// SPDX-License-Identifier: GPL-2.0 /* * Renesas RZ/G2L General PWM Timer (GPT) driver * * Copyright (C) 2025 Renesas Electronics Corporation * * Hardware manual for this IP can be found here * https://www.renesas.com/eu/en/document/mah/rzg2l-group-rzg2lc-group-users-manual-hardware-0?language=en * * Limitations: * - Counter must be stopped before modifying Mode and Prescaler. * - When PWM is disabled, the output is driven to inactive. * - While the hardware supports both polarities, the driver (for now) * only handles normal polarity. * - General PWM Timer (GPT) has 8 HW channels for PWM operations and * each HW channel have 2 IOs. * - Each IO is modelled as an independent PWM channel. * - When both channels are used, disabling the channel on one stops the * other. * - When both channels are used, the period of both IOs in the HW channel * must be same (for now). */ #include #include #include #include #include #include #include #include #include #include #include #define RZG2L_GET_CH(hwpwm) ((hwpwm) / 2) #define RZG2L_GET_CH_OFFS(ch) (0x100 * (ch)) #define RZG2L_GTCR(ch) (0x2c + RZG2L_GET_CH_OFFS(ch)) #define RZG2L_GTUDDTYC(ch) (0x30 + RZG2L_GET_CH_OFFS(ch)) #define RZG2L_GTIOR(ch) (0x34 + RZG2L_GET_CH_OFFS(ch)) #define RZG2L_GTBER(ch) (0x40 + RZG2L_GET_CH_OFFS(ch)) #define RZG2L_GTCNT(ch) (0x48 + RZG2L_GET_CH_OFFS(ch)) #define RZG2L_GTCCR(ch, sub_ch) (0x4c + RZG2L_GET_CH_OFFS(ch) + 4 * (sub_ch)) #define RZG2L_GTPR(ch) (0x64 + RZG2L_GET_CH_OFFS(ch)) #define RZG2L_GTCR_CST BIT(0) #define RZG2L_GTCR_MD GENMASK(18, 16) #define RZG2L_GTCR_TPCS GENMASK(26, 24) #define RZG2L_GTCR_MD_SAW_WAVE_PWM_MODE FIELD_PREP(RZG2L_GTCR_MD, 0) #define RZG2L_GTUDDTYC_UP BIT(0) #define RZG2L_GTUDDTYC_UDF BIT(1) #define RZG2L_GTUDDTYC_UP_COUNTING (RZG2L_GTUDDTYC_UP | RZG2L_GTUDDTYC_UDF) #define RZG2L_GTIOR_GTIOA GENMASK(4, 0) #define RZG2L_GTIOR_GTIOB GENMASK(20, 16) #define RZG2L_GTIOR_GTIOx(sub_ch) ((sub_ch) ? RZG2L_GTIOR_GTIOB : RZG2L_GTIOR_GTIOA) #define RZG2L_GTIOR_OAE BIT(8) #define RZG2L_GTIOR_OBE BIT(24) #define RZG2L_GTIOR_OxE(sub_ch) ((sub_ch) ? RZG2L_GTIOR_OBE : RZG2L_GTIOR_OAE) #define RZG2L_INIT_OUT_HI_OUT_HI_END_TOGGLE 0x1b #define RZG2L_GTIOR_GTIOA_OUT_HI_END_TOGGLE_CMP_MATCH \ (RZG2L_INIT_OUT_HI_OUT_HI_END_TOGGLE | RZG2L_GTIOR_OAE) #define RZG2L_GTIOR_GTIOB_OUT_HI_END_TOGGLE_CMP_MATCH \ (FIELD_PREP(RZG2L_GTIOR_GTIOB, RZG2L_INIT_OUT_HI_OUT_HI_END_TOGGLE) | RZG2L_GTIOR_OBE) #define RZG2L_GTIOR_GTIOx_OUT_HI_END_TOGGLE_CMP_MATCH(sub_ch) \ ((sub_ch) ? RZG2L_GTIOR_GTIOB_OUT_HI_END_TOGGLE_CMP_MATCH : \ RZG2L_GTIOR_GTIOA_OUT_HI_END_TOGGLE_CMP_MATCH) #define RZG2L_MAX_HW_CHANNELS 8 #define RZG2L_CHANNELS_PER_IO 2 #define RZG2L_MAX_PWM_CHANNELS (RZG2L_MAX_HW_CHANNELS * RZG2L_CHANNELS_PER_IO) #define RZG2L_MAX_SCALE_FACTOR 1024 #define RZG2L_MAX_TICKS ((u64)U32_MAX * RZG2L_MAX_SCALE_FACTOR) struct rzg2l_gpt_chip { void __iomem *mmio; struct mutex lock; /* lock to protect shared channel resources */ unsigned long rate_khz; u32 period_ticks[RZG2L_MAX_HW_CHANNELS]; u32 channel_request_count[RZG2L_MAX_HW_CHANNELS]; u32 channel_enable_count[RZG2L_MAX_HW_CHANNELS]; }; static inline struct rzg2l_gpt_chip *to_rzg2l_gpt_chip(struct pwm_chip *chip) { return pwmchip_get_drvdata(chip); } static inline unsigned int rzg2l_gpt_subchannel(unsigned int hwpwm) { return hwpwm & 0x1; } static void rzg2l_gpt_write(struct rzg2l_gpt_chip *rzg2l_gpt, u32 reg, u32 data) { writel(data, rzg2l_gpt->mmio + reg); } static u32 rzg2l_gpt_read(struct rzg2l_gpt_chip *rzg2l_gpt, u32 reg) { return readl(rzg2l_gpt->mmio + reg); } static void rzg2l_gpt_modify(struct rzg2l_gpt_chip *rzg2l_gpt, u32 reg, u32 clr, u32 set) { rzg2l_gpt_write(rzg2l_gpt, reg, (rzg2l_gpt_read(rzg2l_gpt, reg) & ~clr) | set); } static u8 rzg2l_gpt_calculate_prescale(struct rzg2l_gpt_chip *rzg2l_gpt, u64 period_ticks) { u32 prescaled_period_ticks; u8 prescale; prescaled_period_ticks = period_ticks >> 32; if (prescaled_period_ticks >= 256) prescale = 5; else prescale = (fls(prescaled_period_ticks) + 1) / 2; return prescale; } static int rzg2l_gpt_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct rzg2l_gpt_chip *rzg2l_gpt = to_rzg2l_gpt_chip(chip); u32 ch = RZG2L_GET_CH(pwm->hwpwm); guard(mutex)(&rzg2l_gpt->lock); rzg2l_gpt->channel_request_count[ch]++; return 0; } static void rzg2l_gpt_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct rzg2l_gpt_chip *rzg2l_gpt = to_rzg2l_gpt_chip(chip); u32 ch = RZG2L_GET_CH(pwm->hwpwm); guard(mutex)(&rzg2l_gpt->lock); rzg2l_gpt->channel_request_count[ch]--; } static bool rzg2l_gpt_is_ch_enabled(struct rzg2l_gpt_chip *rzg2l_gpt, u8 hwpwm) { u8 ch = RZG2L_GET_CH(hwpwm); u32 val; val = rzg2l_gpt_read(rzg2l_gpt, RZG2L_GTCR(ch)); if (!(val & RZG2L_GTCR_CST)) return false; val = rzg2l_gpt_read(rzg2l_gpt, RZG2L_GTIOR(ch)); return val & RZG2L_GTIOR_OxE(rzg2l_gpt_subchannel(hwpwm)); } /* Caller holds the lock while calling rzg2l_gpt_enable() */ static void rzg2l_gpt_enable(struct rzg2l_gpt_chip *rzg2l_gpt, struct pwm_device *pwm) { u8 sub_ch = rzg2l_gpt_subchannel(pwm->hwpwm); u32 val = RZG2L_GTIOR_GTIOx(sub_ch) | RZG2L_GTIOR_OxE(sub_ch); u8 ch = RZG2L_GET_CH(pwm->hwpwm); /* Enable pin output */ rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTIOR(ch), val, RZG2L_GTIOR_GTIOx_OUT_HI_END_TOGGLE_CMP_MATCH(sub_ch)); if (!rzg2l_gpt->channel_enable_count[ch]) rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch), 0, RZG2L_GTCR_CST); rzg2l_gpt->channel_enable_count[ch]++; } /* Caller holds the lock while calling rzg2l_gpt_disable() */ static void rzg2l_gpt_disable(struct rzg2l_gpt_chip *rzg2l_gpt, struct pwm_device *pwm) { u8 sub_ch = rzg2l_gpt_subchannel(pwm->hwpwm); u8 ch = RZG2L_GET_CH(pwm->hwpwm); /* Stop count, Output low on GTIOCx pin when counting stops */ rzg2l_gpt->channel_enable_count[ch]--; if (!rzg2l_gpt->channel_enable_count[ch]) rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch), RZG2L_GTCR_CST, 0); /* Disable pin output */ rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTIOR(ch), RZG2L_GTIOR_OxE(sub_ch), 0); } static u64 rzg2l_gpt_calculate_period_or_duty(struct rzg2l_gpt_chip *rzg2l_gpt, u32 val, u8 prescale) { u64 tmp; /* * The calculation doesn't overflow an u64 because prescale ≤ 5 and so * tmp = val << (2 * prescale) * USEC_PER_SEC * < 2^32 * 2^10 * 10^6 * < 2^32 * 2^10 * 2^20 * = 2^62 */ tmp = (u64)val << (2 * prescale); tmp *= USEC_PER_SEC; return DIV64_U64_ROUND_UP(tmp, rzg2l_gpt->rate_khz); } static int rzg2l_gpt_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct rzg2l_gpt_chip *rzg2l_gpt = to_rzg2l_gpt_chip(chip); state->enabled = rzg2l_gpt_is_ch_enabled(rzg2l_gpt, pwm->hwpwm); if (state->enabled) { u32 sub_ch = rzg2l_gpt_subchannel(pwm->hwpwm); u32 ch = RZG2L_GET_CH(pwm->hwpwm); u8 prescale; u32 val; val = rzg2l_gpt_read(rzg2l_gpt, RZG2L_GTCR(ch)); prescale = FIELD_GET(RZG2L_GTCR_TPCS, val); val = rzg2l_gpt_read(rzg2l_gpt, RZG2L_GTPR(ch)); state->period = rzg2l_gpt_calculate_period_or_duty(rzg2l_gpt, val, prescale); val = rzg2l_gpt_read(rzg2l_gpt, RZG2L_GTCCR(ch, sub_ch)); state->duty_cycle = rzg2l_gpt_calculate_period_or_duty(rzg2l_gpt, val, prescale); if (state->duty_cycle > state->period) state->duty_cycle = state->period; } state->polarity = PWM_POLARITY_NORMAL; return 0; } static u32 rzg2l_gpt_calculate_pv_or_dc(u64 period_or_duty_cycle, u8 prescale) { return min_t(u64, DIV_ROUND_DOWN_ULL(period_or_duty_cycle, 1 << (2 * prescale)), U32_MAX); } /* Caller holds the lock while calling rzg2l_gpt_config() */ static int rzg2l_gpt_config(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct rzg2l_gpt_chip *rzg2l_gpt = to_rzg2l_gpt_chip(chip); u8 sub_ch = rzg2l_gpt_subchannel(pwm->hwpwm); u8 ch = RZG2L_GET_CH(pwm->hwpwm); u64 period_ticks, duty_ticks; unsigned long pv, dc; u8 prescale; /* Limit period/duty cycle to max value supported by the HW */ period_ticks = mul_u64_u64_div_u64(state->period, rzg2l_gpt->rate_khz, USEC_PER_SEC); if (period_ticks > RZG2L_MAX_TICKS) period_ticks = RZG2L_MAX_TICKS; /* * GPT counter is shared by the two IOs of a single channel, so * prescale and period can NOT be modified when there are multiple IOs * in use with different settings. */ if (rzg2l_gpt->channel_request_count[ch] > 1) { if (period_ticks < rzg2l_gpt->period_ticks[ch]) return -EBUSY; else period_ticks = rzg2l_gpt->period_ticks[ch]; } prescale = rzg2l_gpt_calculate_prescale(rzg2l_gpt, period_ticks); pv = rzg2l_gpt_calculate_pv_or_dc(period_ticks, prescale); duty_ticks = mul_u64_u64_div_u64(state->duty_cycle, rzg2l_gpt->rate_khz, USEC_PER_SEC); if (duty_ticks > period_ticks) duty_ticks = period_ticks; dc = rzg2l_gpt_calculate_pv_or_dc(duty_ticks, prescale); /* * GPT counter is shared by multiple channels, we cache the period ticks * from the first enabled channel and use the same value for both * channels. */ rzg2l_gpt->period_ticks[ch] = period_ticks; /* * Counter must be stopped before modifying mode, prescaler, timer * counter and buffer enable registers. These registers are shared * between both channels. So allow updating these registers only for the * first enabled channel. */ if (rzg2l_gpt->channel_enable_count[ch] <= 1) { rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch), RZG2L_GTCR_CST, 0); /* GPT set operating mode (saw-wave up-counting) */ rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch), RZG2L_GTCR_MD, RZG2L_GTCR_MD_SAW_WAVE_PWM_MODE); /* Set count direction */ rzg2l_gpt_write(rzg2l_gpt, RZG2L_GTUDDTYC(ch), RZG2L_GTUDDTYC_UP_COUNTING); /* Select count clock */ rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch), RZG2L_GTCR_TPCS, FIELD_PREP(RZG2L_GTCR_TPCS, prescale)); /* Set period */ rzg2l_gpt_write(rzg2l_gpt, RZG2L_GTPR(ch), pv); } /* Set duty cycle */ rzg2l_gpt_write(rzg2l_gpt, RZG2L_GTCCR(ch, sub_ch), dc); if (rzg2l_gpt->channel_enable_count[ch] <= 1) { /* Set initial value for counter */ rzg2l_gpt_write(rzg2l_gpt, RZG2L_GTCNT(ch), 0); /* Set no buffer operation */ rzg2l_gpt_write(rzg2l_gpt, RZG2L_GTBER(ch), 0); /* Restart the counter after updating the registers */ rzg2l_gpt_modify(rzg2l_gpt, RZG2L_GTCR(ch), RZG2L_GTCR_CST, RZG2L_GTCR_CST); } return 0; } static int rzg2l_gpt_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct rzg2l_gpt_chip *rzg2l_gpt = to_rzg2l_gpt_chip(chip); bool enabled = pwm->state.enabled; int ret; if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; guard(mutex)(&rzg2l_gpt->lock); if (!state->enabled) { if (enabled) rzg2l_gpt_disable(rzg2l_gpt, pwm); return 0; } ret = rzg2l_gpt_config(chip, pwm, state); if (!ret && !enabled) rzg2l_gpt_enable(rzg2l_gpt, pwm); return ret; } static const struct pwm_ops rzg2l_gpt_ops = { .request = rzg2l_gpt_request, .free = rzg2l_gpt_free, .get_state = rzg2l_gpt_get_state, .apply = rzg2l_gpt_apply, }; static int rzg2l_gpt_probe(struct platform_device *pdev) { struct rzg2l_gpt_chip *rzg2l_gpt; struct device *dev = &pdev->dev; struct reset_control *rstc; struct pwm_chip *chip; unsigned long rate; struct clk *clk; int ret; chip = devm_pwmchip_alloc(dev, RZG2L_MAX_PWM_CHANNELS, sizeof(*rzg2l_gpt)); if (IS_ERR(chip)) return PTR_ERR(chip); rzg2l_gpt = to_rzg2l_gpt_chip(chip); rzg2l_gpt->mmio = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(rzg2l_gpt->mmio)) return PTR_ERR(rzg2l_gpt->mmio); rstc = devm_reset_control_get_exclusive_deasserted(dev, NULL); if (IS_ERR(rstc)) return dev_err_probe(dev, PTR_ERR(rstc), "Cannot deassert reset control\n"); clk = devm_clk_get_enabled(dev, NULL); if (IS_ERR(clk)) return dev_err_probe(dev, PTR_ERR(clk), "Cannot get clock\n"); ret = devm_clk_rate_exclusive_get(dev, clk); if (ret) return ret; rate = clk_get_rate(clk); if (!rate) return dev_err_probe(dev, -EINVAL, "The gpt clk rate is 0"); /* * Refuse clk rates > 1 GHz to prevent overflow later for computing * period and duty cycle. */ if (rate > NSEC_PER_SEC) return dev_err_probe(dev, -EINVAL, "The gpt clk rate is > 1GHz"); /* * Rate is in MHz and is always integer for peripheral clk * 2^32 * 2^10 (prescalar) * 10^6 (rate_khz) < 2^64 * So make sure rate is multiple of 1000. */ rzg2l_gpt->rate_khz = rate / KILO; if (rzg2l_gpt->rate_khz * KILO != rate) return dev_err_probe(dev, -EINVAL, "Rate is not multiple of 1000"); mutex_init(&rzg2l_gpt->lock); chip->ops = &rzg2l_gpt_ops; ret = devm_pwmchip_add(dev, chip); if (ret) return dev_err_probe(dev, ret, "Failed to add PWM chip\n"); return 0; } static const struct of_device_id rzg2l_gpt_of_table[] = { { .compatible = "renesas,rzg2l-gpt", }, { /* Sentinel */ } }; MODULE_DEVICE_TABLE(of, rzg2l_gpt_of_table); static struct platform_driver rzg2l_gpt_driver = { .driver = { .name = "pwm-rzg2l-gpt", .of_match_table = rzg2l_gpt_of_table, }, .probe = rzg2l_gpt_probe, }; module_platform_driver(rzg2l_gpt_driver); MODULE_AUTHOR("Biju Das "); MODULE_DESCRIPTION("Renesas RZ/G2L General PWM Timer (GPT) Driver"); MODULE_LICENSE("GPL");