// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2022 Intel Corporation. #include #include #include #include #include #include #include #include #include #include #include #include #include #define OV02C10_LINK_FREQ_400MHZ 400000000ULL #define OV02C10_MCLK 19200000 #define OV02C10_RGB_DEPTH 10 #define OV02C10_REG_CHIP_ID CCI_REG16(0x300a) #define OV02C10_CHIP_ID 0x5602 #define OV02C10_REG_STREAM_CONTROL CCI_REG8(0x0100) #define OV02C10_REG_HTS CCI_REG16(0x380c) /* vertical-timings from sensor */ #define OV02C10_REG_VTS CCI_REG16(0x380e) #define OV02C10_VTS_MAX 0xffff /* Exposure controls from sensor */ #define OV02C10_REG_EXPOSURE CCI_REG16(0x3501) #define OV02C10_EXPOSURE_MIN 4 #define OV02C10_EXPOSURE_MAX_MARGIN 8 #define OV02C10_EXPOSURE_STEP 1 /* Analog gain controls from sensor */ #define OV02C10_REG_ANALOG_GAIN CCI_REG16(0x3508) #define OV02C10_ANAL_GAIN_MIN 0x10 #define OV02C10_ANAL_GAIN_MAX 0xf8 #define OV02C10_ANAL_GAIN_STEP 1 #define OV02C10_ANAL_GAIN_DEFAULT 0x10 /* Digital gain controls from sensor */ #define OV02C10_REG_DIGITAL_GAIN CCI_REG24(0x350a) #define OV02C10_DGTL_GAIN_MIN 0x0400 #define OV02C10_DGTL_GAIN_MAX 0x3fff #define OV02C10_DGTL_GAIN_STEP 1 #define OV02C10_DGTL_GAIN_DEFAULT 0x0400 /* Rotate */ #define OV02C10_ROTATE_CONTROL CCI_REG8(0x3820) #define OV02C10_ISP_X_WIN_CONTROL CCI_REG16(0x3810) #define OV02C10_ISP_Y_WIN_CONTROL CCI_REG16(0x3812) #define OV02C10_CONFIG_ROTATE 0x18 /* Test Pattern Control */ #define OV02C10_REG_TEST_PATTERN CCI_REG8(0x4503) #define OV02C10_TEST_PATTERN_ENABLE BIT(7) struct ov02c10_mode { /* Frame width in pixels */ u32 width; /* Frame height in pixels */ u32 height; /* Horizontal timining size */ u32 hts; /* Min vertical timining size */ u32 vts_min; /* Sensor register settings for this resolution */ const struct reg_sequence *reg_sequence; const int sequence_length; /* Sensor register settings for 1 or 2 lane config */ const struct reg_sequence *lane_settings[2]; const int lane_settings_length[2]; }; static const struct reg_sequence sensor_1928x1092_30fps_setting[] = { {0x0301, 0x08}, {0x0303, 0x06}, {0x0304, 0x01}, {0x0305, 0xe0}, {0x0313, 0x40}, {0x031c, 0x4f}, {0x3020, 0x97}, {0x3022, 0x01}, {0x3026, 0xb4}, {0x303b, 0x00}, {0x303c, 0x4f}, {0x303d, 0xe6}, {0x303e, 0x00}, {0x303f, 0x03}, {0x3021, 0x23}, {0x3501, 0x04}, {0x3502, 0x6c}, {0x3504, 0x0c}, {0x3507, 0x00}, {0x3508, 0x08}, {0x3509, 0x00}, {0x350a, 0x01}, {0x350b, 0x00}, {0x350c, 0x41}, {0x3600, 0x84}, {0x3603, 0x08}, {0x3610, 0x57}, {0x3611, 0x1b}, {0x3613, 0x78}, {0x3623, 0x00}, {0x3632, 0xa0}, {0x3642, 0xe8}, {0x364c, 0x70}, {0x365f, 0x0f}, {0x3708, 0x30}, {0x3714, 0x24}, {0x3725, 0x02}, {0x3737, 0x08}, {0x3739, 0x28}, {0x3749, 0x32}, {0x374a, 0x32}, {0x374b, 0x32}, {0x374c, 0x32}, {0x374d, 0x81}, {0x374e, 0x81}, {0x374f, 0x81}, {0x3752, 0x36}, {0x3753, 0x36}, {0x3754, 0x36}, {0x3761, 0x00}, {0x376c, 0x81}, {0x3774, 0x18}, {0x3776, 0x08}, {0x377c, 0x81}, {0x377d, 0x81}, {0x377e, 0x81}, {0x37a0, 0x44}, {0x37a6, 0x44}, {0x37aa, 0x0d}, {0x37ae, 0x00}, {0x37cb, 0x03}, {0x37cc, 0x01}, {0x37d8, 0x02}, {0x37d9, 0x10}, {0x37e1, 0x10}, {0x37e2, 0x18}, {0x37e3, 0x08}, {0x37e4, 0x08}, {0x37e5, 0x02}, {0x37e6, 0x08}, /* 1928x1092 */ {0x3800, 0x00}, {0x3801, 0x00}, {0x3802, 0x00}, {0x3803, 0x00}, {0x3804, 0x07}, {0x3805, 0x8f}, {0x3806, 0x04}, {0x3807, 0x47}, {0x3808, 0x07}, {0x3809, 0x88}, {0x380a, 0x04}, {0x380b, 0x44}, {0x3810, 0x00}, {0x3811, 0x02}, {0x3812, 0x00}, {0x3813, 0x02}, {0x3814, 0x01}, {0x3815, 0x01}, {0x3816, 0x01}, {0x3817, 0x01}, {0x3820, 0xb0}, {0x3821, 0x00}, {0x3822, 0x80}, {0x3823, 0x08}, {0x3824, 0x00}, {0x3825, 0x20}, {0x3826, 0x00}, {0x3827, 0x08}, {0x382a, 0x00}, {0x382b, 0x08}, {0x382d, 0x00}, {0x382e, 0x00}, {0x382f, 0x23}, {0x3834, 0x00}, {0x3839, 0x00}, {0x383a, 0xd1}, {0x383e, 0x03}, {0x393d, 0x29}, {0x393f, 0x6e}, {0x394b, 0x06}, {0x394c, 0x06}, {0x394d, 0x08}, {0x394f, 0x01}, {0x3950, 0x01}, {0x3951, 0x01}, {0x3952, 0x01}, {0x3953, 0x01}, {0x3954, 0x01}, {0x3955, 0x01}, {0x3956, 0x01}, {0x3957, 0x0e}, {0x3958, 0x08}, {0x3959, 0x08}, {0x395a, 0x08}, {0x395b, 0x13}, {0x395c, 0x09}, {0x395d, 0x05}, {0x395e, 0x02}, {0x395f, 0x00}, {0x395f, 0x00}, {0x3960, 0x00}, {0x3961, 0x00}, {0x3962, 0x00}, {0x3963, 0x00}, {0x3964, 0x00}, {0x3965, 0x00}, {0x3966, 0x00}, {0x3967, 0x00}, {0x3968, 0x01}, {0x3969, 0x01}, {0x396a, 0x01}, {0x396b, 0x01}, {0x396c, 0x10}, {0x396d, 0xf0}, {0x396e, 0x11}, {0x396f, 0x00}, {0x3970, 0x37}, {0x3971, 0x37}, {0x3972, 0x37}, {0x3973, 0x37}, {0x3974, 0x00}, {0x3975, 0x3c}, {0x3976, 0x3c}, {0x3977, 0x3c}, {0x3978, 0x3c}, {0x3c00, 0x0f}, {0x3c20, 0x01}, {0x3c21, 0x08}, {0x3f00, 0x8b}, {0x3f02, 0x0f}, {0x4000, 0xc3}, {0x4001, 0xe0}, {0x4002, 0x00}, {0x4003, 0x40}, {0x4008, 0x04}, {0x4009, 0x23}, {0x400a, 0x04}, {0x400b, 0x01}, {0x4077, 0x06}, {0x4078, 0x00}, {0x4079, 0x1a}, {0x407a, 0x7f}, {0x407b, 0x01}, {0x4080, 0x03}, {0x4081, 0x84}, {0x4308, 0x03}, {0x4309, 0xff}, {0x430d, 0x00}, {0x4806, 0x00}, {0x4813, 0x00}, {0x4837, 0x10}, {0x4857, 0x05}, {0x4500, 0x07}, {0x4501, 0x00}, {0x4503, 0x00}, {0x450a, 0x04}, {0x450e, 0x00}, {0x450f, 0x00}, {0x4900, 0x00}, {0x4901, 0x00}, {0x4902, 0x01}, {0x5001, 0x50}, {0x5006, 0x00}, {0x5080, 0x40}, {0x5181, 0x2b}, {0x5202, 0xa3}, {0x5206, 0x01}, {0x5207, 0x00}, {0x520a, 0x01}, {0x520b, 0x00}, {0x365d, 0x00}, {0x4815, 0x40}, {0x4816, 0x12}, {0x4f00, 0x01}, }; static const struct reg_sequence sensor_1928x1092_30fps_1lane_setting[] = { {0x301b, 0xd2}, {0x3027, 0xe1}, {0x380c, 0x08}, {0x380d, 0xe8}, {0x380e, 0x04}, {0x380f, 0x8c}, {0x394e, 0x0b}, {0x4800, 0x24}, {0x5000, 0xf5}, /* plls */ {0x0303, 0x05}, {0x0305, 0x90}, {0x0316, 0x90}, {0x3016, 0x12}, }; static const struct reg_sequence sensor_1928x1092_30fps_2lane_setting[] = { {0x301b, 0xf0}, {0x3027, 0xf1}, {0x380c, 0x04}, {0x380d, 0x74}, {0x380e, 0x09}, {0x380f, 0x18}, {0x394e, 0x0a}, {0x4041, 0x20}, {0x4884, 0x04}, {0x4800, 0x64}, {0x4d00, 0x03}, {0x4d01, 0xd8}, {0x4d02, 0xba}, {0x4d03, 0xa0}, {0x4d04, 0xb7}, {0x4d05, 0x34}, {0x4d0d, 0x00}, {0x5000, 0xfd}, {0x481f, 0x30}, /* plls */ {0x0303, 0x05}, {0x0305, 0x90}, {0x0316, 0x90}, {0x3016, 0x32}, }; static const char * const ov02c10_test_pattern_menu[] = { "Disabled", "Color Bar", "Top-Bottom Darker Color Bar", "Right-Left Darker Color Bar", "Color Bar type 4", }; static const s64 link_freq_menu_items[] = { OV02C10_LINK_FREQ_400MHZ, }; static const struct ov02c10_mode supported_modes[] = { { .width = 1928, .height = 1092, .hts = 2280, .vts_min = 1164, .reg_sequence = sensor_1928x1092_30fps_setting, .sequence_length = ARRAY_SIZE(sensor_1928x1092_30fps_setting), .lane_settings = { sensor_1928x1092_30fps_1lane_setting, sensor_1928x1092_30fps_2lane_setting }, .lane_settings_length = { ARRAY_SIZE(sensor_1928x1092_30fps_1lane_setting), ARRAY_SIZE(sensor_1928x1092_30fps_2lane_setting), }, }, }; static const char * const ov02c10_supply_names[] = { "dovdd", /* Digital I/O power */ "avdd", /* Analog power */ "dvdd", /* Digital core power */ }; struct ov02c10 { struct v4l2_subdev sd; struct media_pad pad; struct v4l2_ctrl_handler ctrl_handler; struct regmap *regmap; /* V4L2 Controls */ struct v4l2_ctrl *link_freq; struct v4l2_ctrl *pixel_rate; struct v4l2_ctrl *vblank; struct v4l2_ctrl *hblank; struct v4l2_ctrl *exposure; struct clk *img_clk; struct gpio_desc *reset; struct regulator_bulk_data supplies[ARRAY_SIZE(ov02c10_supply_names)]; /* MIPI lane info */ u32 link_freq_index; u8 mipi_lanes; }; static inline struct ov02c10 *to_ov02c10(struct v4l2_subdev *subdev) { return container_of(subdev, struct ov02c10, sd); } static int ov02c10_test_pattern(struct ov02c10 *ov02c10, int pattern) { int ret = 0; if (!pattern) return cci_update_bits(ov02c10->regmap, OV02C10_REG_TEST_PATTERN, BIT(7), 0, NULL); cci_update_bits(ov02c10->regmap, OV02C10_REG_TEST_PATTERN, 0x03, pattern - 1, &ret); cci_update_bits(ov02c10->regmap, OV02C10_REG_TEST_PATTERN, BIT(7), OV02C10_TEST_PATTERN_ENABLE, &ret); return ret; } static int ov02c10_set_ctrl(struct v4l2_ctrl *ctrl) { struct ov02c10 *ov02c10 = container_of(ctrl->handler, struct ov02c10, ctrl_handler); struct i2c_client *client = v4l2_get_subdevdata(&ov02c10->sd); const u32 height = supported_modes[0].height; s64 exposure_max; int ret = 0; /* Propagate change of current control to all related controls */ if (ctrl->id == V4L2_CID_VBLANK) { /* Update max exposure while meeting expected vblanking */ exposure_max = height + ctrl->val - OV02C10_EXPOSURE_MAX_MARGIN; __v4l2_ctrl_modify_range(ov02c10->exposure, ov02c10->exposure->minimum, exposure_max, ov02c10->exposure->step, exposure_max); } /* V4L2 controls values will be applied only when power is already up */ if (!pm_runtime_get_if_in_use(&client->dev)) return 0; switch (ctrl->id) { case V4L2_CID_ANALOGUE_GAIN: cci_write(ov02c10->regmap, OV02C10_REG_ANALOG_GAIN, ctrl->val << 4, &ret); break; case V4L2_CID_DIGITAL_GAIN: cci_write(ov02c10->regmap, OV02C10_REG_DIGITAL_GAIN, ctrl->val << 6, &ret); break; case V4L2_CID_EXPOSURE: cci_write(ov02c10->regmap, OV02C10_REG_EXPOSURE, ctrl->val, &ret); break; case V4L2_CID_VBLANK: cci_write(ov02c10->regmap, OV02C10_REG_VTS, height + ctrl->val, &ret); break; case V4L2_CID_TEST_PATTERN: ret = ov02c10_test_pattern(ov02c10, ctrl->val); break; default: ret = -EINVAL; break; } pm_runtime_put(&client->dev); return ret; } static const struct v4l2_ctrl_ops ov02c10_ctrl_ops = { .s_ctrl = ov02c10_set_ctrl, }; static int ov02c10_init_controls(struct ov02c10 *ov02c10) { struct i2c_client *client = v4l2_get_subdevdata(&ov02c10->sd); struct v4l2_ctrl_handler *ctrl_hdlr = &ov02c10->ctrl_handler; const struct ov02c10_mode *mode = &supported_modes[0]; u32 vblank_min, vblank_max, vblank_default, vts_def; struct v4l2_fwnode_device_properties props; s64 exposure_max, h_blank, pixel_rate; int ret; v4l2_ctrl_handler_init(ctrl_hdlr, 10); ov02c10->link_freq = v4l2_ctrl_new_int_menu(ctrl_hdlr, &ov02c10_ctrl_ops, V4L2_CID_LINK_FREQ, ov02c10->link_freq_index, 0, link_freq_menu_items); if (ov02c10->link_freq) ov02c10->link_freq->flags |= V4L2_CTRL_FLAG_READ_ONLY; /* MIPI lanes are DDR -> use link-freq * 2 */ pixel_rate = div_u64(link_freq_menu_items[ov02c10->link_freq_index] * 2 * ov02c10->mipi_lanes, OV02C10_RGB_DEPTH); ov02c10->pixel_rate = v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops, V4L2_CID_PIXEL_RATE, 0, pixel_rate, 1, pixel_rate); /* * For default multiple min by number of lanes to keep the default * FPS the same indepenedent of the lane count. */ vts_def = mode->vts_min * ov02c10->mipi_lanes; vblank_min = mode->vts_min - mode->height; vblank_max = OV02C10_VTS_MAX - mode->height; vblank_default = vts_def - mode->height; ov02c10->vblank = v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops, V4L2_CID_VBLANK, vblank_min, vblank_max, 1, vblank_default); h_blank = mode->hts - mode->width; ov02c10->hblank = v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops, V4L2_CID_HBLANK, h_blank, h_blank, 1, h_blank); if (ov02c10->hblank) ov02c10->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY; v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops, V4L2_CID_ANALOGUE_GAIN, OV02C10_ANAL_GAIN_MIN, OV02C10_ANAL_GAIN_MAX, OV02C10_ANAL_GAIN_STEP, OV02C10_ANAL_GAIN_DEFAULT); v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops, V4L2_CID_DIGITAL_GAIN, OV02C10_DGTL_GAIN_MIN, OV02C10_DGTL_GAIN_MAX, OV02C10_DGTL_GAIN_STEP, OV02C10_DGTL_GAIN_DEFAULT); exposure_max = vts_def - OV02C10_EXPOSURE_MAX_MARGIN; ov02c10->exposure = v4l2_ctrl_new_std(ctrl_hdlr, &ov02c10_ctrl_ops, V4L2_CID_EXPOSURE, OV02C10_EXPOSURE_MIN, exposure_max, OV02C10_EXPOSURE_STEP, exposure_max); v4l2_ctrl_new_std_menu_items(ctrl_hdlr, &ov02c10_ctrl_ops, V4L2_CID_TEST_PATTERN, ARRAY_SIZE(ov02c10_test_pattern_menu) - 1, 0, 0, ov02c10_test_pattern_menu); ret = v4l2_fwnode_device_parse(&client->dev, &props); if (ret) return ret; v4l2_ctrl_new_fwnode_properties(ctrl_hdlr, &ov02c10_ctrl_ops, &props); if (ctrl_hdlr->error) return ctrl_hdlr->error; ov02c10->sd.ctrl_handler = ctrl_hdlr; return 0; } static void ov02c10_update_pad_format(const struct ov02c10_mode *mode, struct v4l2_mbus_framefmt *fmt) { fmt->width = mode->width; fmt->height = mode->height; fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10; fmt->field = V4L2_FIELD_NONE; } static int ov02c10_enable_streams(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, u32 pad, u64 streams_mask) { const struct ov02c10_mode *mode = &supported_modes[0]; struct i2c_client *client = v4l2_get_subdevdata(sd); struct ov02c10 *ov02c10 = to_ov02c10(sd); const struct reg_sequence *reg_sequence; int ret, sequence_length; ret = pm_runtime_resume_and_get(&client->dev); if (ret) return ret; reg_sequence = mode->reg_sequence; sequence_length = mode->sequence_length; ret = regmap_multi_reg_write(ov02c10->regmap, reg_sequence, sequence_length); if (ret) { dev_err(&client->dev, "failed to set mode\n"); goto out; } reg_sequence = mode->lane_settings[ov02c10->mipi_lanes - 1]; sequence_length = mode->lane_settings_length[ov02c10->mipi_lanes - 1]; ret = regmap_multi_reg_write(ov02c10->regmap, reg_sequence, sequence_length); if (ret) { dev_err(&client->dev, "failed to write lane settings\n"); goto out; } ret = __v4l2_ctrl_handler_setup(ov02c10->sd.ctrl_handler); if (ret) goto out; ret = cci_write(ov02c10->regmap, OV02C10_REG_STREAM_CONTROL, 1, NULL); out: if (ret) pm_runtime_put(&client->dev); return ret; } static int ov02c10_disable_streams(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, u32 pad, u64 streams_mask) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct ov02c10 *ov02c10 = to_ov02c10(sd); cci_write(ov02c10->regmap, OV02C10_REG_STREAM_CONTROL, 0, NULL); pm_runtime_put(&client->dev); return 0; } /* This function tries to get power control resources */ static int ov02c10_get_pm_resources(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct ov02c10 *ov02c10 = to_ov02c10(sd); int i; ov02c10->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(ov02c10->reset)) return dev_err_probe(dev, PTR_ERR(ov02c10->reset), "failed to get reset gpio\n"); for (i = 0; i < ARRAY_SIZE(ov02c10_supply_names); i++) ov02c10->supplies[i].supply = ov02c10_supply_names[i]; return devm_regulator_bulk_get(dev, ARRAY_SIZE(ov02c10_supply_names), ov02c10->supplies); } static int ov02c10_power_off(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct ov02c10 *ov02c10 = to_ov02c10(sd); gpiod_set_value_cansleep(ov02c10->reset, 1); regulator_bulk_disable(ARRAY_SIZE(ov02c10_supply_names), ov02c10->supplies); clk_disable_unprepare(ov02c10->img_clk); return 0; } static int ov02c10_power_on(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct ov02c10 *ov02c10 = to_ov02c10(sd); int ret; ret = clk_prepare_enable(ov02c10->img_clk); if (ret < 0) { dev_err(dev, "failed to enable imaging clock: %d", ret); return ret; } ret = regulator_bulk_enable(ARRAY_SIZE(ov02c10_supply_names), ov02c10->supplies); if (ret < 0) { dev_err(dev, "failed to enable regulators: %d", ret); clk_disable_unprepare(ov02c10->img_clk); return ret; } if (ov02c10->reset) { /* Assert reset for at least 2ms on back to back off-on */ usleep_range(2000, 2200); gpiod_set_value_cansleep(ov02c10->reset, 0); usleep_range(5000, 5100); } return 0; } static int ov02c10_set_format(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { const struct ov02c10_mode *mode = &supported_modes[0]; struct ov02c10 *ov02c10 = to_ov02c10(sd); s32 vblank_def, h_blank; ov02c10_update_pad_format(mode, &fmt->format); *v4l2_subdev_state_get_format(sd_state, fmt->pad) = fmt->format; if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) return 0; /* Update limits and set FPS to default */ vblank_def = mode->vts_min * ov02c10->mipi_lanes - mode->height; __v4l2_ctrl_modify_range(ov02c10->vblank, mode->vts_min - mode->height, OV02C10_VTS_MAX - mode->height, 1, vblank_def); __v4l2_ctrl_s_ctrl(ov02c10->vblank, vblank_def); h_blank = mode->hts - mode->width; __v4l2_ctrl_modify_range(ov02c10->hblank, h_blank, h_blank, 1, h_blank); return 0; } static int ov02c10_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { if (code->index > 0) return -EINVAL; code->code = MEDIA_BUS_FMT_SGRBG10_1X10; return 0; } static int ov02c10_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) { if (fse->index >= ARRAY_SIZE(supported_modes)) return -EINVAL; if (fse->code != MEDIA_BUS_FMT_SGRBG10_1X10) return -EINVAL; fse->min_width = supported_modes[fse->index].width; fse->max_width = fse->min_width; fse->min_height = supported_modes[fse->index].height; fse->max_height = fse->min_height; return 0; } static int ov02c10_init_state(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state) { ov02c10_update_pad_format(&supported_modes[0], v4l2_subdev_state_get_format(sd_state, 0)); return 0; } static const struct v4l2_subdev_video_ops ov02c10_video_ops = { .s_stream = v4l2_subdev_s_stream_helper, }; static const struct v4l2_subdev_pad_ops ov02c10_pad_ops = { .set_fmt = ov02c10_set_format, .get_fmt = v4l2_subdev_get_fmt, .enum_mbus_code = ov02c10_enum_mbus_code, .enum_frame_size = ov02c10_enum_frame_size, .enable_streams = ov02c10_enable_streams, .disable_streams = ov02c10_disable_streams, }; static const struct v4l2_subdev_ops ov02c10_subdev_ops = { .video = &ov02c10_video_ops, .pad = &ov02c10_pad_ops, }; static const struct media_entity_operations ov02c10_subdev_entity_ops = { .link_validate = v4l2_subdev_link_validate, }; static const struct v4l2_subdev_internal_ops ov02c10_internal_ops = { .init_state = ov02c10_init_state, }; static int ov02c10_identify_module(struct ov02c10 *ov02c10) { struct i2c_client *client = v4l2_get_subdevdata(&ov02c10->sd); u64 chip_id; int ret; ret = cci_read(ov02c10->regmap, OV02C10_REG_CHIP_ID, &chip_id, NULL); if (ret) return ret; if (chip_id != OV02C10_CHIP_ID) { dev_err(&client->dev, "chip id mismatch: %x!=%llx", OV02C10_CHIP_ID, chip_id); return -ENXIO; } return 0; } static int ov02c10_check_hwcfg(struct device *dev, struct ov02c10 *ov02c10) { struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_CSI2_DPHY }; struct fwnode_handle *ep, *fwnode = dev_fwnode(dev); unsigned long link_freq_bitmap; u32 mclk; int ret; /* * Sometimes the fwnode graph is initialized by the bridge driver, * wait for this. */ ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0, 0); if (!ep) return dev_err_probe(dev, -EPROBE_DEFER, "waiting for fwnode graph endpoint\n"); ov02c10->img_clk = devm_clk_get_optional(dev, NULL); if (IS_ERR(ov02c10->img_clk)) { fwnode_handle_put(ep); return dev_err_probe(dev, PTR_ERR(ov02c10->img_clk), "failed to get imaging clock\n"); } if (ov02c10->img_clk) { mclk = clk_get_rate(ov02c10->img_clk); } else { ret = fwnode_property_read_u32(fwnode, "clock-frequency", &mclk); if (ret) { fwnode_handle_put(ep); return dev_err_probe(dev, ret, "reading clock-frequency property\n"); } } if (mclk != OV02C10_MCLK) { fwnode_handle_put(ep); return dev_err_probe(dev, -EINVAL, "external clock %u is not supported\n", mclk); } ret = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg); fwnode_handle_put(ep); if (ret) return dev_err_probe(dev, ret, "parsing endpoint failed\n"); ret = v4l2_link_freq_to_bitmap(dev, bus_cfg.link_frequencies, bus_cfg.nr_of_link_frequencies, link_freq_menu_items, ARRAY_SIZE(link_freq_menu_items), &link_freq_bitmap); if (ret) goto check_hwcfg_error; /* v4l2_link_freq_to_bitmap() guarantees at least 1 bit is set */ ov02c10->link_freq_index = ffs(link_freq_bitmap) - 1; if (bus_cfg.bus.mipi_csi2.num_data_lanes != 1 && bus_cfg.bus.mipi_csi2.num_data_lanes != 2) { ret = dev_err_probe(dev, -EINVAL, "number of CSI2 data lanes %u is not supported\n", bus_cfg.bus.mipi_csi2.num_data_lanes); goto check_hwcfg_error; } ov02c10->mipi_lanes = bus_cfg.bus.mipi_csi2.num_data_lanes; check_hwcfg_error: v4l2_fwnode_endpoint_free(&bus_cfg); return ret; } static void ov02c10_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); v4l2_async_unregister_subdev(sd); v4l2_subdev_cleanup(sd); media_entity_cleanup(&sd->entity); v4l2_ctrl_handler_free(sd->ctrl_handler); pm_runtime_disable(&client->dev); if (!pm_runtime_status_suspended(&client->dev)) { ov02c10_power_off(&client->dev); pm_runtime_set_suspended(&client->dev); } } static int ov02c10_probe(struct i2c_client *client) { struct ov02c10 *ov02c10; int ret; ov02c10 = devm_kzalloc(&client->dev, sizeof(*ov02c10), GFP_KERNEL); if (!ov02c10) return -ENOMEM; v4l2_i2c_subdev_init(&ov02c10->sd, client, &ov02c10_subdev_ops); /* Check HW config */ ret = ov02c10_check_hwcfg(&client->dev, ov02c10); if (ret) return ret; ret = ov02c10_get_pm_resources(&client->dev); if (ret) return ret; ov02c10->regmap = devm_cci_regmap_init_i2c(client, 16); if (IS_ERR(ov02c10->regmap)) return PTR_ERR(ov02c10->regmap); ret = ov02c10_power_on(&client->dev); if (ret) { dev_err_probe(&client->dev, ret, "failed to power on\n"); return ret; } ret = ov02c10_identify_module(ov02c10); if (ret) { dev_err(&client->dev, "failed to find sensor: %d", ret); goto probe_error_power_off; } ret = ov02c10_init_controls(ov02c10); if (ret) { dev_err(&client->dev, "failed to init controls: %d", ret); goto probe_error_v4l2_ctrl_handler_free; } ov02c10->sd.internal_ops = &ov02c10_internal_ops; ov02c10->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; ov02c10->sd.entity.ops = &ov02c10_subdev_entity_ops; ov02c10->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; ov02c10->pad.flags = MEDIA_PAD_FL_SOURCE; ret = media_entity_pads_init(&ov02c10->sd.entity, 1, &ov02c10->pad); if (ret) { dev_err(&client->dev, "failed to init entity pads: %d", ret); goto probe_error_v4l2_ctrl_handler_free; } ov02c10->sd.state_lock = ov02c10->ctrl_handler.lock; ret = v4l2_subdev_init_finalize(&ov02c10->sd); if (ret < 0) { dev_err(&client->dev, "failed to init subdev: %d", ret); goto probe_error_media_entity_cleanup; } pm_runtime_set_active(&client->dev); pm_runtime_enable(&client->dev); ret = v4l2_async_register_subdev_sensor(&ov02c10->sd); if (ret < 0) { dev_err(&client->dev, "failed to register V4L2 subdev: %d", ret); goto probe_error_v4l2_subdev_cleanup; } pm_runtime_idle(&client->dev); return 0; probe_error_v4l2_subdev_cleanup: pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); v4l2_subdev_cleanup(&ov02c10->sd); probe_error_media_entity_cleanup: media_entity_cleanup(&ov02c10->sd.entity); probe_error_v4l2_ctrl_handler_free: v4l2_ctrl_handler_free(ov02c10->sd.ctrl_handler); probe_error_power_off: ov02c10_power_off(&client->dev); return ret; } static DEFINE_RUNTIME_DEV_PM_OPS(ov02c10_pm_ops, ov02c10_power_off, ov02c10_power_on, NULL); #ifdef CONFIG_ACPI static const struct acpi_device_id ov02c10_acpi_ids[] = { { "OVTI02C1" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(acpi, ov02c10_acpi_ids); #endif static const struct of_device_id ov02c10_of_match[] = { { .compatible = "ovti,ov02c10" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, ov02c10_of_match); static struct i2c_driver ov02c10_i2c_driver = { .driver = { .name = "ov02c10", .pm = pm_sleep_ptr(&ov02c10_pm_ops), .acpi_match_table = ACPI_PTR(ov02c10_acpi_ids), .of_match_table = ov02c10_of_match, }, .probe = ov02c10_probe, .remove = ov02c10_remove, }; module_i2c_driver(ov02c10_i2c_driver); MODULE_AUTHOR("Hao Yao "); MODULE_AUTHOR("Heimir Thor Sverrisson "); MODULE_AUTHOR("Hans de Goede "); MODULE_DESCRIPTION("OmniVision OV02C10 sensor driver"); MODULE_LICENSE("GPL");