summaryrefslogtreecommitdiff
path: root/tools/lib/bpf/libbpf.c
AgeCommit message (Collapse)Author
2024-03-18libbpbpf: Check bpf_map/bpf_program fd validityMykyta Yatsenko
libbpf creates bpf_program/bpf_map structs for each program/map that user defines, but it allows to disable creating/loading those objects in kernel, in that case they won't have associated file descriptor (fd < 0). Such functionality is used for backward compatibility with some older kernels. Nothing prevents users from passing these maps or programs with no kernel counterpart to libbpf APIs. This change introduces explicit checks for kernel objects existence, aiming to improve visibility of those edge cases and provide meaningful warnings to users. Signed-off-by: Mykyta Yatsenko <yatsenko@meta.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240318131808.95959-1-yatsenko@meta.com
2024-03-15libbpf, selftests/bpf: Adjust libbpf, bpftool, selftests to match LLVMAlexei Starovoitov
The selftests use to tell LLVM about special pointers. For LLVM there is nothing "arena" about them. They are simply pointers in a different address space. Hence LLVM diff https://github.com/llvm/llvm-project/pull/85161 renamed: . macro __BPF_FEATURE_ARENA_CAST -> __BPF_FEATURE_ADDR_SPACE_CAST . global variables in __attribute__((address_space(N))) are now placed in section named ".addr_space.N" instead of ".arena.N". Adjust libbpf, bpftool, and selftests to match LLVM. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Stanislav Fomichev <sdf@google.com> Link: https://lore.kernel.org/bpf/20240315021834.62988-3-alexei.starovoitov@gmail.com
2024-03-14libbpf: Skip zeroed or null fields if not found in the kernel type.Kui-Feng Lee
Accept additional fields of a struct_ops type with all zero values even if these fields are not in the corresponding type in the kernel. This provides a way to be backward compatible. User space programs can use the same map on a machine running an old kernel by clearing fields that do not exist in the kernel. Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240313214139.685112-2-thinker.li@gmail.com
2024-03-14libbpf: Prevent null-pointer dereference when prog to load has no BTFQuentin Monnet
In bpf_objec_load_prog(), there's no guarantee that obj->btf is non-NULL when passing it to btf__fd(), and this function does not perform any check before dereferencing its argument (as bpf_object__btf_fd() used to do). As a consequence, we get segmentation fault errors in bpftool (for example) when trying to load programs that come without BTF information. v2: Keep btf__fd() in the fix instead of reverting to bpf_object__btf_fd(). Fixes: df7c3f7d3a3d ("libbpf: make uniform use of btf__fd() accessor inside libbpf") Suggested-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Quentin Monnet <qmo@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240314150438.232462-1-qmo@kernel.org
2024-03-11libbpf: Recognize __arena global variables.Andrii Nakryiko
LLVM automatically places __arena variables into ".arena.1" ELF section. In order to use such global variables bpf program must include definition of arena map in ".maps" section, like: struct { __uint(type, BPF_MAP_TYPE_ARENA); __uint(map_flags, BPF_F_MMAPABLE); __uint(max_entries, 1000); /* number of pages */ __ulong(map_extra, 2ull << 44); /* start of mmap() region */ } arena SEC(".maps"); libbpf recognizes both uses of arena and creates single `struct bpf_map *` instance in libbpf APIs. ".arena.1" ELF section data is used as initial data image, which is exposed through skeleton and bpf_map__initial_value() to the user, if they need to tune it before the load phase. During load phase, this initial image is copied over into mmap()'ed region corresponding to arena, and discarded. Few small checks here and there had to be added to make sure this approach works with bpf_map__initial_value(), mostly due to hard-coded assumption that map->mmaped is set up with mmap() syscall and should be munmap()'ed. For arena, .arena.1 can be (much) smaller than maximum arena size, so this smaller data size has to be tracked separately. Given it is enforced that there is only one arena for entire bpf_object instance, we just keep it in a separate field. This can be generalized if necessary later. All global variables from ".arena.1" section are accessible from user space via skel->arena->name_of_var. For bss/data/rodata the skeleton/libbpf perform the following sequence: 1. addr = mmap(MAP_ANONYMOUS) 2. user space optionally modifies global vars 3. map_fd = bpf_create_map() 4. bpf_update_map_elem(map_fd, addr) // to store values into the kernel 5. mmap(addr, MAP_FIXED, map_fd) after step 5 user spaces see the values it wrote at step 2 at the same addresses arena doesn't support update_map_elem. Hence skeleton/libbpf do: 1. addr = malloc(sizeof SEC ".arena.1") 2. user space optionally modifies global vars 3. map_fd = bpf_create_map(MAP_TYPE_ARENA) 4. real_addr = mmap(map->map_extra, MAP_SHARED | MAP_FIXED, map_fd) 5. memcpy(real_addr, addr) // this will fault-in and allocate pages At the end look and feel of global data vs __arena global data is the same from bpf prog pov. Another complication is: struct { __uint(type, BPF_MAP_TYPE_ARENA); } arena SEC(".maps"); int __arena foo; int bar; ptr1 = &foo; // relocation against ".arena.1" section ptr2 = &arena; // relocation against ".maps" section ptr3 = &bar; // relocation against ".bss" section Fo the kernel ptr1 and ptr2 has point to the same arena's map_fd while ptr3 points to a different global array's map_fd. For the verifier: ptr1->type == unknown_scalar ptr2->type == const_ptr_to_map ptr3->type == ptr_to_map_value After verification, from JIT pov all 3 ptr-s are normal ld_imm64 insns. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Quentin Monnet <quentin@isovalent.com> Link: https://lore.kernel.org/bpf/20240308010812.89848-11-alexei.starovoitov@gmail.com
2024-03-11libbpf: Add support for bpf_arena.Alexei Starovoitov
mmap() bpf_arena right after creation, since the kernel needs to remember the address returned from mmap. This is user_vm_start. LLVM will generate bpf_arena_cast_user() instructions where necessary and JIT will add upper 32-bit of user_vm_start to such pointers. Fix up bpf_map_mmap_sz() to compute mmap size as map->value_size * map->max_entries for arrays and PAGE_SIZE * map->max_entries for arena. Don't set BTF at arena creation time, since it doesn't support it. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240308010812.89848-9-alexei.starovoitov@gmail.com
2024-03-07libbpf: Allow specifying 64-bit integers in map BTF.Alexei Starovoitov
__uint() macro that is used to specify map attributes like: __uint(type, BPF_MAP_TYPE_ARRAY); __uint(map_flags, BPF_F_MMAPABLE); It is limited to 32-bit, since BTF_KIND_ARRAY has u32 "number of elements" field in "struct btf_array". Introduce __ulong() macro that allows specifying values bigger than 32-bit. In map definition "map_extra" is the only u64 field, so far. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/r/20240307031228.42896-5-alexei.starovoitov@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-03-06libbpf: Rewrite btf datasec names starting from '?'Eduard Zingerman
Optional struct_ops maps are defined using question mark at the start of the section name, e.g.: SEC("?.struct_ops") struct test_ops optional_map = { ... }; This commit teaches libbpf to detect if kernel allows '?' prefix in datasec names, and if it doesn't then to rewrite such names by replacing '?' with '_', e.g.: DATASEC ?.struct_ops -> DATASEC _.struct_ops Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240306104529.6453-13-eddyz87@gmail.com
2024-03-06libbpf: Struct_ops in SEC("?.struct_ops") / SEC("?.struct_ops.link")Eduard Zingerman
Allow using two new section names for struct_ops maps: - SEC("?.struct_ops") - SEC("?.struct_ops.link") To specify maps that have bpf_map->autocreate == false after open. Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240306104529.6453-12-eddyz87@gmail.com
2024-03-06libbpf: Replace elf_state->st_ops_* fields with SEC_ST_OPS sec_typeEduard Zingerman
The next patch would add two new section names for struct_ops maps. To make working with multiple struct_ops sections more convenient: - remove fields like elf_state->st_ops_{shndx,link_shndx}; - mark section descriptions hosting struct_ops as elf_sec_desc->sec_type == SEC_ST_OPS; After these changes struct_ops sections could be processed uniformly by iterating bpf_object->efile.secs entries. Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240306104529.6453-11-eddyz87@gmail.com
2024-03-06libbpf: Sync progs autoload with maps autocreate for struct_ops mapsEduard Zingerman
Automatically select which struct_ops programs to load depending on which struct_ops maps are selected for automatic creation. E.g. for the BPF code below: SEC("struct_ops/test_1") int BPF_PROG(foo) { ... } SEC("struct_ops/test_2") int BPF_PROG(bar) { ... } SEC(".struct_ops.link") struct test_ops___v1 A = { .foo = (void *)foo }; SEC(".struct_ops.link") struct test_ops___v2 B = { .foo = (void *)foo, .bar = (void *)bar, }; And the following libbpf API calls: bpf_map__set_autocreate(skel->maps.A, true); bpf_map__set_autocreate(skel->maps.B, false); The autoload would be enabled for program 'foo' and disabled for program 'bar'. During load, for each struct_ops program P, referenced from some struct_ops map M: - set P.autoload = true if M.autocreate is true for some M; - set P.autoload = false if M.autocreate is false for all M; - don't change P.autoload, if P is not referenced from any map. Do this after bpf_object__init_kern_struct_ops_maps() to make sure that shadow vars assignment is done. Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240306104529.6453-9-eddyz87@gmail.com
2024-03-06libbpf: Honor autocreate flag for struct_ops mapsEduard Zingerman
Skip load steps for struct_ops maps not marked for automatic creation. This should allow to load bpf object in situations like below: SEC("struct_ops/foo") int BPF_PROG(foo) { ... } SEC("struct_ops/bar") int BPF_PROG(bar) { ... } struct test_ops___v1 { int (*foo)(void); }; struct test_ops___v2 { int (*foo)(void); int (*does_not_exist)(void); }; SEC(".struct_ops.link") struct test_ops___v1 map_for_old = { .test_1 = (void *)foo }; SEC(".struct_ops.link") struct test_ops___v2 map_for_new = { .test_1 = (void *)foo, .does_not_exist = (void *)bar }; Suppose program is loaded on old kernel that does not have definition for 'does_not_exist' struct_ops member. After this commit it would be possible to load such object file after the following tweaks: bpf_program__set_autoload(skel->progs.bar, false); bpf_map__set_autocreate(skel->maps.map_for_new, false); Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/bpf/20240306104529.6453-4-eddyz87@gmail.com
2024-03-06libbpf: Tie struct_ops programs to kernel BTF ids, not to local idsEduard Zingerman
Enforce the following existing limitation on struct_ops programs based on kernel BTF id instead of program-local BTF id: struct_ops BPF prog can be re-used between multiple .struct_ops & .struct_ops.link as long as it's the same struct_ops struct definition and the same function pointer field This allows reusing same BPF program for versioned struct_ops map definitions, e.g.: SEC("struct_ops/test") int BPF_PROG(foo) { ... } struct some_ops___v1 { int (*test)(void); }; struct some_ops___v2 { int (*test)(void); }; SEC(".struct_ops.link") struct some_ops___v1 a = { .test = foo } SEC(".struct_ops.link") struct some_ops___v2 b = { .test = foo } Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240306104529.6453-3-eddyz87@gmail.com
2024-03-06libbpf: Allow version suffixes (___smth) for struct_ops typesEduard Zingerman
E.g. allow the following struct_ops definitions: struct bpf_testmod_ops___v1 { int (*test)(void); }; struct bpf_testmod_ops___v2 { int (*test)(void); }; SEC(".struct_ops.link") struct bpf_testmod_ops___v1 a = { .test = ... } SEC(".struct_ops.link") struct bpf_testmod_ops___v2 b = { .test = ... } Where both bpf_testmod_ops__v1 and bpf_testmod_ops__v2 would be resolved as 'struct bpf_testmod_ops' from kernel BTF. Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: David Vernet <void@manifault.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240306104529.6453-2-eddyz87@gmail.com
2024-02-29libbpf: Convert st_ops->data to shadow type.Kui-Feng Lee
Convert st_ops->data to the shadow type of the struct_ops map. The shadow type of a struct_ops type is a variant of the original struct type providing a way to access/change the values in the maps of the struct_ops type. bpf_map__initial_value() will return st_ops->data for struct_ops types. The skeleton is going to use it as the pointer to the shadow type of the original struct type. One of the main differences between the original struct type and the shadow type is that all function pointers of the shadow type are converted to pointers of struct bpf_program. Users can replace these bpf_program pointers with other BPF programs. The st_ops->progs[] will be updated before updating the value of a map to reflect the changes made by users. Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240229064523.2091270-3-thinker.li@gmail.com
2024-02-29libbpf: Set btf_value_type_id of struct bpf_map for struct_ops.Kui-Feng Lee
For a struct_ops map, btf_value_type_id is the type ID of it's struct type. This value is required by bpftool to generate skeleton including pointers of shadow types. The code generator gets the type ID from bpf_map__btf_value_type_id() in order to get the type information of the struct type of a map. Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20240229064523.2091270-2-thinker.li@gmail.com
2024-02-05libbpf: fix return value for PERF_EVENT __arg_ctx type fix up checkAndrii Nakryiko
If PERF_EVENT program has __arg_ctx argument with matching architecture-specific pt_regs/user_pt_regs/user_regs_struct pointer type, libbpf should still perform type rewrite for old kernels, but not emit the warning. Fix copy/paste from kernel code where 0 is meant to signify "no error" condition. For libbpf we need to return "true" to proceed with type rewrite (which for PERF_EVENT program will be a canonical `struct bpf_perf_event_data *` type). Fixes: 9eea8fafe33e ("libbpf: fix __arg_ctx type enforcement for perf_event programs") Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240206002243.1439450-1-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-02-01libbpf: Call memfd_create() syscall directlyAndrii Nakryiko
Some versions of Android do not implement memfd_create() wrapper in their libc implementation, leading to build failures ([0]). On the other hand, memfd_create() is available as a syscall on quite old kernels (3.17+, while bpf() syscall itself is available since 3.18+), so it is ok to assume that syscall availability and call into it with syscall() helper to avoid Android-specific workarounds. Validated in libbpf-bootstrap's CI ([1]). [0] https://github.com/libbpf/libbpf-bootstrap/actions/runs/7701003207/job/20986080319#step:5:83 [1] https://github.com/libbpf/libbpf-bootstrap/actions/runs/7715988887/job/21031767212?pr=253 Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Eduard Zingerman <eddyz87@gmail.com> Link: https://lore.kernel.org/bpf/20240201172027.604869-2-andrii@kernel.org
2024-02-01libbpf: Remove unnecessary null check in kernel_supports()Eduard Zingerman
After recent changes, Coverity complained about inconsistent null checks in kernel_supports() function: kernel_supports(const struct bpf_object *obj, ...) [...] // var_compare_op: Comparing obj to null implies that obj might be null if (obj && obj->gen_loader) return true; // var_deref_op: Dereferencing null pointer obj if (obj->token_fd) return feat_supported(obj->feat_cache, feat_id); [...] - The original null check was introduced by commit [0], which introduced a call `kernel_supports(NULL, ...)` in function bump_rlimit_memlock(); - This call was refactored to use `feat_supported(NULL, ...)` in commit [1]. Looking at all places where kernel_supports() is called: - There is either `obj->...` access before the call; - Or `obj` comes from `prog->obj` expression, where `prog` comes from enumeration of programs in `obj`; - Or `obj` comes from `prog->obj`, where `prog` is a parameter to one of the API functions: - bpf_program__attach_kprobe_opts; - bpf_program__attach_kprobe; - bpf_program__attach_ksyscall. Assuming correct API usage, it appears that `obj` can never be null when passed to kernel_supports(). Silence the Coverity warning by removing redundant null check. [0] e542f2c4cd16 ("libbpf: Auto-bump RLIMIT_MEMLOCK if kernel needs it for BPF") [1] d6dd1d49367a ("libbpf: Further decouple feature checking logic from bpf_object") Signed-off-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20240131212615.20112-1-eddyz87@gmail.com
2024-01-29libbpf: fix __arg_ctx type enforcement for perf_event programsAndrii Nakryiko
Adjust PERF_EVENT type enforcement around __arg_ctx to match exactly what kernel is doing. Fixes: 76ec90a996e3 ("libbpf: warn on unexpected __arg_ctx type when rewriting BTF") Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240125205510.3642094-3-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-29libbpf: integrate __arg_ctx feature detector into kernel_supports()Andrii Nakryiko
Now that feature detection code is in bpf-next tree, integrate __arg_ctx kernel-side support into kernel_supports() framework. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240125205510.3642094-2-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-24libbpf: Support BPF token path setting through LIBBPF_BPF_TOKEN_PATH envvarAndrii Nakryiko
To allow external admin authority to override default BPF FS location (/sys/fs/bpf) for implicit BPF token creation, teach libbpf to recognize LIBBPF_BPF_TOKEN_PATH envvar. If it is specified and user application didn't explicitly specify bpf_token_path option, it will be treated exactly like bpf_token_path option, overriding default /sys/fs/bpf location and making BPF token mandatory. Suggested-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20240124022127.2379740-29-andrii@kernel.org
2024-01-24libbpf: Wire up BPF token support at BPF object levelAndrii Nakryiko
Add BPF token support to BPF object-level functionality. BPF token is supported by BPF object logic either as an explicitly provided BPF token from outside (through BPF FS path), or implicitly (unless prevented through bpf_object_open_opts). Implicit mode is assumed to be the most common one for user namespaced unprivileged workloads. The assumption is that privileged container manager sets up default BPF FS mount point at /sys/fs/bpf with BPF token delegation options (delegate_{cmds,maps,progs,attachs} mount options). BPF object during loading will attempt to create BPF token from /sys/fs/bpf location, and pass it for all relevant operations (currently, map creation, BTF load, and program load). In this implicit mode, if BPF token creation fails due to whatever reason (BPF FS is not mounted, or kernel doesn't support BPF token, etc), this is not considered an error. BPF object loading sequence will proceed with no BPF token. In explicit BPF token mode, user provides explicitly custom BPF FS mount point path. In such case, BPF object will attempt to create BPF token from provided BPF FS location. If BPF token creation fails, that is considered a critical error and BPF object load fails with an error. Libbpf provides a way to disable implicit BPF token creation, if it causes any troubles (BPF token is designed to be completely optional and shouldn't cause any problems even if provided, but in the world of BPF LSM, custom security logic can be installed that might change outcome depending on the presence of BPF token). To disable libbpf's default BPF token creation behavior user should provide either invalid BPF token FD (negative), or empty bpf_token_path option. BPF token presence can influence libbpf's feature probing, so if BPF object has associated BPF token, feature probing is instructed to use BPF object-specific feature detection cache and token FD. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20240124022127.2379740-26-andrii@kernel.org
2024-01-24libbpf: Wire up token_fd into feature probing logicAndrii Nakryiko
Adjust feature probing callbacks to take into account optional token_fd. In unprivileged contexts, some feature detectors would fail to detect kernel support just because BPF program, BPF map, or BTF object can't be loaded due to privileged nature of those operations. So when BPF object is loaded with BPF token, this token should be used for feature probing. This patch is setting support for this scenario, but we don't yet pass non-zero token FD. This will be added in the next patch. We also switched BPF cookie detector from using kprobe program to tracepoint one, as tracepoint is somewhat less dangerous BPF program type and has higher likelihood of being allowed through BPF token in the future. This change has no effect on detection behavior. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/20240124022127.2379740-25-andrii@kernel.org
2024-01-24libbpf: Move feature detection code into its own fileAndrii Nakryiko
It's quite a lot of well isolated code, so it seems like a good candidate to move it out of libbpf.c to reduce its size. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/20240124022127.2379740-24-andrii@kernel.org
2024-01-24libbpf: Further decouple feature checking logic from bpf_objectAndrii Nakryiko
Add feat_supported() helper that accepts feature cache instead of bpf_object. This allows low-level code in bpf.c to not know or care about higher-level concept of bpf_object, yet it will be able to utilize custom feature checking in cases where BPF token might influence the outcome. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/20240124022127.2379740-23-andrii@kernel.org
2024-01-24libbpf: Split feature detectors definitions from cached resultsAndrii Nakryiko
Split a list of supported feature detectors with their corresponding callbacks from actual cached supported/missing values. This will allow to have more flexible per-token or per-object feature detectors in subsequent refactorings. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/20240124022127.2379740-22-andrii@kernel.org
2024-01-23libbpf: Find correct module BTFs for struct_ops maps and progs.Kui-Feng Lee
Locate the module BTFs for struct_ops maps and progs and pass them to the kernel. This ensures that the kernel correctly resolves type IDs from the appropriate module BTFs. For the map of a struct_ops object, the FD of the module BTF is set to bpf_map to keep a reference to the module BTF. The FD is passed to the kernel as value_type_btf_obj_fd when the struct_ops object is loaded. For a bpf_struct_ops prog, attach_btf_obj_fd of bpf_prog is the FD of a module BTF in the kernel. Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240119225005.668602-13-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2024-01-23libbpf: Apply map_set_def_max_entries() for inner_maps on creationAndrey Grafin
This patch allows to auto create BPF_MAP_TYPE_ARRAY_OF_MAPS and BPF_MAP_TYPE_HASH_OF_MAPS with values of BPF_MAP_TYPE_PERF_EVENT_ARRAY by bpf_object__load(). Previous behaviour created a zero filled btf_map_def for inner maps and tried to use it for a map creation but the linux kernel forbids to create a BPF_MAP_TYPE_PERF_EVENT_ARRAY map with max_entries=0. Fixes: 646f02ffdd49 ("libbpf: Add BTF-defined map-in-map support") Signed-off-by: Andrey Grafin <conquistador@yandex-team.ru> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Yonghong Song <yonghong.song@linux.dev> Acked-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/bpf/20240117130619.9403-1-conquistador@yandex-team.ru Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-17libbpf: warn on unexpected __arg_ctx type when rewriting BTFAndrii Nakryiko
On kernel that don't support arg:ctx tag, before adjusting global subprog BTF information to match kernel's expected canonical type names, make sure that types used by user are meaningful, and if not, warn and don't do BTF adjustments. This is similar to checks that kernel performs, but narrower in scope, as only a small subset of BPF program types can be accommodated by libbpf using canonical type names. Libbpf unconditionally allows `struct pt_regs *` for perf_event program types, unlike kernel, which supports that conditionally on architecture. This is done to keep things simple and not cause unnecessary false positives. This seems like a minor and harmless deviation, which in real-world programs will be caught by kernels with arg:ctx tag support anyways. So KISS principle. This logic is hard to test (especially on latest kernels), so manual testing was performed instead. Libbpf emitted the following warning for perf_event program with wrong context argument type: libbpf: prog 'arg_tag_ctx_perf': subprog 'subprog_ctx_tag' arg#0 is expected to be of `struct bpf_perf_event_data *` type Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240118033143.3384355-6-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-17libbpf: feature-detect arg:ctx tag support in kernelAndrii Nakryiko
Add feature detector of kernel-side arg:ctx (__arg_ctx) tag support. If this is detected, libbpf will avoid doing any __arg_ctx-related BTF rewriting and checks in favor of letting kernel handle this completely. test_global_funcs/ctx_arg_rewrite subtest is adjusted to do the same feature detection (albeit in much simpler, though round-about and inefficient, way), and skip the tests. This is done to still be able to execute this test on older kernels (like in libbpf CI). Note, BPF token series ([0]) does a major refactor and code moving of libbpf-internal feature detection "framework", so to avoid unnecessary conflicts we keep newly added feature detection stand-alone with ad-hoc result caching. Once things settle, there will be a small follow up to re-integrate everything back and move code into its final place in newly-added (by BPF token series) features.c file. [0] https://patchwork.kernel.org/project/netdevbpf/list/?series=814209&state=* Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240118033143.3384355-2-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03libbpf: implement __arg_ctx fallback logicAndrii Nakryiko
Out of all special global func arg tag annotations, __arg_ctx is practically is the most immediately useful and most critical to have working across multitude kernel version, if possible. This would allow end users to write much simpler code if __arg_ctx semantics worked for older kernels that don't natively understand btf_decl_tag("arg:ctx") in verifier logic. Luckily, it is possible to ensure __arg_ctx works on old kernels through a bit of extra work done by libbpf, at least in a lot of common cases. To explain the overall idea, we need to go back at how context argument was supported in global funcs before __arg_ctx support was added. This was done based on special struct name checks in kernel. E.g., for BPF_PROG_TYPE_PERF_EVENT the expectation is that argument type `struct bpf_perf_event_data *` mark that argument as PTR_TO_CTX. This is all good as long as global function is used from the same BPF program types only, which is often not the case. If the same subprog has to be called from, say, kprobe and perf_event program types, there is no single definition that would satisfy BPF verifier. Subprog will have context argument either for kprobe (if using bpf_user_pt_regs_t struct name) or perf_event (with bpf_perf_event_data struct name), but not both. This limitation was the reason to add btf_decl_tag("arg:ctx"), making the actual argument type not important, so that user can just define "generic" signature: __noinline int global_subprog(void *ctx __arg_ctx) { ... } I won't belabor how libbpf is implementing subprograms, see a huge comment next to bpf_object_relocate_calls() function. The idea is that each main/entry BPF program gets its own copy of global_subprog's code appended. This per-program copy of global subprog code *and* associated func_info .BTF.ext information, pointing to FUNC -> FUNC_PROTO BTF type chain allows libbpf to simulate __arg_ctx behavior transparently, even if the kernel doesn't yet support __arg_ctx annotation natively. The idea is straightforward: each time we append global subprog's code and func_info information, we adjust its FUNC -> FUNC_PROTO type information, if necessary (that is, libbpf can detect the presence of btf_decl_tag("arg:ctx") just like BPF verifier would do it). The rest is just mechanical and somewhat painful BTF manipulation code. It's painful because we need to clone FUNC -> FUNC_PROTO, instead of reusing it, as same FUNC -> FUNC_PROTO chain might be used by another main BPF program within the same BPF object, so we can't just modify it in-place (and cloning BTF types within the same struct btf object is painful due to constant memory invalidation, see comments in code). Uploaded BPF object's BTF information has to work for all BPF programs at the same time. Once we have FUNC -> FUNC_PROTO clones, we make sure that instead of using some `void *ctx` parameter definition, we have an expected `struct bpf_perf_event_data *ctx` definition (as far as BPF verifier and kernel is concerned), which will mark it as context for BPF verifier. Same global subprog relocated and copied into another main BPF program will get different type information according to main program's type. It all works out in the end in a completely transparent way for end user. Libbpf maintains internal program type -> expected context struct name mapping internally. Note, not all BPF program types have named context struct, so this approach won't work for such programs (just like it didn't before __arg_ctx). So native __arg_ctx is still important to have in kernel to have generic context support across all BPF program types. Acked-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240104013847.3875810-8-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03libbpf: move BTF loading step after relocation stepAndrii Nakryiko
With all the preparations in previous patches done we are ready to postpone BTF loading and sanitization step until after all the relocations are performed. Acked-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240104013847.3875810-7-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03libbpf: move exception callbacks assignment logic into relocation stepAndrii Nakryiko
Move the logic of finding and assigning exception callback indices from BTF sanitization step to program relocations step, which seems more logical and will unblock moving BTF loading to after relocation step. Exception callbacks discovery and assignment has no dependency on BTF being loaded into the kernel, it only uses BTF information. It does need to happen before subprogram relocations happen, though. Which is why the split. No functional changes. Acked-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240104013847.3875810-6-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03libbpf: use stable map placeholder FDsAndrii Nakryiko
Move map creation to later during BPF object loading by pre-creating stable placeholder FDs (utilizing memfd_create()). Use dup2() syscall to then atomically make those placeholder FDs point to real kernel BPF map objects. This change allows to delay BPF map creation to after all the BPF program relocations. That, in turn, allows to delay BTF finalization and loading into kernel to after all the relocations as well. We'll take advantage of the latter in subsequent patches to allow libbpf to adjust BTF in a way that helps with BPF global function usage. Clean up a few places where we close map->fd, which now shouldn't happen, because map->fd should be a valid FD regardless of whether map was created or not. Surprisingly and nicely it simplifies a bunch of error handling code. If this change doesn't backfire, I'm tempted to pre-create such stable FDs for other entities (progs, maybe even BTF). We previously did some manipulations to make gen_loader work with fake map FDs, with stable map FDs this hack is not necessary for maps (we still have it for BTF, but I left it as is for now). Acked-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240104013847.3875810-5-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03libbpf: don't rely on map->fd as an indicator of map being createdAndrii Nakryiko
With the upcoming switch to preallocated placeholder FDs for maps, switch various getters/setter away from checking map->fd. Use map_is_created() helper that detect whether BPF map can be modified based on map->obj->loaded state, with special provision for maps set up with bpf_map__reuse_fd(). For backwards compatibility, we take map_is_created() into account in bpf_map__fd() getter as well. This way before bpf_object__load() phase bpf_map__fd() will always return -1, just as before the changes in subsequent patches adding stable map->fd placeholders. We also get rid of all internal uses of bpf_map__fd() getter, as it's more oriented for uses external to libbpf. The above map_is_created() check actually interferes with some of the internal uses, if map FD is fetched through bpf_map__fd(). Acked-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240104013847.3875810-4-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03libbpf: use explicit map reuse flag to skip map creation stepsAndrii Nakryiko
Instead of inferring whether map already point to previously created/pinned BPF map (which user can specify with bpf_map__reuse_fd()) API), use explicit map->reused flag that is set in such case. Acked-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240104013847.3875810-3-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2024-01-03libbpf: make uniform use of btf__fd() accessor inside libbpfAndrii Nakryiko
It makes future grepping and code analysis a bit easier. Acked-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20240104013847.3875810-2-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-21libbpf: Fix NULL pointer dereference in bpf_object__collect_prog_relosMingyi Zhang
An issue occurred while reading an ELF file in libbpf.c during fuzzing: Program received signal SIGSEGV, Segmentation fault. 0x0000000000958e97 in bpf_object.collect_prog_relos () at libbpf.c:4206 4206 in libbpf.c (gdb) bt #0 0x0000000000958e97 in bpf_object.collect_prog_relos () at libbpf.c:4206 #1 0x000000000094f9d6 in bpf_object.collect_relos () at libbpf.c:6706 #2 0x000000000092bef3 in bpf_object_open () at libbpf.c:7437 #3 0x000000000092c046 in bpf_object.open_mem () at libbpf.c:7497 #4 0x0000000000924afa in LLVMFuzzerTestOneInput () at fuzz/bpf-object-fuzzer.c:16 #5 0x000000000060be11 in testblitz_engine::fuzzer::Fuzzer::run_one () #6 0x000000000087ad92 in tracing::span::Span::in_scope () #7 0x00000000006078aa in testblitz_engine::fuzzer::util::walkdir () #8 0x00000000005f3217 in testblitz_engine::entrypoint::main::{{closure}} () #9 0x00000000005f2601 in main () (gdb) scn_data was null at this code(tools/lib/bpf/src/libbpf.c): if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { The scn_data is derived from the code above: scn = elf_sec_by_idx(obj, sec_idx); scn_data = elf_sec_data(obj, scn); relo_sec_name = elf_sec_str(obj, shdr->sh_name); sec_name = elf_sec_name(obj, scn); if (!relo_sec_name || !sec_name)// don't check whether scn_data is NULL return -EINVAL; In certain special scenarios, such as reading a malformed ELF file, it is possible that scn_data may be a null pointer Signed-off-by: Mingyi Zhang <zhangmingyi5@huawei.com> Signed-off-by: Xin Liu <liuxin350@huawei.com> Signed-off-by: Changye Wu <wuchangye@huawei.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20231221033947.154564-1-liuxin350@huawei.com
2023-12-19Revert BPF token-related functionalityAndrii Nakryiko
This patch includes the following revert (one conflicting BPF FS patch and three token patch sets, represented by merge commits): - revert 0f5d5454c723 "Merge branch 'bpf-fs-mount-options-parsing-follow-ups'"; - revert 750e785796bb "bpf: Support uid and gid when mounting bpffs"; - revert 733763285acf "Merge branch 'bpf-token-support-in-libbpf-s-bpf-object'"; - revert c35919dcce28 "Merge branch 'bpf-token-and-bpf-fs-based-delegation'". Link: https://lore.kernel.org/bpf/CAHk-=wg7JuFYwGy=GOMbRCtOL+jwSQsdUaBsRWkDVYbxipbM5A@mail.gmail.com Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
2023-12-13libbpf: support BPF token path setting through LIBBPF_BPF_TOKEN_PATH envvarAndrii Nakryiko
To allow external admin authority to override default BPF FS location (/sys/fs/bpf) for implicit BPF token creation, teach libbpf to recognize LIBBPF_BPF_TOKEN_PATH envvar. If it is specified and user application didn't explicitly specify neither bpf_token_path nor bpf_token_fd option, it will be treated exactly like bpf_token_path option, overriding default /sys/fs/bpf location and making BPF token mandatory. Suggested-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231213190842.3844987-10-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-13libbpf: wire up BPF token support at BPF object levelAndrii Nakryiko
Add BPF token support to BPF object-level functionality. BPF token is supported by BPF object logic either as an explicitly provided BPF token from outside (through BPF FS path or explicit BPF token FD), or implicitly (unless prevented through bpf_object_open_opts). Implicit mode is assumed to be the most common one for user namespaced unprivileged workloads. The assumption is that privileged container manager sets up default BPF FS mount point at /sys/fs/bpf with BPF token delegation options (delegate_{cmds,maps,progs,attachs} mount options). BPF object during loading will attempt to create BPF token from /sys/fs/bpf location, and pass it for all relevant operations (currently, map creation, BTF load, and program load). In this implicit mode, if BPF token creation fails due to whatever reason (BPF FS is not mounted, or kernel doesn't support BPF token, etc), this is not considered an error. BPF object loading sequence will proceed with no BPF token. In explicit BPF token mode, user provides explicitly either custom BPF FS mount point path or creates BPF token on their own and just passes token FD directly. In such case, BPF object will either dup() token FD (to not require caller to hold onto it for entire duration of BPF object lifetime) or will attempt to create BPF token from provided BPF FS location. If BPF token creation fails, that is considered a critical error and BPF object load fails with an error. Libbpf provides a way to disable implicit BPF token creation, if it causes any troubles (BPF token is designed to be completely optional and shouldn't cause any problems even if provided, but in the world of BPF LSM, custom security logic can be installed that might change outcome dependin on the presence of BPF token). To disable libbpf's default BPF token creation behavior user should provide either invalid BPF token FD (negative), or empty bpf_token_path option. BPF token presence can influence libbpf's feature probing, so if BPF object has associated BPF token, feature probing is instructed to use BPF object-specific feature detection cache and token FD. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231213190842.3844987-7-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-13libbpf: wire up token_fd into feature probing logicAndrii Nakryiko
Adjust feature probing callbacks to take into account optional token_fd. In unprivileged contexts, some feature detectors would fail to detect kernel support just because BPF program, BPF map, or BTF object can't be loaded due to privileged nature of those operations. So when BPF object is loaded with BPF token, this token should be used for feature probing. This patch is setting support for this scenario, but we don't yet pass non-zero token FD. This will be added in the next patch. We also switched BPF cookie detector from using kprobe program to tracepoint one, as tracepoint is somewhat less dangerous BPF program type and has higher likelihood of being allowed through BPF token in the future. This change has no effect on detection behavior. Acked-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231213190842.3844987-6-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-13libbpf: move feature detection code into its own fileAndrii Nakryiko
It's quite a lot of well isolated code, so it seems like a good candidate to move it out of libbpf.c to reduce its size. Acked-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231213190842.3844987-5-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-13libbpf: further decouple feature checking logic from bpf_objectAndrii Nakryiko
Add feat_supported() helper that accepts feature cache instead of bpf_object. This allows low-level code in bpf.c to not know or care about higher-level concept of bpf_object, yet it will be able to utilize custom feature checking in cases where BPF token might influence the outcome. Acked-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231213190842.3844987-4-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-13libbpf: split feature detectors definitions from cached resultsAndrii Nakryiko
Split a list of supported feature detectors with their corresponding callbacks from actual cached supported/missing values. This will allow to have more flexible per-token or per-object feature detectors in subsequent refactorings. Acked-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231213190842.3844987-3-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-08bpf: Load vmlinux btf for any struct_ops mapDavid Vernet
In libbpf, when determining whether we need to load vmlinux btf, we're currently (among other things) checking whether there is any struct_ops program present in the object. This works for most realistic struct_ops maps, as a struct_ops map is of course typically composed of one or more struct_ops programs. However, that technically need not be the case. A struct_ops interface could be defined which allows a map to be specified which one or more non-prog fields, and which provides default behavior if no struct_ops progs is actually provided otherwise. For sched_ext, for example, you technically only need to specify the name of the scheduler in the struct_ops map, with the core scheduler logic providing default behavior if no prog is actually specified. If we were to define and try to load such a struct_ops map, we would crash in libbpf when initializing it as obj->btf_vmlinux will be NULL: Reading symbols from minimal... (gdb) r Starting program: minimal_example [Thread debugging using libthread_db enabled] Using host libthread_db library "/usr/lib/libthread_db.so.1". Program received signal SIGSEGV, Segmentation fault. 0x000055555558308c in btf__type_cnt (btf=0x0) at btf.c:612 612 return btf->start_id + btf->nr_types; (gdb) bt type_name=0x5555555d99e3 "sched_ext_ops", kind=4) at btf.c:914 kind=4) at btf.c:942 type=0x7fffffffe558, type_id=0x7fffffffe548, ... data_member=0x7fffffffe568) at libbpf.c:948 kern_btf=0x0) at libbpf.c:1017 at libbpf.c:8059 So as to account for such bare-bones struct_ops maps, let's update obj_needs_vmlinux_btf() to also iterate over an obj's maps and check whether any of them are struct_ops maps. Signed-off-by: David Vernet <void@manifault.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Alan Maguire <alan.maguire@oracle.com> Link: https://lore.kernel.org/bpf/20231208061704.400463-1-void@manifault.com
2023-11-28libbpf: Add st_type argument to elf_resolve_syms_offsets functionJiri Olsa
We need to get offsets for static variables in following changes, so making elf_resolve_syms_offsets to take st_type value as argument and passing it to elf_sym_iter_new. Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Song Liu <song@kernel.org> Link: https://lore.kernel.org/bpf/20231125193130.834322-2-jolsa@kernel.org
2023-10-24libbpf: Add link-based API for netkitDaniel Borkmann
This adds bpf_program__attach_netkit() API to libbpf. Overall it is very similar to tcx. The API looks as following: LIBBPF_API struct bpf_link * bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, const struct bpf_netkit_opts *opts); The struct bpf_netkit_opts is done in similar way as struct bpf_tcx_opts for supporting bpf_mprog control parameters. The attach location for the primary and peer device is derived from the program section "netkit/primary" and "netkit/peer", respectively. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <martin.lau@kernel.org> Link: https://lore.kernel.org/r/20231024214904.29825-4-daniel@iogearbox.net Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-10-11libbpf: Add support for cgroup unix socket address hooksDaan De Meyer
Add the necessary plumbing to hook up the new cgroup unix sockaddr hooks into libbpf. Signed-off-by: Daan De Meyer <daan.j.demeyer@gmail.com> Link: https://lore.kernel.org/r/20231011185113.140426-6-daan.j.demeyer@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>