// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2022 Markus Gothe * Copyright 2025 Christian Marangi * * Limitations: * - Only 8 concurrent waveform generators are available for 8 combinations of * duty_cycle and period. Waveform generators are shared between 16 GPIO * pins and 17 SIPO GPIO pins. * - Supports only normal polarity. * - On configuration the currently running period is completed. * - Minimum supported period is 4 ms * - Maximum supported period is 1s */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define AIROHA_PWM_REG_SGPIO_LED_DATA 0x0024 #define AIROHA_PWM_SGPIO_LED_DATA_SHIFT_FLAG BIT(31) #define AIROHA_PWM_SGPIO_LED_DATA_DATA GENMASK(16, 0) #define AIROHA_PWM_REG_SGPIO_CLK_DIVR 0x0028 #define AIROHA_PWM_SGPIO_CLK_DIVR GENMASK(1, 0) #define AIROHA_PWM_SGPIO_CLK_DIVR_32 FIELD_PREP_CONST(AIROHA_PWM_SGPIO_CLK_DIVR, 3) #define AIROHA_PWM_SGPIO_CLK_DIVR_16 FIELD_PREP_CONST(AIROHA_PWM_SGPIO_CLK_DIVR, 2) #define AIROHA_PWM_SGPIO_CLK_DIVR_8 FIELD_PREP_CONST(AIROHA_PWM_SGPIO_CLK_DIVR, 1) #define AIROHA_PWM_SGPIO_CLK_DIVR_4 FIELD_PREP_CONST(AIROHA_PWM_SGPIO_CLK_DIVR, 0) #define AIROHA_PWM_REG_SGPIO_CLK_DLY 0x002c #define AIROHA_PWM_REG_SIPO_FLASH_MODE_CFG 0x0030 #define AIROHA_PWM_SERIAL_GPIO_FLASH_MODE BIT(1) #define AIROHA_PWM_SERIAL_GPIO_MODE_74HC164 BIT(0) #define AIROHA_PWM_REG_GPIO_FLASH_PRD_SET(_n) (0x003c + (4 * (_n))) #define AIROHA_PWM_REG_GPIO_FLASH_PRD_SHIFT(_n) (16 * (_n)) #define AIROHA_PWM_GPIO_FLASH_PRD_LOW GENMASK(15, 8) #define AIROHA_PWM_GPIO_FLASH_PRD_HIGH GENMASK(7, 0) #define AIROHA_PWM_REG_GPIO_FLASH_MAP(_n) (0x004c + (4 * (_n))) #define AIROHA_PWM_REG_GPIO_FLASH_MAP_SHIFT(_n) (4 * (_n)) #define AIROHA_PWM_GPIO_FLASH_EN BIT(3) #define AIROHA_PWM_GPIO_FLASH_SET_ID GENMASK(2, 0) /* Register map is equal to GPIO flash map */ #define AIROHA_PWM_REG_SIPO_FLASH_MAP(_n) (0x0054 + (4 * (_n))) #define AIROHA_PWM_REG_CYCLE_CFG_VALUE(_n) (0x0098 + (4 * (_n))) #define AIROHA_PWM_REG_CYCLE_CFG_SHIFT(_n) (8 * (_n)) #define AIROHA_PWM_WAVE_GEN_CYCLE GENMASK(7, 0) /* GPIO/SIPO flash map handles 8 pins in one register */ #define AIROHA_PWM_PINS_PER_FLASH_MAP 8 /* Cycle(Period) registers handles 4 generators in one 32-bit register */ #define AIROHA_PWM_BUCKET_PER_CYCLE_CFG 4 /* Flash(Duty) producer handles 2 generators in one 32-bit register */ #define AIROHA_PWM_BUCKET_PER_FLASH_PROD 2 #define AIROHA_PWM_NUM_BUCKETS 8 /* * The first 16 GPIO pins, GPIO0-GPIO15, are mapped into 16 PWM channels, 0-15. * The SIPO GPIO pins are 17 pins which are mapped into 17 PWM channels, 16-32. * However, we've only got 8 concurrent waveform generators and can therefore * only use up to 8 different combinations of duty cycle and period at a time. */ #define AIROHA_PWM_NUM_GPIO 16 #define AIROHA_PWM_NUM_SIPO 17 #define AIROHA_PWM_MAX_CHANNELS (AIROHA_PWM_NUM_GPIO + AIROHA_PWM_NUM_SIPO) struct airoha_pwm_bucket { /* Concurrent access protected by PWM core */ int used; u32 period_ticks; u32 duty_ticks; }; struct airoha_pwm { struct regmap *regmap; DECLARE_BITMAP(initialized, AIROHA_PWM_MAX_CHANNELS); struct airoha_pwm_bucket buckets[AIROHA_PWM_NUM_BUCKETS]; /* Cache bucket used by each pwm channel */ u8 channel_bucket[AIROHA_PWM_MAX_CHANNELS]; }; /* The PWM hardware supports periods between 4 ms and 1 s */ #define AIROHA_PWM_PERIOD_TICK_NS (4 * NSEC_PER_MSEC) #define AIROHA_PWM_PERIOD_MAX_NS (1 * NSEC_PER_SEC) /* It is represented internally as 1/250 s between 1 and 250. Unit is ticks. */ #define AIROHA_PWM_PERIOD_MIN 1 #define AIROHA_PWM_PERIOD_MAX 250 /* Duty cycle is relative with 255 corresponding to 100% */ #define AIROHA_PWM_DUTY_FULL 255 static void airoha_pwm_get_flash_map_addr_and_shift(unsigned int hwpwm, u32 *addr, u32 *shift) { unsigned int offset, hwpwm_bit; if (hwpwm >= AIROHA_PWM_NUM_GPIO) { unsigned int sipohwpwm = hwpwm - AIROHA_PWM_NUM_GPIO; offset = sipohwpwm / AIROHA_PWM_PINS_PER_FLASH_MAP; hwpwm_bit = sipohwpwm % AIROHA_PWM_PINS_PER_FLASH_MAP; /* One FLASH_MAP register handles 8 pins */ *shift = AIROHA_PWM_REG_GPIO_FLASH_MAP_SHIFT(hwpwm_bit); *addr = AIROHA_PWM_REG_SIPO_FLASH_MAP(offset); } else { offset = hwpwm / AIROHA_PWM_PINS_PER_FLASH_MAP; hwpwm_bit = hwpwm % AIROHA_PWM_PINS_PER_FLASH_MAP; /* One FLASH_MAP register handles 8 pins */ *shift = AIROHA_PWM_REG_GPIO_FLASH_MAP_SHIFT(hwpwm_bit); *addr = AIROHA_PWM_REG_GPIO_FLASH_MAP(offset); } } static u32 airoha_pwm_get_period_ticks_from_ns(u32 period_ns) { return period_ns / AIROHA_PWM_PERIOD_TICK_NS; } static u32 airoha_pwm_get_duty_ticks_from_ns(u32 period_ns, u32 duty_ns) { return mul_u64_u32_div(duty_ns, AIROHA_PWM_DUTY_FULL, period_ns); } static u32 airoha_pwm_get_period_ns_from_ticks(u32 period_tick) { return period_tick * AIROHA_PWM_PERIOD_TICK_NS; } static u32 airoha_pwm_get_duty_ns_from_ticks(u32 period_tick, u32 duty_tick) { u32 period_ns = period_tick * AIROHA_PWM_PERIOD_TICK_NS; /* * Overflow can't occur in multiplication as duty_tick is just 8 bit * and period_ns is clamped to AIROHA_PWM_PERIOD_MAX_NS and fit in a * u64. */ return DIV_U64_ROUND_UP(duty_tick * period_ns, AIROHA_PWM_DUTY_FULL); } static int airoha_pwm_get_bucket(struct airoha_pwm *pc, int bucket, u64 *period_ns, u64 *duty_ns) { struct regmap *map = pc->regmap; u32 period_tick, duty_tick; unsigned int offset; u32 shift, val; int ret; offset = bucket / AIROHA_PWM_BUCKET_PER_CYCLE_CFG; shift = bucket % AIROHA_PWM_BUCKET_PER_CYCLE_CFG; shift = AIROHA_PWM_REG_CYCLE_CFG_SHIFT(shift); ret = regmap_read(map, AIROHA_PWM_REG_CYCLE_CFG_VALUE(offset), &val); if (ret) return ret; period_tick = FIELD_GET(AIROHA_PWM_WAVE_GEN_CYCLE, val >> shift); *period_ns = airoha_pwm_get_period_ns_from_ticks(period_tick); offset = bucket / AIROHA_PWM_BUCKET_PER_FLASH_PROD; shift = bucket % AIROHA_PWM_BUCKET_PER_FLASH_PROD; shift = AIROHA_PWM_REG_GPIO_FLASH_PRD_SHIFT(shift); ret = regmap_read(map, AIROHA_PWM_REG_GPIO_FLASH_PRD_SET(offset), &val); if (ret) return ret; duty_tick = FIELD_GET(AIROHA_PWM_GPIO_FLASH_PRD_HIGH, val >> shift); *duty_ns = airoha_pwm_get_duty_ns_from_ticks(period_tick, duty_tick); return 0; } static int airoha_pwm_get_generator(struct airoha_pwm *pc, u32 duty_ticks, u32 period_ticks) { int best = -ENOENT, unused = -ENOENT; u32 duty_ns, best_duty_ns = 0; u32 best_period_ticks = 0; unsigned int i; duty_ns = airoha_pwm_get_duty_ns_from_ticks(period_ticks, duty_ticks); for (i = 0; i < ARRAY_SIZE(pc->buckets); i++) { struct airoha_pwm_bucket *bucket = &pc->buckets[i]; u32 bucket_period_ticks = bucket->period_ticks; u32 bucket_duty_ticks = bucket->duty_ticks; /* If found, save an unused bucket to return it later */ if (!bucket->used) { unused = i; continue; } /* We found a matching bucket, exit early */ if (duty_ticks == bucket_duty_ticks && period_ticks == bucket_period_ticks) return i; /* * Unlike duty cycle zero, which can be handled by * disabling PWM, a generator is needed for full duty * cycle but it can be reused regardless of period */ if (duty_ticks == AIROHA_PWM_DUTY_FULL && bucket_duty_ticks == AIROHA_PWM_DUTY_FULL) return i; /* * With an unused bucket available, skip searching for * a bucket to recycle (closer to the requested period/duty) */ if (unused >= 0) continue; /* Ignore bucket with invalid period */ if (bucket_period_ticks > period_ticks) continue; /* * Search for a bucket closer to the requested period * that has the maximal possible period that isn't bigger * than the requested period. For that period pick the maximal * duty cycle that isn't bigger than the requested duty_cycle. */ if (bucket_period_ticks >= best_period_ticks) { u32 bucket_duty_ns = airoha_pwm_get_duty_ns_from_ticks(bucket_period_ticks, bucket_duty_ticks); /* Skip bucket that goes over the requested duty */ if (bucket_duty_ns > duty_ns) continue; if (bucket_duty_ns > best_duty_ns) { best_period_ticks = bucket_period_ticks; best_duty_ns = bucket_duty_ns; best = i; } } } /* Return an unused bucket or the best one found (if ever) */ return unused >= 0 ? unused : best; } static void airoha_pwm_release_bucket_config(struct airoha_pwm *pc, unsigned int hwpwm) { int bucket; /* Nothing to clear, PWM channel never used */ if (!test_bit(hwpwm, pc->initialized)) return; bucket = pc->channel_bucket[hwpwm]; pc->buckets[bucket].used--; } static int airoha_pwm_apply_bucket_config(struct airoha_pwm *pc, unsigned int bucket, u32 duty_ticks, u32 period_ticks) { u32 mask, shift, val; u32 offset; int ret; offset = bucket / AIROHA_PWM_BUCKET_PER_CYCLE_CFG; shift = bucket % AIROHA_PWM_BUCKET_PER_CYCLE_CFG; shift = AIROHA_PWM_REG_CYCLE_CFG_SHIFT(shift); /* Configure frequency divisor */ mask = AIROHA_PWM_WAVE_GEN_CYCLE << shift; val = FIELD_PREP(AIROHA_PWM_WAVE_GEN_CYCLE, period_ticks) << shift; ret = regmap_update_bits(pc->regmap, AIROHA_PWM_REG_CYCLE_CFG_VALUE(offset), mask, val); if (ret) return ret; offset = bucket / AIROHA_PWM_BUCKET_PER_FLASH_PROD; shift = bucket % AIROHA_PWM_BUCKET_PER_FLASH_PROD; shift = AIROHA_PWM_REG_GPIO_FLASH_PRD_SHIFT(shift); /* Configure duty cycle */ mask = AIROHA_PWM_GPIO_FLASH_PRD_HIGH << shift; val = FIELD_PREP(AIROHA_PWM_GPIO_FLASH_PRD_HIGH, duty_ticks) << shift; ret = regmap_update_bits(pc->regmap, AIROHA_PWM_REG_GPIO_FLASH_PRD_SET(offset), mask, val); if (ret) return ret; mask = AIROHA_PWM_GPIO_FLASH_PRD_LOW << shift; val = FIELD_PREP(AIROHA_PWM_GPIO_FLASH_PRD_LOW, AIROHA_PWM_DUTY_FULL - duty_ticks) << shift; return regmap_update_bits(pc->regmap, AIROHA_PWM_REG_GPIO_FLASH_PRD_SET(offset), mask, val); } static int airoha_pwm_consume_generator(struct airoha_pwm *pc, u32 duty_ticks, u32 period_ticks, unsigned int hwpwm) { bool config_bucket = false; int bucket, ret; /* * Search for a bucket that already satisfies duty and period * or an unused one. * If not found, -ENOENT is returned. */ bucket = airoha_pwm_get_generator(pc, duty_ticks, period_ticks); if (bucket < 0) return bucket; /* Release previous used bucket (if any) */ airoha_pwm_release_bucket_config(pc, hwpwm); if (!pc->buckets[bucket].used) config_bucket = true; pc->buckets[bucket].used++; if (config_bucket) { pc->buckets[bucket].period_ticks = period_ticks; pc->buckets[bucket].duty_ticks = duty_ticks; ret = airoha_pwm_apply_bucket_config(pc, bucket, duty_ticks, period_ticks); if (ret) { pc->buckets[bucket].used--; return ret; } } return bucket; } static int airoha_pwm_sipo_init(struct airoha_pwm *pc) { u32 val; int ret; ret = regmap_clear_bits(pc->regmap, AIROHA_PWM_REG_SIPO_FLASH_MODE_CFG, AIROHA_PWM_SERIAL_GPIO_MODE_74HC164); if (ret) return ret; /* Configure shift register chip clock timings, use 32x divisor */ ret = regmap_write(pc->regmap, AIROHA_PWM_REG_SGPIO_CLK_DIVR, AIROHA_PWM_SGPIO_CLK_DIVR_32); if (ret) return ret; /* * Configure the shift register chip clock delay. This needs * to be configured based on the chip characteristics when the SoC * apply the shift register configuration. * This doesn't affect actual PWM operation and is only specific to * the shift register chip. * * For 74HC164 we set it to 0. * * For reference, the actual delay applied is the internal clock * feed to the SGPIO chip + 1. * * From documentation is specified that clock delay should not be * greater than (AIROHA_PWM_REG_SGPIO_CLK_DIVR / 2) - 1. */ ret = regmap_write(pc->regmap, AIROHA_PWM_REG_SGPIO_CLK_DLY, 0); if (ret) return ret; /* * It is necessary to explicitly shift out all zeros after muxing * to initialize the shift register before enabling PWM * mode because in PWM mode SIPO will not start shifting until * it needs to output a non-zero value (bit 31 of led_data * indicates shifting in progress and it must return to zero * before led_data can be written or PWM mode can be set). */ ret = regmap_read_poll_timeout(pc->regmap, AIROHA_PWM_REG_SGPIO_LED_DATA, val, !(val & AIROHA_PWM_SGPIO_LED_DATA_SHIFT_FLAG), 10, 200 * USEC_PER_MSEC); if (ret) return ret; ret = regmap_clear_bits(pc->regmap, AIROHA_PWM_REG_SGPIO_LED_DATA, AIROHA_PWM_SGPIO_LED_DATA_DATA); if (ret) return ret; ret = regmap_read_poll_timeout(pc->regmap, AIROHA_PWM_REG_SGPIO_LED_DATA, val, !(val & AIROHA_PWM_SGPIO_LED_DATA_SHIFT_FLAG), 10, 200 * USEC_PER_MSEC); if (ret) return ret; /* Set SIPO in PWM mode */ return regmap_set_bits(pc->regmap, AIROHA_PWM_REG_SIPO_FLASH_MODE_CFG, AIROHA_PWM_SERIAL_GPIO_FLASH_MODE); } static int airoha_pwm_config_flash_map(struct airoha_pwm *pc, unsigned int hwpwm, int index) { unsigned int addr; u32 shift; int ret; airoha_pwm_get_flash_map_addr_and_shift(hwpwm, &addr, &shift); /* negative index means disable PWM channel */ if (index < 0) { /* * If we need to disable the PWM, we just put low the * GPIO. No need to setup buckets. */ return regmap_clear_bits(pc->regmap, addr, AIROHA_PWM_GPIO_FLASH_EN << shift); } ret = regmap_update_bits(pc->regmap, addr, AIROHA_PWM_GPIO_FLASH_SET_ID << shift, FIELD_PREP(AIROHA_PWM_GPIO_FLASH_SET_ID, index) << shift); if (ret) return ret; return regmap_set_bits(pc->regmap, addr, AIROHA_PWM_GPIO_FLASH_EN << shift); } static int airoha_pwm_config(struct airoha_pwm *pc, struct pwm_device *pwm, u32 period_ticks, u32 duty_ticks) { unsigned int hwpwm = pwm->hwpwm; int bucket, ret; bucket = airoha_pwm_consume_generator(pc, duty_ticks, period_ticks, hwpwm); if (bucket < 0) return bucket; ret = airoha_pwm_config_flash_map(pc, hwpwm, bucket); if (ret) { pc->buckets[bucket].used--; return ret; } __set_bit(hwpwm, pc->initialized); pc->channel_bucket[hwpwm] = bucket; /* * SIPO are special GPIO attached to a shift register chip. The handling * of this chip is internal to the SoC that takes care of applying the * values based on the flash map. To apply a new flash map, it's needed * to trigger a refresh on the shift register chip. * If a SIPO is getting configuring , always reinit the shift register * chip to make sure the correct flash map is applied. * Skip reconfiguring the shift register if the related hwpwm * is disabled (as it doesn't need to be mapped). */ if (hwpwm >= AIROHA_PWM_NUM_GPIO) { ret = airoha_pwm_sipo_init(pc); if (ret) { airoha_pwm_release_bucket_config(pc, hwpwm); return ret; } } return 0; } static void airoha_pwm_disable(struct airoha_pwm *pc, struct pwm_device *pwm) { /* Disable PWM and release the bucket */ airoha_pwm_config_flash_map(pc, pwm->hwpwm, -1); airoha_pwm_release_bucket_config(pc, pwm->hwpwm); __clear_bit(pwm->hwpwm, pc->initialized); /* If no SIPO is used, disable the shift register chip */ if (!bitmap_read(pc->initialized, AIROHA_PWM_NUM_GPIO, AIROHA_PWM_NUM_SIPO)) regmap_clear_bits(pc->regmap, AIROHA_PWM_REG_SIPO_FLASH_MODE_CFG, AIROHA_PWM_SERIAL_GPIO_FLASH_MODE); } static int airoha_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct airoha_pwm *pc = pwmchip_get_drvdata(chip); u32 period_ticks, duty_ticks; u32 period_ns, duty_ns; if (!state->enabled) { airoha_pwm_disable(pc, pwm); return 0; } /* Only normal polarity is supported */ if (state->polarity == PWM_POLARITY_INVERSED) return -EINVAL; /* Exit early if period is less than minimum supported */ if (state->period < AIROHA_PWM_PERIOD_TICK_NS) return -EINVAL; /* Clamp period to MAX supported value */ if (state->period > AIROHA_PWM_PERIOD_MAX_NS) period_ns = AIROHA_PWM_PERIOD_MAX_NS; else period_ns = state->period; /* Validate duty to configured period */ if (state->duty_cycle > period_ns) duty_ns = period_ns; else duty_ns = state->duty_cycle; /* Convert period ns to ticks */ period_ticks = airoha_pwm_get_period_ticks_from_ns(period_ns); /* Convert period ticks to ns again for cosistent duty tick calculation */ period_ns = airoha_pwm_get_period_ns_from_ticks(period_ticks); duty_ticks = airoha_pwm_get_duty_ticks_from_ns(period_ns, duty_ns); return airoha_pwm_config(pc, pwm, period_ticks, duty_ticks); } static int airoha_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct airoha_pwm *pc = pwmchip_get_drvdata(chip); int ret, hwpwm = pwm->hwpwm; u32 addr, shift, val; u8 bucket; airoha_pwm_get_flash_map_addr_and_shift(hwpwm, &addr, &shift); ret = regmap_read(pc->regmap, addr, &val); if (ret) return ret; state->enabled = FIELD_GET(AIROHA_PWM_GPIO_FLASH_EN, val >> shift); if (!state->enabled) return 0; state->polarity = PWM_POLARITY_NORMAL; bucket = FIELD_GET(AIROHA_PWM_GPIO_FLASH_SET_ID, val >> shift); return airoha_pwm_get_bucket(pc, bucket, &state->period, &state->duty_cycle); } static const struct pwm_ops airoha_pwm_ops = { .apply = airoha_pwm_apply, .get_state = airoha_pwm_get_state, }; static int airoha_pwm_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct airoha_pwm *pc; struct pwm_chip *chip; int ret; chip = devm_pwmchip_alloc(dev, AIROHA_PWM_MAX_CHANNELS, sizeof(*pc)); if (IS_ERR(chip)) return PTR_ERR(chip); chip->ops = &airoha_pwm_ops; pc = pwmchip_get_drvdata(chip); pc->regmap = device_node_to_regmap(dev_of_node(dev->parent)); if (IS_ERR(pc->regmap)) return dev_err_probe(dev, PTR_ERR(pc->regmap), "Failed to get PWM regmap\n"); ret = devm_pwmchip_add(dev, chip); if (ret) return dev_err_probe(dev, ret, "Failed to add PWM chip\n"); return 0; } static const struct of_device_id airoha_pwm_of_match[] = { { .compatible = "airoha,en7581-pwm" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, airoha_pwm_of_match); static struct platform_driver airoha_pwm_driver = { .driver = { .name = "pwm-airoha", .probe_type = PROBE_PREFER_ASYNCHRONOUS, .of_match_table = airoha_pwm_of_match, }, .probe = airoha_pwm_probe, }; module_platform_driver(airoha_pwm_driver); MODULE_AUTHOR("Lorenzo Bianconi "); MODULE_AUTHOR("Markus Gothe "); MODULE_AUTHOR("Benjamin Larsson "); MODULE_AUTHOR("Christian Marangi "); MODULE_DESCRIPTION("Airoha EN7581 PWM driver"); MODULE_LICENSE("GPL");