// SPDX-License-Identifier: GPL-2.0-or-later #include #include #include #include #include #include #include #include #include #include /* SCU regs */ #define EN7581_PLLRG_PROTECT 0x268 #define EN7581_PWD_TADC 0x2ec #define EN7581_MUX_TADC GENMASK(3, 1) #define EN7581_DOUT_TADC 0x2f8 #define EN7581_DOUT_TADC_MASK GENMASK(15, 0) /* PTP_THERMAL regs */ #define EN7581_TEMPMONCTL0 0x800 #define EN7581_SENSE3_EN BIT(3) #define EN7581_SENSE2_EN BIT(2) #define EN7581_SENSE1_EN BIT(1) #define EN7581_SENSE0_EN BIT(0) #define EN7581_TEMPMONCTL1 0x804 /* period unit calculated in BUS clock * 256 scaling-up */ #define EN7581_PERIOD_UNIT GENMASK(9, 0) #define EN7581_TEMPMONCTL2 0x808 #define EN7581_FILT_INTERVAL GENMASK(25, 16) #define EN7581_SEN_INTERVAL GENMASK(9, 0) #define EN7581_TEMPMONINT 0x80C #define EN7581_STAGE3_INT_EN BIT(31) #define EN7581_STAGE2_INT_EN BIT(30) #define EN7581_STAGE1_INT_EN BIT(29) #define EN7581_FILTER_INT_EN_3 BIT(28) #define EN7581_IMMD_INT_EN3 BIT(27) #define EN7581_NOHOTINTEN3 BIT(26) #define EN7581_HOFSINTEN3 BIT(25) #define EN7581_LOFSINTEN3 BIT(24) #define EN7581_HINTEN3 BIT(23) #define EN7581_CINTEN3 BIT(22) #define EN7581_FILTER_INT_EN_2 BIT(21) #define EN7581_FILTER_INT_EN_1 BIT(20) #define EN7581_FILTER_INT_EN_0 BIT(19) #define EN7581_IMMD_INT_EN2 BIT(18) #define EN7581_IMMD_INT_EN1 BIT(17) #define EN7581_IMMD_INT_EN0 BIT(16) #define EN7581_TIME_OUT_INT_EN BIT(15) #define EN7581_NOHOTINTEN2 BIT(14) #define EN7581_HOFSINTEN2 BIT(13) #define EN7581_LOFSINTEN2 BIT(12) #define EN7581_HINTEN2 BIT(11) #define EN7581_CINTEN2 BIT(10) #define EN7581_NOHOTINTEN1 BIT(9) #define EN7581_HOFSINTEN1 BIT(8) #define EN7581_LOFSINTEN1 BIT(7) #define EN7581_HINTEN1 BIT(6) #define EN7581_CINTEN1 BIT(5) #define EN7581_NOHOTINTEN0 BIT(4) /* Similar to COLD and HOT also these seems to be swapped in documentation */ #define EN7581_LOFSINTEN0 BIT(3) /* In documentation: BIT(2) */ #define EN7581_HOFSINTEN0 BIT(2) /* In documentation: BIT(3) */ /* It seems documentation have these swapped as the HW * - Fire BIT(1) when lower than EN7581_COLD_THRE * - Fire BIT(0) and BIT(5) when higher than EN7581_HOT2NORMAL_THRE or * EN7581_HOT_THRE */ #define EN7581_CINTEN0 BIT(1) /* In documentation: BIT(0) */ #define EN7581_HINTEN0 BIT(0) /* In documentation: BIT(1) */ #define EN7581_TEMPMONINTSTS 0x810 #define EN7581_STAGE3_INT_STAT BIT(31) #define EN7581_STAGE2_INT_STAT BIT(30) #define EN7581_STAGE1_INT_STAT BIT(29) #define EN7581_FILTER_INT_STAT_3 BIT(28) #define EN7581_IMMD_INT_STS3 BIT(27) #define EN7581_NOHOTINTSTS3 BIT(26) #define EN7581_HOFSINTSTS3 BIT(25) #define EN7581_LOFSINTSTS3 BIT(24) #define EN7581_HINTSTS3 BIT(23) #define EN7581_CINTSTS3 BIT(22) #define EN7581_FILTER_INT_STAT_2 BIT(21) #define EN7581_FILTER_INT_STAT_1 BIT(20) #define EN7581_FILTER_INT_STAT_0 BIT(19) #define EN7581_IMMD_INT_STS2 BIT(18) #define EN7581_IMMD_INT_STS1 BIT(17) #define EN7581_IMMD_INT_STS0 BIT(16) #define EN7581_TIME_OUT_INT_STAT BIT(15) #define EN7581_NOHOTINTSTS2 BIT(14) #define EN7581_HOFSINTSTS2 BIT(13) #define EN7581_LOFSINTSTS2 BIT(12) #define EN7581_HINTSTS2 BIT(11) #define EN7581_CINTSTS2 BIT(10) #define EN7581_NOHOTINTSTS1 BIT(9) #define EN7581_HOFSINTSTS1 BIT(8) #define EN7581_LOFSINTSTS1 BIT(7) #define EN7581_HINTSTS1 BIT(6) #define EN7581_CINTSTS1 BIT(5) #define EN7581_NOHOTINTSTS0 BIT(4) /* Similar to COLD and HOT also these seems to be swapped in documentation */ #define EN7581_LOFSINTSTS0 BIT(3) /* In documentation: BIT(2) */ #define EN7581_HOFSINTSTS0 BIT(2) /* In documentation: BIT(3) */ /* It seems documentation have these swapped as the HW * - Fire BIT(1) when lower than EN7581_COLD_THRE * - Fire BIT(0) and BIT(5) when higher than EN7581_HOT2NORMAL_THRE or * EN7581_HOT_THRE * * To clear things, we swap the define but we keep them documented here. */ #define EN7581_CINTSTS0 BIT(1) /* In documentation: BIT(0) */ #define EN7581_HINTSTS0 BIT(0) /* In documentation: BIT(1)*/ /* Monitor will take the bigger threshold between HOT2NORMAL and HOT * and will fire both HOT2NORMAL and HOT interrupt when higher than the 2 * * It has also been observed that not setting HOT2NORMAL makes the monitor * treat COLD threshold as HOT2NORMAL. */ #define EN7581_TEMPH2NTHRE 0x824 /* It seems HOT2NORMAL is actually NORMAL2HOT */ #define EN7581_HOT2NORMAL_THRE GENMASK(11, 0) #define EN7581_TEMPHTHRE 0x828 #define EN7581_HOT_THRE GENMASK(11, 0) /* Monitor will use this as HOT2NORMAL (fire interrupt when lower than...)*/ #define EN7581_TEMPCTHRE 0x82c #define EN7581_COLD_THRE GENMASK(11, 0) /* Also LOW and HIGH offset register are swapped */ #define EN7581_TEMPOFFSETL 0x830 /* In documentation: 0x834 */ #define EN7581_LOW_OFFSET GENMASK(11, 0) #define EN7581_TEMPOFFSETH 0x834 /* In documentation: 0x830 */ #define EN7581_HIGH_OFFSET GENMASK(11, 0) #define EN7581_TEMPMSRCTL0 0x838 #define EN7581_MSRCTL3 GENMASK(11, 9) #define EN7581_MSRCTL2 GENMASK(8, 6) #define EN7581_MSRCTL1 GENMASK(5, 3) #define EN7581_MSRCTL0 GENMASK(2, 0) #define EN7581_TEMPADCVALIDADDR 0x878 #define EN7581_ADC_VALID_ADDR GENMASK(31, 0) #define EN7581_TEMPADCVOLTADDR 0x87c #define EN7581_ADC_VOLT_ADDR GENMASK(31, 0) #define EN7581_TEMPRDCTRL 0x880 /* * NOTICE: AHB have this set to 0 by default. Means that * the same addr is used for ADC volt and valid reading. * In such case, VALID ADDR is used and volt addr is ignored. */ #define EN7581_RD_CTRL_DIFF BIT(0) #define EN7581_TEMPADCVALIDMASK 0x884 #define EN7581_ADV_RD_VALID_POLARITY BIT(5) #define EN7581_ADV_RD_VALID_POS GENMASK(4, 0) #define EN7581_TEMPADCVOLTAGESHIFT 0x888 #define EN7581_ADC_VOLTAGE_SHIFT GENMASK(4, 0) /* * Same values for each CTL. * Can operate in: * - 1 sample * - 2 sample and make average of them * - 4,6,10,16 sample, drop max and min and make average of them */ #define EN7581_MSRCTL_1SAMPLE 0x0 #define EN7581_MSRCTL_AVG2SAMPLE 0x1 #define EN7581_MSRCTL_4SAMPLE_MAX_MIX_AVG2 0x2 #define EN7581_MSRCTL_6SAMPLE_MAX_MIX_AVG4 0x3 #define EN7581_MSRCTL_10SAMPLE_MAX_MIX_AVG8 0x4 #define EN7581_MSRCTL_18SAMPLE_MAX_MIX_AVG16 0x5 #define EN7581_TEMPAHBPOLL 0x840 #define EN7581_ADC_POLL_INTVL GENMASK(31, 0) /* PTPSPARE0,2 reg are used to store efuse info for calibrated temp offset */ #define EN7581_EFUSE_TEMP_OFFSET_REG 0xf20 /* PTPSPARE0 */ #define EN7581_EFUSE_TEMP_OFFSET GENMASK(31, 16) #define EN7581_PTPSPARE1 0xf24 /* PTPSPARE1 */ #define EN7581_EFUSE_TEMP_CPU_SENSOR_REG 0xf28 /* PTPSPARE2 */ #define EN7581_SLOPE_X100_DIO_DEFAULT 5645 #define EN7581_SLOPE_X100_DIO_AVS 5645 #define EN7581_INIT_TEMP_CPK_X10 300 #define EN7581_INIT_TEMP_FTK_X10 620 #define EN7581_INIT_TEMP_NONK_X10 550 #define EN7581_SCU_THERMAL_PROTECT_KEY 0x12 #define EN7581_SCU_THERMAL_MUX_DIODE1 0x7 /* Convert temp to raw value as read from ADC ((((temp / 100) - init) * slope) / 1000) + offset */ #define TEMP_TO_RAW(priv, temp) ((((((temp) / 100) - (priv)->init_temp) * \ (priv)->default_slope) / 1000) + \ (priv)->default_offset) /* Convert raw to temp ((((temp - offset) * 1000) / slope + init) * 100) */ #define RAW_TO_TEMP(priv, raw) (((((raw) - (priv)->default_offset) * 1000) / \ (priv)->default_slope + \ (priv)->init_temp) * 100) #define AIROHA_MAX_SAMPLES 6 struct airoha_thermal_priv { void __iomem *base; struct regmap *chip_scu; struct resource scu_adc_res; struct thermal_zone_device *tz; int init_temp; int default_slope; int default_offset; }; static int airoha_get_thermal_ADC(struct airoha_thermal_priv *priv) { u32 val; regmap_read(priv->chip_scu, EN7581_DOUT_TADC, &val); return FIELD_GET(EN7581_DOUT_TADC_MASK, val); } static void airoha_init_thermal_ADC_mode(struct airoha_thermal_priv *priv) { u32 adc_mux, pllrg; /* Save PLLRG current value */ regmap_read(priv->chip_scu, EN7581_PLLRG_PROTECT, &pllrg); /* Give access to thermal regs */ regmap_write(priv->chip_scu, EN7581_PLLRG_PROTECT, EN7581_SCU_THERMAL_PROTECT_KEY); adc_mux = FIELD_PREP(EN7581_MUX_TADC, EN7581_SCU_THERMAL_MUX_DIODE1); regmap_write(priv->chip_scu, EN7581_PWD_TADC, adc_mux); /* Restore PLLRG value on exit */ regmap_write(priv->chip_scu, EN7581_PLLRG_PROTECT, pllrg); } static int airoha_thermal_get_temp(struct thermal_zone_device *tz, int *temp) { struct airoha_thermal_priv *priv = thermal_zone_device_priv(tz); int min_value, max_value, avg_value, value; int i; avg_value = 0; min_value = INT_MAX; max_value = INT_MIN; for (i = 0; i < AIROHA_MAX_SAMPLES; i++) { value = airoha_get_thermal_ADC(priv); min_value = min(value, min_value); max_value = max(value, max_value); avg_value += value; } /* Drop min and max and average for the remaining sample */ avg_value -= (min_value + max_value); avg_value /= AIROHA_MAX_SAMPLES - 2; *temp = RAW_TO_TEMP(priv, avg_value); return 0; } static int airoha_thermal_set_trips(struct thermal_zone_device *tz, int low, int high) { struct airoha_thermal_priv *priv = thermal_zone_device_priv(tz); bool enable_monitor = false; if (high != INT_MAX) { /* Validate high and clamp it a supported value */ high = clamp_t(int, high, RAW_TO_TEMP(priv, 0), RAW_TO_TEMP(priv, FIELD_MAX(EN7581_DOUT_TADC_MASK))); /* We offset the high temp of 1°C to trigger correct event */ writel(TEMP_TO_RAW(priv, high) >> 4, priv->base + EN7581_TEMPOFFSETH); enable_monitor = true; } if (low != -INT_MAX) { /* Validate low and clamp it to a supported value */ low = clamp_t(int, high, RAW_TO_TEMP(priv, 0), RAW_TO_TEMP(priv, FIELD_MAX(EN7581_DOUT_TADC_MASK))); /* We offset the low temp of 1°C to trigger correct event */ writel(TEMP_TO_RAW(priv, low) >> 4, priv->base + EN7581_TEMPOFFSETL); enable_monitor = true; } /* Enable sensor 0 monitor after trip are set */ if (enable_monitor) writel(EN7581_SENSE0_EN, priv->base + EN7581_TEMPMONCTL0); return 0; } static const struct thermal_zone_device_ops thdev_ops = { .get_temp = airoha_thermal_get_temp, .set_trips = airoha_thermal_set_trips, }; static irqreturn_t airoha_thermal_irq(int irq, void *data) { struct airoha_thermal_priv *priv = data; enum thermal_notify_event event; bool update = false; u32 status; status = readl(priv->base + EN7581_TEMPMONINTSTS); switch (status & (EN7581_HOFSINTSTS0 | EN7581_LOFSINTSTS0)) { case EN7581_HOFSINTSTS0: event = THERMAL_TRIP_VIOLATED; update = true; break; case EN7581_LOFSINTSTS0: event = THERMAL_EVENT_UNSPECIFIED; update = true; break; default: /* Should be impossible as we enable only these Interrupt */ break; } /* Reset Interrupt */ writel(status, priv->base + EN7581_TEMPMONINTSTS); if (update) thermal_zone_device_update(priv->tz, event); return IRQ_HANDLED; } static void airoha_thermal_setup_adc_val(struct device *dev, struct airoha_thermal_priv *priv) { u32 efuse_calib_info, cpu_sensor; /* Setup thermal sensor to ADC mode and setup the mux to DIODE1 */ airoha_init_thermal_ADC_mode(priv); /* sleep 10 ms for ADC to enable */ usleep_range(10 * USEC_PER_MSEC, 11 * USEC_PER_MSEC); efuse_calib_info = readl(priv->base + EN7581_EFUSE_TEMP_OFFSET_REG); if (efuse_calib_info) { priv->default_offset = FIELD_GET(EN7581_EFUSE_TEMP_OFFSET, efuse_calib_info); /* Different slope are applied if the sensor is used for CPU or for package */ cpu_sensor = readl(priv->base + EN7581_EFUSE_TEMP_CPU_SENSOR_REG); if (cpu_sensor) { priv->default_slope = EN7581_SLOPE_X100_DIO_DEFAULT; priv->init_temp = EN7581_INIT_TEMP_FTK_X10; } else { priv->default_slope = EN7581_SLOPE_X100_DIO_AVS; priv->init_temp = EN7581_INIT_TEMP_CPK_X10; } } else { priv->default_offset = airoha_get_thermal_ADC(priv); priv->default_slope = EN7581_SLOPE_X100_DIO_DEFAULT; priv->init_temp = EN7581_INIT_TEMP_NONK_X10; dev_info(dev, "missing thermal calibration EFUSE, using non calibrated value\n"); } } static void airoha_thermal_setup_monitor(struct airoha_thermal_priv *priv) { /* Set measure mode */ writel(FIELD_PREP(EN7581_MSRCTL0, EN7581_MSRCTL_6SAMPLE_MAX_MIX_AVG4), priv->base + EN7581_TEMPMSRCTL0); /* * Configure ADC valid reading addr * The AHB temp monitor system doesn't have direct access to the * thermal sensor. It does instead work by providing various * addresses to configure how to access and setup an ADC for the * sensor. EN7581 supports only one sensor hence the * implementation is greatly simplified but the AHB supports * up to 4 different sensors from the same ADC that can be * switched by tuning the ADC mux or writing address. * * We set valid instead of volt as we don't enable valid/volt * split reading and AHB read valid addr in such case. */ writel(priv->scu_adc_res.start + EN7581_DOUT_TADC, priv->base + EN7581_TEMPADCVALIDADDR); /* * Configure valid bit on a fake value of bit 16. The ADC outputs * max of 2 bytes for voltage. */ writel(FIELD_PREP(EN7581_ADV_RD_VALID_POS, 16), priv->base + EN7581_TEMPADCVALIDMASK); /* * AHB supports max 12 bytes for ADC voltage. Shift the read * value 4 bit to the right. Precision lost by this is minimal * in the order of half a °C and is acceptable in the context * of triggering interrupt in critical condition. */ writel(FIELD_PREP(EN7581_ADC_VOLTAGE_SHIFT, 4), priv->base + EN7581_TEMPADCVOLTAGESHIFT); /* BUS clock is 300MHz counting unit is 3 * 68.64 * 256 = 52.715us */ writel(FIELD_PREP(EN7581_PERIOD_UNIT, 3), priv->base + EN7581_TEMPMONCTL1); /* * filt interval is 1 * 52.715us = 52.715us, * sen interval is 379 * 52.715us = 19.97ms */ writel(FIELD_PREP(EN7581_FILT_INTERVAL, 1) | FIELD_PREP(EN7581_FILT_INTERVAL, 379), priv->base + EN7581_TEMPMONCTL2); /* AHB poll is set to 146 * 68.64 = 10.02us */ writel(FIELD_PREP(EN7581_ADC_POLL_INTVL, 146), priv->base + EN7581_TEMPAHBPOLL); } static int airoha_thermal_probe(struct platform_device *pdev) { struct airoha_thermal_priv *priv; struct device_node *chip_scu_np; struct device *dev = &pdev->dev; int irq, ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); chip_scu_np = of_parse_phandle(dev->of_node, "airoha,chip-scu", 0); if (!chip_scu_np) return -EINVAL; priv->chip_scu = syscon_node_to_regmap(chip_scu_np); if (IS_ERR(priv->chip_scu)) return PTR_ERR(priv->chip_scu); of_address_to_resource(chip_scu_np, 0, &priv->scu_adc_res); of_node_put(chip_scu_np); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, airoha_thermal_irq, IRQF_ONESHOT, pdev->name, priv); if (ret) { dev_err(dev, "Can't get interrupt working.\n"); return ret; } airoha_thermal_setup_monitor(priv); airoha_thermal_setup_adc_val(dev, priv); /* register of thermal sensor and get info from DT */ priv->tz = devm_thermal_of_zone_register(dev, 0, priv, &thdev_ops); if (IS_ERR(priv->tz)) { dev_err(dev, "register thermal zone sensor failed\n"); return PTR_ERR(priv->tz); } platform_set_drvdata(pdev, priv); /* Enable LOW and HIGH interrupt */ writel(EN7581_HOFSINTEN0 | EN7581_LOFSINTEN0, priv->base + EN7581_TEMPMONINT); return 0; } static const struct of_device_id airoha_thermal_match[] = { { .compatible = "airoha,en7581-thermal" }, {}, }; MODULE_DEVICE_TABLE(of, airoha_thermal_match); static struct platform_driver airoha_thermal_driver = { .driver = { .name = "airoha-thermal", .of_match_table = airoha_thermal_match, }, .probe = airoha_thermal_probe, }; module_platform_driver(airoha_thermal_driver); MODULE_AUTHOR("Christian Marangi "); MODULE_DESCRIPTION("Airoha thermal driver"); MODULE_LICENSE("GPL");