_scaling()Arnd Bergmann
This function is only used when CONFIG_SMP is enabled, without that there is no caller and no prototype: kernel/sched/fair.c:688:5: error: no previous prototype for 'sched_update_scaling' [-Werror=missing-prototypes Hide the definition in the same #ifdef check as the declaration. Fixes: 8a99b6833c88 ("sched: Move SCHED_DEBUG sysctl to debugfs") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20230522195021.3456768-2-arnd@kernel.org
2023-05-08sched/fair: Do not even the number of busy CPUs via asym_packingRicardo Neri
Now that find_busiest_group() triggers load balancing between a fully_ busy SMT2 core and an idle non-SMT core, it is no longer needed to force balancing via asym_packing. Use asym_packing only as intended: when there is high-priority CPU that is idle. After this change, the same logic apply to SMT and non-SMT local groups. It makes less sense having a separate function to deal specifically with SMT. Fold the logic in asym_smt_can_pull_tasks() into sched_asym(). Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Link: https://lore.kernel.org/r/20230406203148.19182-8-ricardo.neri-calderon@linux.intel.com
2023-05-08sched/fair: Use the busiest group to set prefer_siblingRicardo Neri
The prefer_sibling setting acts on the busiest group to move excess tasks to the local group. This should be done as per request of the child of the busiest group's sched domain, not the local group's. Using the flags of the child domain of the local group works fortuitously if both groups have child domains. There are cases, however, in which the busiest group's sched domain has child but the local group's does not. Consider, for instance a non-SMT core (or an SMT core with only one online sibling) doing load balance with an SMT core at the MC level. SD_PREFER_SIBLING of the busiest group's child domain will not be honored. We are left with a fully busy SMT core and an idle non-SMT core. Suggested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Link: https://lore.kernel.org/r/20230406203148.19182-7-ricardo.neri-calderon@linux.intel.com
2023-05-08sched/fair: Keep a fully_busy SMT sched group as busiestRicardo Neri
When comparing two fully_busy scheduling groups, keep the current busiest group if it represents an SMT core. Tasks in such scheduling group share CPU resources and need more help than tasks in a non-SMT fully_busy group. Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Link: https://lore.kernel.org/r/20230406203148.19182-6-ricardo.neri-calderon@linux.intel.com
2023-05-08sched/fair: Let low-priority cores help high-priority busy SMT coresRicardo Neri
Using asym_packing priorities within an SMT core is straightforward. Just follow the priorities that hardware indicates. When balancing load from an SMT core, also consider the idle state of its siblings. Priorities do not reflect that an SMT core divides its throughput among all its busy siblings. They only makes sense when exactly one sibling is busy. Indicate that active balance is needed if the destination CPU has lower priority than the source CPU but the latter has busy SMT siblings. Make find_busiest_queue() not skip higher-priority SMT cores with more than busy sibling. Suggested-by: Valentin Schneider <vschneid@redhat.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Link: https://lore.kernel.org/r/20230406203148.19182-5-ricardo.neri-calderon@linux.intel.com
2023-05-08sched/fair: Simplify asym_packing logic for SMT coresRicardo Neri
Callers of asym_smt_can_pull_tasks() check the idle state of the destination CPU and its SMT siblings, if any. No extra checks are needed in such function. Since SMT cores divide capacity among its siblings, priorities only really make sense if only one sibling is active. This is true for SMT2, SMT4, SMT8, etc. Do not use asym_packing load balance for this case. Instead, let find_busiest_group() handle imbalances. When balancing non-SMT cores or at higher scheduling domains (e.g., between MC scheduling groups), continue using priorities. Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Len Brown <len.brown@intel.com> Tested-by: Zhang Rui <rui.zhang@intel.com> Link: https://lore.kernel.org/r/20230406203148.19182-4-ricardo.neri-calderon@linux.intel.com
2023-05-08sched/fair: Only do asym_packing load balancing from fully idle SMT coresRicardo Neri
When balancing load between cores, all the SMT siblings of the destination CPU, if any, must be idle. Otherwise, pulling new tasks degrades the throughput of the busy SMT siblings. The overall throughput of the system remains the same. When balancing load within an SMT core this consideration is not relevant. Follow the priorities that hardware indicates. Suggested-by: Valentin Schneider <vschneid@redhat.com> Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Link: https://lore.kernel.org/r/20230406203148.19182-3-ricardo.neri-calderon@linux.intel.com
2023-05-08sched/fair: Move is_core_idle() out of CONFIG_NUMARicardo Neri
asym_packing needs this function to determine whether an SMT core is a suitable destination for load balancing. Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Zhang Rui <rui.zhang@intel.com> Link: https://lore.kernel.org/r/20230406203148.19182-2-ricardo.neri-calderon@linux.intel.com
2023-04-28Merge tag 'sched-core-2023-04-27' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: - Allow unprivileged PSI poll()ing - Fix performance regression introduced by mm_cid - Improve livepatch stalls by adding livepatch task switching to cond_resched(). This resolves livepatching busy-loop stalls with certain CPU-bound kthreads - Improve sched_move_task() performance on autogroup configs - On core-scheduling CPUs, avoid selecting throttled tasks to run - Misc cleanups, fixes and improvements * tag 'sched-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/clock: Fix local_clock() before sched_clock_init() sched/rt: Fix bad task migration for rt tasks sched: Fix performance regression introduced by mm_cid sched/core: Make sched_dynamic_mutex static sched/psi: Allow unprivileged polling of N*2s period sched/psi: Extract update_triggers side effect sched/psi: Rename existing poll members in preparation sched/psi: Rearrange polling code in preparation sched/fair: Fix inaccurate tally of ttwu_move_affine vhost: Fix livepatch timeouts in vhost_worker() livepatch,sched: Add livepatch task switching to cond_resched() livepatch: Skip task_call_func() for current task livepatch: Convert stack entries array to percpu sched: Interleave cfs bandwidth timers for improved single thread performance at low utilization sched/core: Reduce cost of sched_move_task when config autogroup sched/core: Avoid selecting the task that is throttled to run when core-sched enable sched/topology: Make sched_energy_mutex,update static
2023-04-27Merge tag 'mm-stable-2023-04-27-15-30' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of switching from a user process to a kernel thread. - More folio conversions from Kefeng Wang, Zhang Peng and Pankaj Raghav. - zsmalloc performance improvements from Sergey Senozhatsky. - Yue Zhao has found and fixed some data race issues around the alteration of memcg userspace tunables. - VFS rationalizations from Christoph Hellwig: - removal of most of the callers of write_one_page() - make __filemap_get_folio()'s return value more useful - Luis Chamberlain has changed tmpfs so it no longer requires swap backing. Use `mount -o noswap'. - Qi Zheng has made the slab shrinkers operate locklessly, providing some scalability benefits. - Keith Busch has improved dmapool's performance, making part of its operations O(1) rather than O(n). - Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd, permitting userspace to wr-protect anon memory unpopulated ptes. - Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive rather than exclusive, and has fixed a bunch of errors which were caused by its unintuitive meaning. - Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature, which causes minor faults to install a write-protected pte. - Vlastimil Babka has done some maintenance work on vma_merge(): cleanups to the kernel code and improvements to our userspace test harness. - Cleanups to do_fault_around() by Lorenzo Stoakes. - Mike Rapoport has moved a lot of initialization code out of various mm/ files and into mm/mm_init.c. - Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for DRM, but DRM doesn't use it any more. - Lorenzo has also coverted read_kcore() and vread() to use iterators and has thereby removed the use of bounce buffers in some cases. - Lorenzo has also contributed further cleanups of vma_merge(). - Chaitanya Prakash provides some fixes to the mmap selftesting code. - Matthew Wilcox changes xfs and afs so they no longer take sleeping locks in ->map_page(), a step towards RCUification of pagefaults. - Suren Baghdasaryan has improved mmap_lock scalability by switching to per-VMA locking. - Frederic Weisbecker has reworked the percpu cache draining so that it no longer causes latency glitches on cpu isolated workloads. - Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig logic. - Liu Shixin has changed zswap's initialization so we no longer waste a chunk of memory if zswap is not being used. - Yosry Ahmed has improved the performance of memcg statistics flushing. - David Stevens has fixed several issues involving khugepaged, userfaultfd and shmem. - Christoph Hellwig has provided some cleanup work to zram's IO-related code paths. - David Hildenbrand has fixed up some issues in the selftest code's testing of our pte state changing. - Pankaj Raghav has made page_endio() unneeded and has removed it. - Peter Xu contributed some rationalizations of the userfaultfd selftests. - Yosry Ahmed has fixed an issue around memcg's page recalim accounting. - Chaitanya Prakash has fixed some arm-related issues in the selftests/mm code. - Longlong Xia has improved the way in which KSM handles hwpoisoned pages. - Peter Xu fixes a few issues with uffd-wp at fork() time. - Stefan Roesch has changed KSM so that it may now be used on a per-process and per-cgroup basis. * tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (369 commits) mm,unmap: avoid flushing TLB in batch if PTE is inaccessible shmem: restrict noswap option to initial user namespace mm/khugepaged: fix conflicting mods to collapse_file() sparse: remove unnecessary 0 values from rc mm: move 'mmap_min_addr' logic from callers into vm_unmapped_area() hugetlb: pte_alloc_huge() to replace huge pte_alloc_map() maple_tree: fix allocation in mas_sparse_area() mm: do not increment pgfault stats when page fault handler retries zsmalloc: allow only one active pool compaction context selftests/mm: add new selftests for KSM mm: add new KSM process and sysfs knobs mm: add new api to enable ksm per process mm: shrinkers: fix debugfs file permissions mm: don't check VMA write permissions if the PTE/PMD indicates write permissions migrate_pages_batch: fix statistics for longterm pin retry userfaultfd: use helper function range_in_vma() lib/show_mem.c: use for_each_populated_zone() simplify code mm: correct arg in reclaim_pages()/reclaim_clean_pages_from_list() fs/buffer: convert create_page_buffers to folio_create_buffers fs/buffer: add folio_create_empty_buffers helper ...
2023-04-21Merge branch 'v6.3-rc7'Peter Zijlstra
Sync with the urgent patches; in particular: a53ce18cacb4 ("sched/fair: Sanitize vruntime of entity being migrated") Signed-off-by: Peter Zijlstra <peterz@infradead.org>
2023-04-12sched/fair: Fix imbalance overflowVincent Guittot
When local group is fully busy but its average load is above system load, computing the imbalance will overflow and local group is not the best target for pulling this load. Fixes: 0b0695f2b34a ("sched/fair: Rework load_balance()") Reported-by: Tingjia Cao <tjcao980311@gmail.com> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Tingjia Cao <tjcao980311@gmail.com> Link: https://lore.kernel.org/lkml/CABcWv9_DAhVBOq2=W=2ypKE9dKM5s2DvoV8-U0+GDwwuKZ89jQ@mail.gmail.com/T/
2023-04-05sched/numa: use hash_32 to mix up PIDs accessing VMARaghavendra K T
before: last 6 bits of PID is used as index to store information about tasks accessing VMA's. after: hash_32 is used to take of cases where tasks are created over a period of time, and thus improve collision probability. Result: The patch series overall improves autonuma cost. Kernbench around more than 5% improvement and system time in mmtest autonuma showed more than 80% improvement Link: https://lkml.kernel.org/r/d5a9f75513300caed74e5c8570bba9317b963c2b.1677672277.git.raghavendra.kt@amd.com Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com> Suggested-by: Peter Zijlstra <peterz@infradead.org> Cc: Bharata B Rao <bharata@amd.com> Cc: David Hildenbrand <david@redhat.com> Cc: Disha Talreja <dishaa.talreja@amd.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Rapoport <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05sched/numa: implement access PID reset logicRaghavendra K T
This helps to ensure that only recently accessed PIDs scan the VMAs. Current implementation: (idea supported by PeterZ) 1. Accessing PID information is maintained in two windows. access_pids[1] being newest. 2. Reset old access PID info i.e. access_pid[0] every (4 * sysctl_numa_balancing_scan_delay) interval after initial scan delay period expires. The above interval seemed to be experimentally optimum since it avoids frequent reset of access info as well as helps clearing the old access info regularly. The reset logic is implemented in scan path. Link: https://lkml.kernel.org/r/f7a675f66d1442d048b4216b2baf94515012c405.1677672277.git.raghavendra.kt@amd.com Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com> Suggested-by: Mel Gorman <mgorman@techsingularity.net> Cc: Bharata B Rao <bharata@amd.com> Cc: David Hildenbrand <david@redhat.com> Cc: Disha Talreja <dishaa.talreja@amd.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05sched/numa: enhance vma scanning logicRaghavendra K T
During Numa scanning make sure only relevant vmas of the tasks are scanned. Before: All the tasks of a process participate in scanning the vma even if they do not access vma in it's lifespan. Now: Except cases of first few unconditional scans, if a process do not touch vma (exluding false positive cases of PID collisions) tasks no longer scan all vma Logic used: 1) 6 bits of PID used to mark active bit in vma numab status during fault to remember PIDs accessing vma. (Thanks Mel) 2) Subsequently in scan path, vma scanning is skipped if current PID had not accessed vma. 3) First two times we do allow unconditional scan to preserve earlier behaviour of scanning. Acknowledgement to Bharata B Rao <bharata@amd.com> for initial patch to store pid information and Peter Zijlstra <peterz@infradead.org> (Usage of test and set bit) Link: https://lkml.kernel.org/r/092f03105c7c1d3450f4636b1ea350407f07640e.1677672277.git.raghavendra.kt@amd.com Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com> Suggested-by: Mel Gorman <mgorman@techsingularity.net> Cc: David Hildenbrand <david@redhat.com> Cc: Disha Talreja <dishaa.talreja@amd.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05sched/numa: apply the scan delay to every new vmaMel Gorman
Pach series "sched/numa: Enhance vma scanning", v3. The patchset proposes one of the enhancements to numa vma scanning suggested by Mel. This is continuation of [3]. Reposting the rebased patchset to akpm mm-unstable tree (March 1) Existing mechanism of scan period involves, scan period derived from per-thread stats. Process Adaptive autoNUMA [1] proposed to gather NUMA fault stats at per-process level to capture aplication behaviour better. During that course of discussion, Mel proposed several ideas to enhance current numa balancing. One of the suggestion was below Track what threads access a VMA. The suggestion was to use an unsigned long pid_mask and use the lower bits to tag approximately what threads access a VMA. Skip VMAs that did not trap a fault. This would be approximate because of PID collisions but would reduce scanning of areas the thread is not interested in. The above suggestion intends not to penalize threads that has no interest in the vma, thus reduce scanning overhead. V3 changes are mostly based on PeterZ comments (details below in changes) Summary of patchset: Current patchset implements: 1. Delay the vma scanning logic for newly created VMA's so that additional overhead of scanning is not incurred for short lived tasks (implementation by Mel) 2. Store the information of tasks accessing VMA in 2 windows. It is regularly cleared in (4*sysctl_numa_balancing_scan_delay) interval. The above time is derived from experimenting (Suggested by PeterZ) to balance between frequent clearing vs obsolete access data 3. hash_32 used to encode task index accessing VMA information 4. VMA's acess information is used to skip scanning for the tasks which had not accessed VMA Changes since V2: patch1: - Renaming of structure, macro to function, - Add explanation to heuristics - Adding more details from result (PeterZ) Patch2: - Usage of test and set bit (PeterZ) - Move storing access PID info to numa_migrate_prep() - Add a note on fainess among tasks allowed to scan (PeterZ) Patch3: - Maintain two windows of access PID information (PeterZ supported implementation and Gave idea to extend to N if needed) Patch4: - Apply hash_32 function to track VMA accessing PIDs (PeterZ) Changes since RFC V1: - Include Mel's vma scan delay patch - Change the accessing pid store logic (Thanks Mel) - Fencing structure / code to NUMA_BALANCING (David, Mel) - Adding clearing access PID logic (Mel) - Descriptive change log ( Mike Rapoport) Things to ponder over: ========================================== - Improvement to clearing accessing PIDs logic (discussed in-detail in patch3 itself (Done in this patchset by implementing 2 window history) - Current scan period is not changed in the patchset, so we do see frequent tries to scan. Relaxing scan period dynamically could improve results further. [1] sched/numa: Process Adaptive autoNUMA Link: https://lore.kernel.org/lkml/20220128052851.17162-1-bharata@amd.com/T/ [2] RFC V1 Link: https://lore.kernel.org/all/cover.1673610485.git.raghavendra.kt@amd.com/ [3] V2 Link: https://lore.kernel.org/lkml/cover.1675159422.git.raghavendra.kt@amd.com/ Results: Summary: Huge autonuma cost reduction seen in mmtest. Kernbench improvement is more than 5% and huge system time (80%+) improvement from mmtest autonuma. (dbench had huge std deviation to post) kernbench =========== 6.2.0-mmunstable-base 6.2.0-mmunstable-patched Amean user-256 22002.51 ( 0.00%) 22649.95 * -2.94%* Amean syst-256 10162.78 ( 0.00%) 8214.13 * 19.17%* Amean elsp-256 160.74 ( 0.00%) 156.92 * 2.38%* Duration User 66017.43 67959.84 Duration System 30503.15 24657.03 Duration Elapsed 504.61 493.12 6.2.0-mmunstable-base 6.2.0-mmunstable-patched Ops NUMA alloc hit 1738835089.00 1738780310.00 Ops NUMA alloc local 1738834448.00 1738779711.00 Ops NUMA base-page range updates 477310.00 392566.00 Ops NUMA PTE updates 477310.00 392566.00 Ops NUMA hint faults 96817.00 87555.00 Ops NUMA hint local faults % 10150.00 2192.00 Ops NUMA hint local percent 10.48 2.50 Ops NUMA pages migrated 86660.00 85363.00 Ops AutoNUMA cost 489.07 442.14 autonumabench =============== 6.2.0-mmunstable-base 6.2.0-mmunstable-patched Amean syst-NUMA01 399.50 ( 0.00%) 52.05 * 86.97%* Amean syst-NUMA01_THREADLOCAL 0.21 ( 0.00%) 0.22 * -5.41%* Amean syst-NUMA02 0.80 ( 0.00%) 0.78 * 2.68%* Amean syst-NUMA02_SMT 0.65 ( 0.00%) 0.68 * -3.95%* Amean elsp-NUMA01 313.26 ( 0.00%) 313.11 * 0.05%* Amean elsp-NUMA01_THREADLOCAL 1.06 ( 0.00%) 1.08 * -1.76%* Amean elsp-NUMA02 3.19 ( 0.00%) 3.24 * -1.52%* Amean elsp-NUMA02_SMT 3.72 ( 0.00%) 3.61 * 2.92%* Duration User 396433.47 324835.96 Duration System 2808.70 376.66 Duration Elapsed 2258.61 2258.12 6.2.0-mmunstable-base 6.2.0-mmunstable-patched Ops NUMA alloc hit 59921806.00 49623489.00 Ops NUMA alloc miss 0.00 0.00 Ops NUMA interleave hit 0.00 0.00 Ops NUMA alloc local 59920880.00 49622594.00 Ops NUMA base-page range updates 152259275.00 50075.00 Ops NUMA PTE updates 152259275.00 50075.00 Ops NUMA PMD updates 0.00 0.00 Ops NUMA hint faults 154660352.00 39014.00 Ops NUMA hint local faults % 138550501.00 23139.00 Ops NUMA hint local percent 89.58 59.31 Ops NUMA pages migrated 8179067.00 14147.00 Ops AutoNUMA cost 774522.98 195.69 This patch (of 4): Currently whenever a new task is created we wait for sysctl_numa_balancing_scan_delay to avoid unnessary scanning overhead. Extend the same logic to new or very short-lived VMAs. [raghavendra.kt@amd.com: add initialization in vm_area_dup())] Link: https://lkml.kernel.org/r/cover.1677672277.git.raghavendra.kt@amd.com Link: https://lkml.kernel.org/r/7a6fbba87c8b51e67efd3e74285bb4cb311a16ca.1677672277.git.raghavendra.kt@amd.com Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com> Cc: Bharata B Rao <bharata@amd.com> Cc: David Hildenbrand <david@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Disha Talreja <dishaa.talreja@amd.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05sched/fair: Fix inaccurate tally of ttwu_move_affineLibo Chen
There are scenarios where non-affine wakeups are incorrectly counted as affine wakeups by schedstats. When wake_affine_idle() returns prev_cpu which doesn't equal to nr_cpumask_bits, it will slip through the check: target == nr_cpumask_bits in wake_affine() and be counted as if target == this_cpu in schedstats. Replace target == nr_cpumask_bits with target != this_cpu to make sure affine wakeups are accurately tallied. Fixes: 806486c377e33 (sched/fair: Do not migrate if the prev_cpu is idle) Suggested-by: Daniel Jordan <daniel.m.jordan@oracle.com> Signed-off-by: Libo Chen <libo.chen@oracle.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com> Link: https://lore.kernel.org/r/20220810223313.386614-1-libo.chen@oracle.com
2023-03-22sched: Interleave cfs bandwidth timers for improved single thread ↵Shrikanth Hegde
performance at low utilization CPU cfs bandwidth controller uses hrtimer. Currently there is no initial value set. Hence all period timers would align at expiry. This happens when there are multiple CPU cgroup's. There is a performance gain that can be achieved here if the timers are interleaved when the utilization of each CPU cgroup is low and total utilization of all the CPU cgroup's is less than 50%. If the timers are interleaved, then the unthrottled cgroup can run freely without many context switches and can also benefit from SMT Folding. This effect will be further amplified in SPLPAR environment. This commit adds a random offset after initializing each hrtimer. This would result in interleaving the timers at expiry, which helps in achieving the said performance gain. This was tested on powerpc platform with 8 core SMT=8. Socket power was measured when the workload. Benchmarked the stress-ng with power information. Throughput oriented benchmarks show significant gain up to 25% while power consumption increases up to 15%. Workload: stress-ng --cpu=32 --cpu-ops=50000. 1CG - 1 cgroup is running. 2CG - 2 cgroups are running together. Time taken to complete stress-ng in seconds and power is in watts. each cgroup is throttled at 25% with 100ms as the period value. 6.2-rc6 | with patch 8 core 1CG power 2CG power | 1CG power 2 CG power 27.5 80.6 40 90 | 27.3 82 32.3 104 27.5 81 40.2 91 | 27.5 81 38.7 96 27.7 80 40.1 89 | 27.6 80 29.7 106 27.7 80.1 40.3 94 | 27.6 80 31.5 105 Latency might be affected by this change. That could happen if the CPU was in a deep idle state which is possible if we interleave the timers. Used schbench for measuring the latency. Each cgroup is throttled at 25% with period value is set to 100ms. Numbers are when both the cgroups are running simultaneously. Latency values don't degrade much. Some improvement is seen in tail latencies. 6.2-rc6 with patch Groups: 16 50.0th: 39.5 42.5 75.0th: 924.0 922.0 90.0th: 972.0 968.0 95.0th: 1005.5 994.0 99.0th: 4166.0 2287.0 99.5th: 7314.0 7448.0 99.9th: 15024.0 13600.0 Groups: 32 50.0th: 819.0 463.0 75.0th: 1596.0 918.0 90.0th: 5992.0 1281.5 95.0th: 13184.0 2765.0 99.0th: 21792.0 14240.0 99.5th: 25696.0 18920.0 99.9th: 33280.0 35776.0 Groups: 64 50.0th: 4806.0 3440.0 75.0th: 31136.0 33664.0 90.0th: 54144.0 58752.0 95.0th: 66176.0 67200.0 99.0th: 84736.0 91520.0 99.5th: 97408.0 114048.0 99.9th: 136448.0 140032.0 Initial RFC PATCH, discussions and details on the problem: Link1: https://lore.kernel.org/lkml/5ae3cb09-8c9a-11e8-75a7-cc774d9bc283@linux.vnet.ibm.com/ Link2: https://lore.kernel.org/lkml/9c57c92c-3e0c-b8c5-4be9-8f4df344a347@linux.vnet.ibm.com/ Suggested-by: Peter Zijlstra <peterz@infradead.org> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Shrikanth Hegde<sshegde@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ben Segall <bsegall@google.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20230223185153.1499710-1-sshegde@linux.vnet.ibm.com