summaryrefslogtreecommitdiff
path: root/kernel/sched/sched.h
AgeCommit message (Collapse)Author
2024-10-11sched: Fix delayed_dequeue vs switched_from_fair()Peter Zijlstra
Commit 2e0199df252a ("sched/fair: Prepare exit/cleanup paths for delayed_dequeue") and its follow up fixes try to deal with a rather unfortunate situation where is task is enqueued in a new class, even though it shouldn't have been. Mostly because the existing ->switched_to/from() hooks are in the wrong place for this case. This all led to Paul being able to trigger failures at something like once per 10k CPU hours of RCU torture. For now, do the ugly thing and move the code to the right place by ignoring the switch hooks. Note: Clean up the whole sched_class::switch*_{to,from}() thing. Fixes: 2e0199df252a ("sched/fair: Prepare exit/cleanup paths for delayed_dequeue") Reported-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20241003185037.GA5594@noisy.programming.kicks-ass.net
2024-10-07sched/core: Add ENQUEUE_RQ_SELECTED to indicate whether ->select_task_rq() ↵Tejun Heo
was called During ttwu, ->select_task_rq() can be skipped if only one CPU is allowed or migration is disabled. sched_ext schedulers may perform operations such as direct dispatch from ->select_task_rq() path and it is useful for them to know whether ->select_task_rq() was skipped in the ->enqueue_task() path. Currently, sched_ext schedulers are using ENQUEUE_WAKEUP for this purpose and end up assuming incorrectly that ->select_task_rq() was called for tasks that are bound to a single CPU or migration disabled. Make select_task_rq() indicate whether ->select_task_rq() was called by setting WF_RQ_SELECTED in *wake_flags and make ttwu_do_activate() map that to ENQUEUE_RQ_SELECTED for ->enqueue_task(). This will be used by sched_ext to fix ->select_task_rq() skip detection. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David Vernet <void@manifault.com>
2024-09-23sched: Put task_group::idle under CONFIG_GROUP_SCHED_WEIGHTYu Liao
When build with CONFIG_GROUP_SCHED_WEIGHT && !CONFIG_FAIR_GROUP_SCHED, the idle member is not defined: kernel/sched/ext.c:3701:16: error: 'struct task_group' has no member named 'idle' 3701 | if (!tg->idle) | ^~ Fix this by putting 'idle' under new CONFIG_GROUP_SCHED_WEIGHT. tj: Move idle field upward to avoid breaking up CONFIG_FAIR_GROUP_SCHED block. Fixes: e179e80c5d4f ("sched: Introduce CONFIG_GROUP_SCHED_WEIGHT") Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202409220859.UiCAoFOW-lkp@intel.com/ Signed-off-by: Yu Liao <liaoyu15@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2024-09-23sched: Add dummy version of sched_group_set_idle()Yu Liao
Fix the following error when build with CONFIG_GROUP_SCHED_WEIGHT && !CONFIG_FAIR_GROUP_SCHED: kernel/sched/core.c:9634:15: error: implicit declaration of function 'sched_group_set_idle'; did you mean 'scx_group_set_idle'? [-Wimplicit-function-declaration] 9634 | ret = sched_group_set_idle(css_tg(css), idle); | ^~~~~~~~~~~~~~~~~~~~ | scx_group_set_idle Fixes: e179e80c5d4f ("sched: Introduce CONFIG_GROUP_SCHED_WEIGHT") Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202409220859.UiCAoFOW-lkp@intel.com/ Signed-off-by: Yu Liao <liaoyu15@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2024-09-11sched: Move update_other_load_avgs() to kernel/sched/pelt.cTejun Heo
96fd6c65efc6 ("sched: Factor out update_other_load_avgs() from __update_blocked_others()") added update_other_load_avgs() in kernel/sched/syscalls.c right above effective_cpu_util(). This location didn't fit that well in the first place, and with 5d871a63997f ("sched/fair: Move effective_cpu_util() and effective_cpu_util() in fair.c") moving effective_cpu_util() to kernel/sched/fair.c, it looks even more out of place. Relocate the function to kernel/sched/pelt.c where all its callees are. No functional changes. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com>
2024-09-10sched_ext: Synchronize bypass state changes with rq lockTejun Heo
While the BPF scheduler is being unloaded, the following warning messages trigger sometimes: NOHZ tick-stop error: local softirq work is pending, handler #80!!! This is caused by the CPU entering idle while there are pending softirqs. The main culprit is the bypassing state assertion not being synchronized with rq operations. As the BPF scheduler cannot be trusted in the disable path, the first step is entering the bypass mode where the BPF scheduler is ignored and scheduling becomes global FIFO. This is implemented by turning scx_ops_bypassing() true. However, the transition isn't synchronized against anything and it's possible for enqueue and dispatch paths to have different ideas on whether bypass mode is on. Make each rq track its own bypass state with SCX_RQ_BYPASSING which is modified while rq is locked. This removes most of the NOHZ tick-stop messages but not completely. I believe the stragglers are from the sched core bug where pick_task_scx() can be called without preceding balance_scx(). Once that bug is fixed, we should verify that all occurrences of this error message are gone too. v2: scx_enabled() test moved inside the for_each_possible_cpu() loop so that the per-cpu states are always synchronized with the global state. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: David Vernet <void@manifault.com>
2024-09-04sched_ext: Add cgroup supportTejun Heo
Add sched_ext_ops operations to init/exit cgroups, and track task migrations and config changes. A BPF scheduler may not implement or implement only subset of cgroup features. The implemented features can be indicated using %SCX_OPS_HAS_CGOUP_* flags. If cgroup configuration makes use of features that are not implemented, a warning is triggered. While a BPF scheduler is being enabled and disabled, relevant cgroup operations are locked out using scx_cgroup_rwsem. This avoids situations like task prep taking place while the task is being moved across cgroups, making things easier for BPF schedulers. v7: - cgroup interface file visibility toggling is dropped in favor just warning messages. Dynamically changing interface visiblity caused more confusion than helping. v6: - Updated to reflect the removal of SCX_KF_SLEEPABLE. - Updated to use CONFIG_GROUP_SCHED_WEIGHT and fixes for !CONFIG_FAIR_GROUP_SCHED && CONFIG_EXT_GROUP_SCHED. v5: - Flipped the locking order between scx_cgroup_rwsem and cpus_read_lock() to avoid locking order conflict w/ cpuset. Better documentation around locking. - sched_move_task() takes an early exit if the source and destination are identical. This triggered the warning in scx_cgroup_can_attach() as it left p->scx.cgrp_moving_from uncleared. Updated the cgroup migration path so that ops.cgroup_prep_move() is skipped for identity migrations so that its invocations always match ops.cgroup_move() one-to-one. v4: - Example schedulers moved into their own patches. - Fix build failure when !CONFIG_CGROUP_SCHED, reported by Andrea Righi. v3: - Make scx_example_pair switch all tasks by default. - Convert to BPF inline iterators. - scx_bpf_task_cgroup() is added to determine the current cgroup from CPU controller's POV. This allows BPF schedulers to accurately track CPU cgroup membership. - scx_example_flatcg added. This demonstrates flattened hierarchy implementation of CPU cgroup control and shows significant performance improvement when cgroups which are nested multiple levels are under competition. v2: - Build fixes for different CONFIG combinations. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com> Reported-by: kernel test robot <lkp@intel.com> Cc: Andrea Righi <andrea.righi@canonical.com>
2024-09-04sched: Introduce CONFIG_GROUP_SCHED_WEIGHTTejun Heo
sched_ext will soon add cgroup cpu.weigh support. The cgroup interface code is currently gated behind CONFIG_FAIR_GROUP_SCHED. As the fair class and/or SCX may implement the feature, put the interface code behind the new CONFIG_CGROUP_SCHED_WEIGHT which is selected by CONFIG_FAIR_GROUP_SCHED. This allows either sched class to enable the itnerface code without ading more complex CONFIG tests. When !CONFIG_FAIR_GROUP_SCHED, a dummy version of sched_group_set_shares() is added to support later CONFIG_CGROUP_SCHED_WEIGHT && !CONFIG_FAIR_GROUP_SCHED builds. No functional changes. Signed-off-by: Tejun Heo <tj@kernel.org>
2024-09-04sched: Expose css_tg()Tejun Heo
A new BPF extensible sched_class will use css_tg() in the init and exit paths to visit all task_groups by walking cgroups. v4: __setscheduler_prio() is already exposed. Dropped from this patch. v3: Dropped SCHED_CHANGE_BLOCK() as upstream is adding more generic cleanup mechanism. v2: Expose SCHED_CHANGE_BLOCK() too and update the description. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>
2024-09-03sched_ext: Remove sched_class->switch_class()Tejun Heo
With sched_ext converted to use put_prev_task() for class switch detection, there's no user of switch_class() left. Drop it. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org>
2024-09-03sched_ext: Replace SCX_TASK_BAL_KEEP with SCX_RQ_BAL_KEEPTejun Heo
SCX_TASK_BAL_KEEP is used by balance_one() to tell pick_next_task_scx() to keep running the current task. It's not really a task property. Replace it with SCX_RQ_BAL_KEEP which resides in rq->scx.flags and is a better fit for the usage. Also, the existing clearing rule is unnecessarily strict and makes it difficult to use with core-sched. Just clear it on entry to balance_one(). Signed-off-by: Tejun Heo <tj@kernel.org>
2024-09-03Merge branch 'tip/sched/core' into for-6.12Tejun Heo
- Resolve trivial context conflicts from dl_server clearing being moved around. - Add @next to put_prev_task_scx() and @prev to pick_next_task_scx() to match sched/core. - Merge sched_class->switch_class() addition from sched_ext with tip/sched/core changes in __pick_next_task(). - Make pick_next_task_scx() call put_prev_task_scx() to emulate the previous behavior where sched_class->put_prev_task() was called before sched_class->pick_next_task(). While this makes sched_ext build and function, the behavior is not in line with other sched classes. The follow-up patches will address the discrepancies and remove sched_class->switch_class(). Signed-off-by: Tejun Heo <tj@kernel.org>
2024-09-03sched: Add put_prev_task(.next)Peter Zijlstra
In order to tell the previous sched_class what the next task is, add put_prev_task(.next). Notable SCX will use this to: 1) determine the next task will leave the SCX sched class and push the current task to another CPU if possible. 2) statistics on how often and which other classes preempt it Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240813224016.367421076@infradead.org
2024-09-03sched: Rework dl_serverPeter Zijlstra
When a task is selected through a dl_server, it will have p->dl_server set, such that it can account runtime to the dl_server, see update_curr_task(). Currently p->dl_server is set in pick*task() whenever it goes through the dl_server, clearing it is a bit of a mess though. The trivial solution is clearing it on the final put (now that we have this location). However, this gives a problem when: p = pick_task(rq); if (p) put_prev_set_next_task(rq, prev, next); picks the same task but through a different path, notably when it goes from picking through the dl_server to a direct pick or vice-versa. In that case we cannot readily determine wether we should clear or preserve p->dl_server. An additional complication is pick_*task() setting p->dl_server for a remote pick, it might still need to update runtime before it schedules the core_pick. Close all these holes and remove all the random clearing of p->dl_server by: - having pick_*task() manage rq->dl_server - having the final put_prev_task() clear p->dl_server - having the first set_next_task() set p->dl_server = rq->dl_server - complicate the core_sched code to save/restore rq->dl_server where appropriate. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240813224016.259853414@infradead.org
2024-09-03sched: Combine the last put_prev_task() and the first set_next_task()Peter Zijlstra
Ensure the last put_prev_task() and the first set_next_task() always go together. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240813224016.158454756@infradead.org
2024-09-03sched: Rework pick_next_task()Peter Zijlstra
The current rule is that: pick_next_task() := pick_task() + set_next_task(.first = true) And many classes implement it directly as such. Change things around to make pick_next_task() optional while also changing the definition to: pick_next_task(prev) := pick_task() + put_prev_task() + set_next_task(.first = true) The reason is that sched_ext would like to have a 'final' call that knows the next task. By placing put_prev_task() right next to set_next_task() (as it already is for sched_core) this becomes trivial. As a bonus, this is a nice cleanup on its own. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240813224016.051225657@infradead.org
2024-09-03sched: Clean up DL server vs core schedPeter Zijlstra
Abide by the simple rule: pick_next_task() := pick_task() + set_next_task(.first = true) This allows us to trivially get rid of server_pick_next() and things collapse nicely. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240813224015.837303391@infradead.org
2024-09-03sched: Use set_next_task(.first) where requiredPeter Zijlstra
Turns out the core_sched bits forgot to use the set_next_task(.first=true) variant. Notably: pick_next_task() := pick_task() + set_next_task(.first = true) Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240813224015.614146342@infradead.org
2024-08-20Merge branch 'tip/sched/core' into for-6.12Tejun Heo
To receive 863ccdbb918a ("sched: Allow sched_class::dequeue_task() to fail") which makes sched_class.dequeue_task() return bool instead of void. This leads to compile breakage and will be fixed by a follow-up patch. Signed-off-by: Tejun Heo <tj@kernel.org>
2024-08-17sched/eevdf: Fixup PELT vs DELAYED_DEQUEUEPeter Zijlstra
Note that tasks that are kept on the runqueue to burn off negative lag, are not in fact runnable anymore, they'll get dequeued the moment they get picked. As such, don't count this time towards runnable. Thanks to Valentin for spotting I had this backwards initially. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105030.514088302@infradead.org
2024-08-17sched: Teach dequeue_task() about special task statesPeter Zijlstra
Since special task states must not suffer spurious wakeups, and the proposed delayed dequeue can cause exactly these (under some boundary conditions), propagate this knowledge into dequeue_task() such that it can do the right thing. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105030.110439521@infradead.org
2024-08-17sched: Prepare generic code for delayed dequeuePeter Zijlstra
While most of the delayed dequeue code can be done inside the sched_class itself, there is one location where we do not have an appropriate hook, namely ttwu_runnable(). Add an ENQUEUE_DELAYED call to the on_rq path to deal with waking delayed dequeue tasks. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105029.200000445@infradead.org
2024-08-17sched: Split DEQUEUE_SLEEP from deactivate_task()Peter Zijlstra
As a preparation for dequeue_task() failing, and a second code-path needing to take care of the 'success' path, split out the DEQEUE_SLEEP path from deactivate_task(). Much thanks to Libo for spotting and fixing a TASK_ON_RQ_MIGRATING ordering fail. Fixed-by: Libo Chen <libo.chen@oracle.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105029.086192709@infradead.org
2024-08-17sched: Allow sched_class::dequeue_task() to failPeter Zijlstra
Change the function signature of sched_class::dequeue_task() to return a boolean, allowing future patches to 'fail' dequeue. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105028.864630153@infradead.org
2024-08-17sched/eevdf: Remove min_vruntime_copyPeter Zijlstra
Since commit e8f331bcc270 ("sched/smp: Use lag to simplify cross-runqueue placement") the min_vruntime_copy is no longer used. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <vschneid@redhat.com> Tested-by: Valentin Schneider <vschneid@redhat.com> Link: https://lkml.kernel.org/r/20240727105028.395297941@infradead.org
2024-08-06sched_ext: Make task_can_run_on_remote_rq() use common task_allowed_on_cpu()Tejun Heo
task_can_run_on_remote_rq() is similar to is_cpu_allowed() but there are subtle differences. It currently open codes all the tests. This is cumbersome to understand and error-prone in case the intersecting tests need to be updated. Factor out the common part - testing whether the task is allowed on the CPU at all regardless of the CPU state - into task_allowed_on_cpu() and make both is_cpu_allowed() and SCX's task_can_run_on_remote_rq() use it. As the code is now linked between the two and each contains only the extra tests that differ between them, it's less error-prone when the conditions need to be updated. Also, improve the comment to explain why they are different. v2: Replace accidental "extern inline" with "static inline" (Peter). Signed-off-by: Tejun Heo <tj@kernel.org> Suggested-by: Peter Zijlstra <peterz@infradead.org> Acked-by: David Vernet <void@manifault.com>
2024-08-06sched_ext: Simplify UP support by enabling sched_class->balance() in UPTejun Heo
On SMP, SCX performs dispatch from sched_class->balance(). As balance() was not available in UP, it instead called the internal balance function from put_prev_task_scx() and pick_next_task_scx() to emulate the effect, which is rather nasty. Enabling sched_class->balance() on UP shouldn't cause any meaningful overhead. Enable balance() on UP and drop the ugly workaround. Signed-off-by: Tejun Heo <tj@kernel.org> Suggested-by: Peter Zijlstra <peterz@infradead.org> Acked-by: David Vernet <void@manifault.com>
2024-08-04Merge branch 'sched/core' of ↵Tejun Heo
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into for-6.12 Pull tip/sched/core to resolve the following four conflicts. While 2-4 are simple context conflicts, 1 is a bit subtle and easy to resolve incorrectly. 1. 2c8d046d5d51 ("sched: Add normal_policy()") vs. faa42d29419d ("sched/fair: Make SCHED_IDLE entity be preempted in strict hierarchy") The former converts direct test on p->policy to use the helper normal_policy(). The latter moves the p->policy test to a different location. Resolve by converting the test on p->plicy in the new location to use normal_policy(). 2. a7a9fc549293 ("sched_ext: Add boilerplate for extensible scheduler class") vs. a110a81c52a9 ("sched/deadline: Deferrable dl server") Both add calls to put_prev_task_idle() and set_next_task_idle(). Simple context conflict. Resolve by taking changes from both. 3. a7a9fc549293 ("sched_ext: Add boilerplate for extensible scheduler class") vs. c245910049d0 ("sched/core: Add clearing of ->dl_server in put_prev_task_balance()") The former changes for_each_class() itertion to use for_each_active_class(). The latter moves away the adjacent dl_server handling code. Simple context conflict. Resolve by taking changes from both. 4. 60c27fb59f6c ("sched_ext: Implement sched_ext_ops.cpu_online/offline()") vs. 31b164e2e4af ("sched/smt: Introduce sched_smt_present_inc/dec() helper") 2f027354122f ("sched/core: Introduce sched_set_rq_on/offline() helper") The former adds scx_rq_deactivate() call. The latter two change code around it. Simple context conflict. Resolve by taking changes from both. Signed-off-by: Tejun Heo <tj@kernel.org>
2024-07-30Merge tag 'v6.11-rc1' into for-6.12Tejun Heo
Linux 6.11-rc1
2024-07-29sched/rt: Remove default bandwidth controlPeter Zijlstra
Now that fair_server exists, we no longer need RT bandwidth control unless RT_GROUP_SCHED. Enable fair_server with parameters equivalent to RT throttling. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: "Peter Zijlstra (Intel)" <peterz@infradead.org> Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: "Vineeth Pillai (Google)" <vineeth@bitbyteword.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/14d562db55df5c3c780d91940743acb166895ef7.1716811044.git.bristot@kernel.org
2024-07-29sched/core: Fix picking of tasks for core scheduling with DL serverJoel Fernandes (Google)
* Use simple CFS pick_task for DL pick_task DL server's pick_task calls CFS's pick_next_task_fair(), this is wrong because core scheduling's pick_task only calls CFS's pick_task() for evaluation / checking of the CFS task (comparing across CPUs), not for actually affirmatively picking the next task. This causes RB tree corruption issues in CFS that were found by syzbot. * Make pick_task_fair clear DL server A DL task pick might set ->dl_server, but it is possible the task will never run (say the other HT has a stop task). If the CFS task is picked in the future directly (say without DL server), ->dl_server will be set. So clear it in pick_task_fair(). This fixes the KASAN issue reported by syzbot in set_next_entity(). (DL refactoring suggestions by Vineeth Pillai). Reported-by: Suleiman Souhlal <suleiman@google.com> Signed-off-by: "Joel Fernandes (Google)" <joel@joelfernandes.org> Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vineeth Pillai <vineeth@bitbyteword.org> Tested-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/b10489ab1f03d23e08e6097acea47442e7d6466f.1716811044.git.bristot@kernel.org
2024-07-29sched/fair: Fair server interfaceDaniel Bristot de Oliveira
Add an interface for fair server setup on debugfs. Each CPU has two files under /debug/sched/fair_server/cpu{ID}: - runtime: set runtime in ns - period: set period in ns This then leaves /proc/sys/kernel/sched_rt_{period,runtime}_us to set bounds on admission control. The interface also add the server to the dl bandwidth accounting. Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/a9ef9fc69bcedb44bddc9bc34f2b313296052819.1716811044.git.bristot@kernel.org
2024-07-29sched/deadline: Deferrable dl serverDaniel Bristot de Oliveira
Among the motivations for the DL servers is the real-time throttling mechanism. This mechanism works by throttling the rt_rq after running for a long period without leaving space for fair tasks. The base dl server avoids this problem by boosting fair tasks instead of throttling the rt_rq. The point is that it boosts without waiting for potential starvation, causing some non-intuitive cases. For example, an IRQ dispatches two tasks on an idle system, a fair and an RT. The DL server will be activated, running the fair task before the RT one. This problem can be avoided by deferring the dl server activation. By setting the defer option, the dl_server will dispatch an SCHED_DEADLINE reservation with replenished runtime, but throttled. The dl_timer will be set for the defer time at (period - runtime) ns from start time. Thus boosting the fair rq at defer time. If the fair scheduler has the opportunity to run while waiting for defer time, the dl server runtime will be consumed. If the runtime is completely consumed before the defer time, the server will be replenished while still in a throttled state. Then, the dl_timer will be reset to the new defer time If the fair server reaches the defer time without consuming its runtime, the server will start running, following CBS rules (thus without breaking SCHED_DEADLINE). Then the server will continue the running state (without deferring) until it fair tasks are able to execute as regular fair scheduler (end of the starvation). Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/dd175943c72533cd9f0b87767c6499204879cc38.1716811044.git.bristot@kernel.org
2024-07-29sched/fair: Add trivial fair serverPeter Zijlstra
Use deadline servers to service fair tasks. This patch adds a fair_server deadline entity which acts as a container for fair entities and can be used to fix starvation when higher priority (wrt fair) tasks are monopolizing CPU(s). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/b6b0bcefaf25391bcf5b6ecdb9f1218de402d42e.1716811044.git.bristot@kernel.org
2024-07-29sched/fair: Remove cfs_rq::nr_spread_over and cfs_rq::exec_clockChuyi Zhou
nr_spread_over tracks the number of instances where the difference between a scheduling entity's virtual runtime and the minimum virtual runtime in the runqueue exceeds three times the scheduler latency, indicating significant disparity in task scheduling. Commit that removed its usage: 5e963f2bd: sched/fair: Commit to EEVDF cfs_rq->exec_clock was used to account for time spent executing tasks. Commit that removed its usage: 5d69eca542ee1 sched: Unify runtime accounting across classes cfs_rq::nr_spread_over and cfs_rq::exec_clock are not used anymore in eevdf. Remove them from struct cfs_rq. Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev> Reviewed-by: K Prateek Nayak <kprateek.nayak@amd.com> Acked-by: Vishal Chourasia <vishalc@linux.ibm.com> Link: https://lore.kernel.org/r/20240717143342.593262-1-zhouchuyi@bytedance.com
2024-07-12sched_ext: Allow SCX_DSQ_LOCAL_ON for direct dispatchesTejun Heo
In ops.dispatch(), SCX_DSQ_LOCAL_ON can be used to dispatch the task to the local DSQ of any CPU. However, during direct dispatch from ops.select_cpu() and ops.enqueue(), this isn't allowed. This is because dispatching to the local DSQ of a remote CPU requires locking both the task's current and new rq's and such double locking can't be done directly from ops.enqueue(). While waking up a task, as ops.select_cpu() can pick any CPU and both ops.select_cpu() and ops.enqueue() can use SCX_DSQ_LOCAL as the dispatch target to dispatch to the DSQ of the picked CPU, the BPF scheduler can still do whatever it wants to do. However, while a task is being enqueued for a different reason, e.g. after its slice expiration, only ops.enqueue() is called and there's no way for the BPF scheduler to directly dispatch to the local DSQ of a remote CPU. This gap in API forces schedulers into work-arounds which are not straightforward or optimal such as skipping direct dispatches in such cases. Implement deferred enqueueing to allow directly dispatching to the local DSQ of a remote CPU from ops.select_cpu() and ops.enqueue(). Such tasks are temporarily queued on rq->scx.ddsp_deferred_locals. When the rq lock can be safely released, the tasks are taken off the list and queued on the target local DSQs using dispatch_to_local_dsq(). v2: - Add missing return after queue_balance_callback() in schedule_deferred(). (David). - dispatch_to_local_dsq() now assumes that @rq is locked but unpinned and thus no longer takes @rf. Updated accordingly. - UP build warning fix. Signed-off-by: Tejun Heo <tj@kernel.org> Tested-by: Andrea Righi <righi.andrea@gmail.com> Acked-by: David Vernet <void@manifault.com> Cc: Dan Schatzberg <schatzberg.dan@gmail.com> Cc: Changwoo Min <changwoo@igalia.com>
2024-07-12sched_ext: s/SCX_RQ_BALANCING/SCX_RQ_IN_BALANCE/ and add SCX_RQ_IN_WAKEUPTejun Heo
SCX_RQ_BALANCING is used to mark that the rq is currently in balance(). Rename it to SCX_RQ_IN_BALANCE and add SCX_RQ_IN_WAKEUP which marks whether the rq is currently enqueueing for a wakeup. This will be used to implement direct dispatching to local DSQ of another CPU. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David Vernet <void@manifault.com>
2024-07-12sched: Move struct balance_callback definition upwardTejun Heo
Move struct balance_callback definition upward so that it's visible to class-specific rq struct definitions. This will be used to embed a struct balance_callback in struct scx_rq. No functional changes. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: David Vernet <void@manifault.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org>
2024-07-11Merge branch 'sched/urgent' into sched/core, to pick up fixes and refresh ↵Ingo Molnar
the branch Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-07-08sched, sched_ext: Move some declarations from kernel/sched/ext.h to sched.hTejun Heo
While sched_ext was out of tree, everything sched_ext specific which can be put in kernel/sched/ext.h was put there to ease forward porting. However, kernel/sched/sched.h is the better location for some of them. Relocate. - struct sched_enq_and_set_ctx, sched_deq_and_put_task() and sched_enq_and_set_task(). - scx_enabled() and scx_switched_all(). - for_active_class_range() and for_each_active_class(). sched_class declarations are moved above the class iterators for this. No functional changes intended. Signed-off-by: Tejun Heo <tj@kernel.org> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: David Vernet <void@manifault.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2024-07-08Merge branch 'sched/core' of ↵Tejun Heo
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into for-6.11 d32960528702 ("sched/fair: set_load_weight() must also call reweight_task() for SCHED_IDLE tasks") applied to sched/core changes how reweight_task() is called causing conflicts with e83edbf88f18 ("sched: Add sched_class->reweight_task()"). Resolve the conflicts by taking set_load_weight() changes from d32960528702 and updating sched_class->reweight_task() to take pointer to struct load_weight instead of int prio. Signed-off-by: Tejun Heo<tj@kernel.org>
2024-07-04sched/fair: set_load_weight() must also call reweight_task() for SCHED_IDLE ↵Tejun Heo
tasks When a task's weight is being changed, set_load_weight() is called with @update_load set. As weight changes aren't trivial for the fair class, set_load_weight() calls fair.c::reweight_task() for fair class tasks. However, set_load_weight() first tests task_has_idle_policy() on entry and skips calling reweight_task() for SCHED_IDLE tasks. This is buggy as SCHED_IDLE tasks are just fair tasks with a very low weight and they would incorrectly skip load, vlag and position updates. Fix it by updating reweight_task() to take struct load_weight as idle weight can't be expressed with prio and making set_load_weight() call reweight_task() for SCHED_IDLE tasks too when @update_load is set. Fixes: 9059393e4ec1 ("sched/fair: Use reweight_entity() for set_user_nice()") Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org # v4.15+ Link: http://lkml.kernel.org/r/20240624102331.GI31592@noisy.programming.kicks-ass.net
2024-07-01sched: Move psi_account_irqtime() out of update_rq_clock_task() hotpathJohn Stultz
It was reported that in moving to 6.1, a larger then 10% regression was seen in the performance of clock_gettime(CLOCK_THREAD_CPUTIME_ID,...). Using a simple reproducer, I found: 5.10: 100000000 calls in 24345994193 ns => 243.460 ns per call 100000000 calls in 24288172050 ns => 242.882 ns per call 100000000 calls in 24289135225 ns => 242.891 ns per call 6.1: 100000000 calls in 28248646742 ns => 282.486 ns per call 100000000 calls in 28227055067 ns => 282.271 ns per call 100000000 calls in 28177471287 ns => 281.775 ns per call The cause of this was finally narrowed down to the addition of psi_account_irqtime() in update_rq_clock_task(), in commit 52b1364ba0b1 ("sched/psi: Add PSI_IRQ to track IRQ/SOFTIRQ pressure"). In my initial attempt to resolve this, I leaned towards moving all accounting work out of the clock_gettime() call path, but it wasn't very pretty, so it will have to wait for a later deeper rework. Instead, Peter shared this approach: Rework psi_account_irqtime() to use its own psi_irq_time base for accounting, and move it out of the hotpath, calling it instead from sched_tick() and __schedule(). In testing this, we found the importance of ensuring psi_account_irqtime() is run under the rq_lock, which Johannes Weiner helpfully explained, so also add some lockdep annotations to make that requirement clear. With this change the performance is back in-line with 5.10: 6.1+fix: 100000000 calls in 24297324597 ns => 242.973 ns per call 100000000 calls in 24318869234 ns => 243.189 ns per call 100000000 calls in 24291564588 ns => 242.916 ns per call Reported-by: Jimmy Shiu <jimmyshiu@google.com> Originally-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: John Stultz <jstultz@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev> Reviewed-by: Qais Yousef <qyousef@layalina.io> Link: https://lore.kernel.org/r/20240618215909.4099720-1-jstultz@google.com
2024-06-21sched_ext: Add cpuperf supportTejun Heo
sched_ext currently does not integrate with schedutil. When schedutil is the governor, frequencies are left unregulated and usually get stuck close to the highest performance level from running RT tasks. Add CPU performance monitoring and scaling support by integrating into schedutil. The following kfuncs are added: - scx_bpf_cpuperf_cap(): Query the relative performance capacity of different CPUs in the system. - scx_bpf_cpuperf_cur(): Query the current performance level of a CPU relative to its max performance. - scx_bpf_cpuperf_set(): Set the current target performance level of a CPU. This gives direct control over CPU performance setting to the BPF scheduler. The only changes on the schedutil side are accounting for the utilization factor from sched_ext and disabling frequency holding heuristics as it may not apply well to sched_ext schedulers which may have a lot weaker connection between tasks and their current / last CPU. With cpuperf support added, there is no reason to block uclamp. Enable while at it. A toy implementation of cpuperf is added to scx_qmap as a demonstration of the feature. v2: Ignore cpu_util_cfs_boost() when scx_switched_all() in sugov_get_util() to avoid factoring in stale util metric. (Christian) Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: Viresh Kumar <viresh.kumar@linaro.org> Cc: Christian Loehle <christian.loehle@arm.com>
2024-06-21sched, sched_ext: Replace scx_next_task_picked() with ↵Tejun Heo
sched_class->switch_class() scx_next_task_picked() is used by sched_ext to notify the BPF scheduler when a CPU is taken away by a task dispatched from a higher priority sched_class so that the BPF scheduler can, e.g., punt the task[s] which was running or were waiting for the CPU to other CPUs. Replace the sched_ext specific hook scx_next_task_picked() with a new sched_class operation switch_class(). The changes are straightforward and the code looks better afterwards. However, when !CONFIG_SCHED_CLASS_EXT, this ends up adding an unused hook which is unlikely to be useful to other sched_classes. For further discussion on this subject, please refer to the following: http://lkml.kernel.org/r/CAHk-=wjFPLqo7AXu8maAGEGnOy6reUg-F4zzFhVB0Kyu22h7pw@mail.gmail.com Signed-off-by: Tejun Heo <tj@kernel.org> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de>
2024-06-18sched_ext: Implement sched_ext_ops.cpu_online/offline()Tejun Heo
Add ops.cpu_online/offline() which are invoked when CPUs come online and offline respectively. As the enqueue path already automatically bypasses tasks to the local dsq on a deactivated CPU, BPF schedulers are guaranteed to see tasks only on CPUs which are between online() and offline(). If the BPF scheduler doesn't implement ops.cpu_online/offline(), the scheduler is automatically exited with SCX_ECODE_RESTART | SCX_ECODE_RSN_HOTPLUG. Userspace can implement CPU hotpplug support trivially by simply reinitializing and reloading the scheduler. scx_qmap is updated to print out online CPUs on hotplug events. Other schedulers are updated to restart based on ecode. v3: - The previous implementation added @reason to sched_class.rq_on/offline() to distinguish between CPU hotplug events and topology updates. This was buggy and fragile as the methods are skipped if the current state equals the target state. Instead, add scx_rq_[de]activate() which are directly called from sched_cpu_de/activate(). This also allows ops.cpu_on/offline() to sleep which can be useful. - ops.dispatch() could be called on a CPU that the BPF scheduler was told to be offline. The dispatch patch is updated to bypass in such cases. v2: - To accommodate lock ordering change between scx_cgroup_rwsem and cpus_read_lock(), CPU hotplug operations are put into its own SCX_OPI block and enabled eariler during scx_ope_enable() so that cpus_read_lock() can be dropped before acquiring scx_cgroup_rwsem. - Auto exit with ECODE added. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>
2024-06-18sched_ext: Implement sched_ext_ops.cpu_acquire/release()David Vernet
Scheduler classes are strictly ordered and when a higher priority class has tasks to run, the lower priority ones lose access to the CPU. Being able to monitor and act on these events are necessary for use cases includling strict core-scheduling and latency management. This patch adds two operations ops.cpu_acquire() and .cpu_release(). The former is invoked when a CPU becomes available to the BPF scheduler and the opposite for the latter. This patch also implements scx_bpf_reenqueue_local() which can be called from .cpu_release() to trigger requeueing of all tasks in the local dsq of the CPU so that the tasks can be reassigned to other available CPUs. scx_pair is updated to use .cpu_acquire/release() along with %SCX_KICK_WAIT to make the pair scheduling guarantee strict even when a CPU is preempted by a higher priority scheduler class. scx_qmap is updated to use .cpu_acquire/release() to empty the local dsq of a preempted CPU. A similar approach can be adopted by BPF schedulers that want to have a tight control over latency. v4: Use the new SCX_KICK_IDLE to wake up a CPU after re-enqueueing. v3: Drop the const qualifier from scx_cpu_release_args.task. BPF enforces access control through the verifier, so the qualifier isn't actually operative and only gets in the way when interacting with various helpers. v2: Add p->scx.kf_mask annotation to allow calling scx_bpf_reenqueue_local() from ops.cpu_release() nested inside ops.init() and other sleepable operations. Signed-off-by: David Vernet <dvernet@meta.com> Reviewed-by: Tejun Heo <tj@kernel.org> Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>
2024-06-18sched_ext: Implement SCX_KICK_WAITDavid Vernet
If set when calling scx_bpf_kick_cpu(), the invoking CPU will busy wait for the kicked cpu to enter the scheduler. See the following for example usage: https://github.com/sched-ext/scx/blob/main/scheds/c/scx_pair.bpf.c v2: - Updated to fit the updated kick_cpus_irq_workfn() implementation. - Include SCX_KICK_WAIT related information in debug dump. Signed-off-by: David Vernet <dvernet@meta.com> Reviewed-by: Tejun Heo <tj@kernel.org> Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>
2024-06-18sched_ext: Implement tickless supportTejun Heo
Allow BPF schedulers to indicate tickless operation by setting p->scx.slice to SCX_SLICE_INF. A CPU whose current task has infinte slice goes into tickless operation. scx_central is updated to use tickless operations for all tasks and instead use a BPF timer to expire slices. This also uses the SCX_ENQ_PREEMPT and task state tracking added by the previous patches. Currently, there is no way to pin the timer on the central CPU, so it may end up on one of the worker CPUs; however, outside of that, the worker CPUs can go tickless both while running sched_ext tasks and idling. With schbench running, scx_central shows: root@test ~# grep ^LOC /proc/interrupts; sleep 10; grep ^LOC /proc/interrupts LOC: 142024 656 664 449 Local timer interrupts LOC: 161663 663 665 449 Local timer interrupts Without it: root@test ~ [SIGINT]# grep ^LOC /proc/interrupts; sleep 10; grep ^LOC /proc/interrupts LOC: 188778 3142 3793 3993 Local timer interrupts LOC: 198993 5314 6323 6438 Local timer interrupts While scx_central itself is too barebone to be useful as a production scheduler, a more featureful central scheduler can be built using the same approach. Google's experience shows that such an approach can have significant benefits for certain applications such as VM hosting. v4: Allow operation even if BPF_F_TIMER_CPU_PIN is not available. v3: Pin the central scheduler's timer on the central_cpu using BPF_F_TIMER_CPU_PIN. v2: Convert to BPF inline iterators. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>
2024-06-18sched_ext: Implement scx_bpf_kick_cpu() and task preemption supportTejun Heo
It's often useful to wake up and/or trigger reschedule on other CPUs. This patch adds scx_bpf_kick_cpu() kfunc helper that BPF scheduler can call to kick the target CPU into the scheduling path. As a sched_ext task relinquishes its CPU only after its slice is depleted, this patch also adds SCX_KICK_PREEMPT and SCX_ENQ_PREEMPT which clears the slice of the target CPU's current task to guarantee that sched_ext's scheduling path runs on the CPU. If SCX_KICK_IDLE is specified, the target CPU is kicked iff the CPU is idle to guarantee that the target CPU will go through at least one full sched_ext scheduling cycle after the kicking. This can be used to wake up idle CPUs without incurring unnecessary overhead if it isn't currently idle. As a demonstration of how backward compatibility can be supported using BPF CO-RE, tools/sched_ext/include/scx/compat.bpf.h is added. It provides __COMPAT_scx_bpf_kick_cpu_IDLE() which uses SCX_KICK_IDLE if available or becomes a regular kicking otherwise. This allows schedulers to use the new SCX_KICK_IDLE while maintaining support for older kernels. The plan is to temporarily use compat helpers to ease API updates and drop them after a few kernel releases. v5: - SCX_KICK_IDLE added. Note that this also adds a compat mechanism for schedulers so that they can support kernels without SCX_KICK_IDLE. This is useful as a demonstration of how new feature flags can be added in a backward compatible way. - kick_cpus_irq_workfn() reimplemented so that it touches the pending cpumasks only as necessary to reduce kicking overhead on machines with a lot of CPUs. - tools/sched_ext/include/scx/compat.bpf.h added. v4: - Move example scheduler to its own patch. v3: - Make scx_example_central switch all tasks by default. - Convert to BPF inline iterators. v2: - Julia Lawall reported that scx_example_central can overflow the dispatch buffer and malfunction. As scheduling for other CPUs can't be handled by the automatic retry mechanism, fix by implementing an explicit overflow and retry handling. - Updated to use generic BPF cpumask helpers. Signed-off-by: Tejun Heo <tj@kernel.org> Reviewed-by: David Vernet <dvernet@meta.com> Acked-by: Josh Don <joshdon@google.com> Acked-by: Hao Luo <haoluo@google.com> Acked-by: Barret Rhoden <brho@google.com>