// SPDX-License-Identifier: GPL-2.0 //! Operating performance points. //! //! This module provides rust abstractions for interacting with the OPP subsystem. //! //! C header: [`include/linux/pm_opp.h`](srctree/include/linux/pm_opp.h) //! //! Reference: use crate::{ clk::Hertz, cpumask::{Cpumask, CpumaskVar}, device::Device, error::{code::*, from_err_ptr, from_result, to_result, Error, Result, VTABLE_DEFAULT_ERROR}, ffi::c_ulong, prelude::*, str::CString, types::{ARef, AlwaysRefCounted, Opaque}, }; #[cfg(CONFIG_CPU_FREQ)] /// Frequency table implementation. mod freq { use super::*; use crate::cpufreq; use core::ops::Deref; /// OPP frequency table. /// /// A [`cpufreq::Table`] created from [`Table`]. pub struct FreqTable { dev: ARef, ptr: *mut bindings::cpufreq_frequency_table, } impl FreqTable { /// Creates a new instance of [`FreqTable`] from [`Table`]. pub(crate) fn new(table: &Table) -> Result { let mut ptr: *mut bindings::cpufreq_frequency_table = ptr::null_mut(); // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. to_result(unsafe { bindings::dev_pm_opp_init_cpufreq_table(table.dev.as_raw(), &mut ptr) })?; Ok(Self { dev: table.dev.clone(), ptr, }) } /// Returns a reference to the underlying [`cpufreq::Table`]. #[inline] fn table(&self) -> &cpufreq::Table { // SAFETY: The `ptr` is guaranteed by the C code to be valid. unsafe { cpufreq::Table::from_raw(self.ptr) } } } impl Deref for FreqTable { type Target = cpufreq::Table; #[inline] fn deref(&self) -> &Self::Target { self.table() } } impl Drop for FreqTable { fn drop(&mut self) { // SAFETY: The pointer was created via `dev_pm_opp_init_cpufreq_table`, and is only // freed here. unsafe { bindings::dev_pm_opp_free_cpufreq_table(self.dev.as_raw(), &mut self.as_raw()) }; } } } #[cfg(CONFIG_CPU_FREQ)] pub use freq::FreqTable; use core::{marker::PhantomData, ptr}; use macros::vtable; /// Creates a null-terminated slice of pointers to [`Cstring`]s. fn to_c_str_array(names: &[CString]) -> Result> { // Allocated a null-terminated vector of pointers. let mut list = KVec::with_capacity(names.len() + 1, GFP_KERNEL)?; for name in names.iter() { list.push(name.as_ptr() as _, GFP_KERNEL)?; } list.push(ptr::null(), GFP_KERNEL)?; Ok(list) } /// The voltage unit. /// /// Represents voltage in microvolts, wrapping a [`c_ulong`] value. /// /// ## Examples /// /// ``` /// use kernel::opp::MicroVolt; /// /// let raw = 90500; /// let volt = MicroVolt(raw); /// /// assert_eq!(usize::from(volt), raw); /// assert_eq!(volt, MicroVolt(raw)); /// ``` #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct MicroVolt(pub c_ulong); impl From for c_ulong { #[inline] fn from(volt: MicroVolt) -> Self { volt.0 } } /// The power unit. /// /// Represents power in microwatts, wrapping a [`c_ulong`] value. /// /// ## Examples /// /// ``` /// use kernel::opp::MicroWatt; /// /// let raw = 1000000; /// let power = MicroWatt(raw); /// /// assert_eq!(usize::from(power), raw); /// assert_eq!(power, MicroWatt(raw)); /// ``` #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct MicroWatt(pub c_ulong); impl From for c_ulong { #[inline] fn from(power: MicroWatt) -> Self { power.0 } } /// Handle for a dynamically created [`OPP`]. /// /// The associated [`OPP`] is automatically removed when the [`Token`] is dropped. /// /// ## Examples /// /// The following example demonstrates how to create an [`OPP`] dynamically. /// /// ``` /// use kernel::clk::Hertz; /// use kernel::device::Device; /// use kernel::error::Result; /// use kernel::opp::{Data, MicroVolt, Token}; /// use kernel::types::ARef; /// /// fn create_opp(dev: &ARef, freq: Hertz, volt: MicroVolt, level: u32) -> Result { /// let data = Data::new(freq, volt, level, false); /// /// // OPP is removed once token goes out of scope. /// data.add_opp(dev) /// } /// ``` pub struct Token { dev: ARef, freq: Hertz, } impl Token { /// Dynamically adds an [`OPP`] and returns a [`Token`] that removes it on drop. fn new(dev: &ARef, mut data: Data) -> Result { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. to_result(unsafe { bindings::dev_pm_opp_add_dynamic(dev.as_raw(), &mut data.0) })?; Ok(Self { dev: dev.clone(), freq: data.freq(), }) } } impl Drop for Token { fn drop(&mut self) { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. unsafe { bindings::dev_pm_opp_remove(self.dev.as_raw(), self.freq.into()) }; } } /// OPP data. /// /// Rust abstraction for the C `struct dev_pm_opp_data`, used to define operating performance /// points (OPPs) dynamically. /// /// ## Examples /// /// The following example demonstrates how to create an [`OPP`] with [`Data`]. /// /// ``` /// use kernel::clk::Hertz; /// use kernel::device::Device; /// use kernel::error::Result; /// use kernel::opp::{Data, MicroVolt, Token}; /// use kernel::types::ARef; /// /// fn create_opp(dev: &ARef, freq: Hertz, volt: MicroVolt, level: u32) -> Result { /// let data = Data::new(freq, volt, level, false); /// /// // OPP is removed once token goes out of scope. /// data.add_opp(dev) /// } /// ``` #[repr(transparent)] pub struct Data(bindings::dev_pm_opp_data); impl Data { /// Creates a new instance of [`Data`]. /// /// This can be used to define a dynamic OPP to be added to a device. pub fn new(freq: Hertz, volt: MicroVolt, level: u32, turbo: bool) -> Self { Self(bindings::dev_pm_opp_data { turbo, freq: freq.into(), u_volt: volt.into(), level, }) } /// Adds an [`OPP`] dynamically. /// /// Returns a [`Token`] that ensures the OPP is automatically removed /// when it goes out of scope. #[inline] pub fn add_opp(self, dev: &ARef) -> Result { Token::new(dev, self) } /// Returns the frequency associated with this OPP data. #[inline] fn freq(&self) -> Hertz { Hertz(self.0.freq) } } /// [`OPP`] search options. /// /// ## Examples /// /// Defines how to search for an [`OPP`] in a [`Table`] relative to a frequency. /// /// ``` /// use kernel::clk::Hertz; /// use kernel::error::Result; /// use kernel::opp::{OPP, SearchType, Table}; /// use kernel::types::ARef; /// /// fn find_opp(table: &Table, freq: Hertz) -> Result> { /// let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?; /// /// pr_info!("OPP frequency is: {:?}\n", opp.freq(None)); /// pr_info!("OPP voltage is: {:?}\n", opp.voltage()); /// pr_info!("OPP level is: {}\n", opp.level()); /// pr_info!("OPP power is: {:?}\n", opp.power()); /// /// Ok(opp) /// } /// ``` #[derive(Copy, Clone, Debug, Eq, PartialEq)] pub enum SearchType { /// Match the exact frequency. Exact, /// Find the highest frequency less than or equal to the given value. Floor, /// Find the lowest frequency greater than or equal to the given value. Ceil, } /// OPP configuration callbacks. /// /// Implement this trait to customize OPP clock and regulator setup for your device. #[vtable] pub trait ConfigOps { /// This is typically used to scale clocks when transitioning between OPPs. #[inline] fn config_clks(_dev: &Device, _table: &Table, _opp: &OPP, _scaling_down: bool) -> Result { build_error!(VTABLE_DEFAULT_ERROR) } /// This provides access to the old and new OPPs, allowing for safe regulator adjustments. #[inline] fn config_regulators( _dev: &Device, _opp_old: &OPP, _opp_new: &OPP, _data: *mut *mut bindings::regulator, _count: u32, ) -> Result { build_error!(VTABLE_DEFAULT_ERROR) } } /// OPP configuration token. /// /// Returned by the OPP core when configuration is applied to a [`Device`]. The associated /// configuration is automatically cleared when the token is dropped. pub struct ConfigToken(i32); impl Drop for ConfigToken { fn drop(&mut self) { // SAFETY: This is the same token value returned by the C code via `dev_pm_opp_set_config`. unsafe { bindings::dev_pm_opp_clear_config(self.0) }; } } /// OPP configurations. /// /// Rust abstraction for the C `struct dev_pm_opp_config`. /// /// ## Examples /// /// The following example demonstrates how to set OPP property-name configuration for a [`Device`]. /// /// ``` /// use kernel::device::Device; /// use kernel::error::Result; /// use kernel::opp::{Config, ConfigOps, ConfigToken}; /// use kernel::str::CString; /// use kernel::types::ARef; /// use kernel::macros::vtable; /// /// #[derive(Default)] /// struct Driver; /// /// #[vtable] /// impl ConfigOps for Driver {} /// /// fn configure(dev: &ARef) -> Result { /// let name = CString::try_from_fmt(fmt!("{}", "slow"))?; /// /// // The OPP configuration is cleared once the [`ConfigToken`] goes out of scope. /// Config::::new() /// .set_prop_name(name)? /// .set(dev) /// } /// ``` #[derive(Default)] pub struct Config where T: Default, { clk_names: Option>, prop_name: Option, regulator_names: Option>, supported_hw: Option>, // Tuple containing (required device, index) required_dev: Option<(ARef, u32)>, _data: PhantomData, } impl Config { /// Creates a new instance of [`Config`]. #[inline] pub fn new() -> Self { Self::default() } /// Initializes clock names. pub fn set_clk_names(mut self, names: KVec) -> Result { if self.clk_names.is_some() { return Err(EBUSY); } if names.is_empty() { return Err(EINVAL); } self.clk_names = Some(names); Ok(self) } /// Initializes property name. pub fn set_prop_name(mut self, name: CString) -> Result { if self.prop_name.is_some() { return Err(EBUSY); } self.prop_name = Some(name); Ok(self) } /// Initializes regulator names. pub fn set_regulator_names(mut self, names: KVec) -> Result { if self.regulator_names.is_some() { return Err(EBUSY); } if names.is_empty() { return Err(EINVAL); } self.regulator_names = Some(names); Ok(self) } /// Initializes required devices. pub fn set_required_dev(mut self, dev: ARef, index: u32) -> Result { if self.required_dev.is_some() { return Err(EBUSY); } self.required_dev = Some((dev, index)); Ok(self) } /// Initializes supported hardware. pub fn set_supported_hw(mut self, hw: KVec) -> Result { if self.supported_hw.is_some() { return Err(EBUSY); } if hw.is_empty() { return Err(EINVAL); } self.supported_hw = Some(hw); Ok(self) } /// Sets the configuration with the OPP core. /// /// The returned [`ConfigToken`] will remove the configuration when dropped. pub fn set(self, dev: &Device) -> Result { let (_clk_list, clk_names) = match &self.clk_names { Some(x) => { let list = to_c_str_array(x)?; let ptr = list.as_ptr(); (Some(list), ptr) } None => (None, ptr::null()), }; let (_regulator_list, regulator_names) = match &self.regulator_names { Some(x) => { let list = to_c_str_array(x)?; let ptr = list.as_ptr(); (Some(list), ptr) } None => (None, ptr::null()), }; let prop_name = self .prop_name .as_ref() .map_or(ptr::null(), |p| p.as_char_ptr()); let (supported_hw, supported_hw_count) = self .supported_hw .as_ref() .map_or((ptr::null(), 0), |hw| (hw.as_ptr(), hw.len() as u32)); let (required_dev, required_dev_index) = self .required_dev .as_ref() .map_or((ptr::null_mut(), 0), |(dev, idx)| (dev.as_raw(), *idx)); let mut config = bindings::dev_pm_opp_config { clk_names, config_clks: if T::HAS_CONFIG_CLKS { Some(Self::config_clks) } else { None }, prop_name, regulator_names, config_regulators: if T::HAS_CONFIG_REGULATORS { Some(Self::config_regulators) } else { None }, supported_hw, supported_hw_count, required_dev, required_dev_index, }; // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. The OPP core guarantees not to access fields of [`Config`] after this call // and so we don't need to save a copy of them for future use. let ret = unsafe { bindings::dev_pm_opp_set_config(dev.as_raw(), &mut config) }; if ret < 0 { Err(Error::from_errno(ret)) } else { Ok(ConfigToken(ret)) } } /// Config's clk callback. /// /// SAFETY: Called from C. Inputs must be valid pointers. extern "C" fn config_clks( dev: *mut bindings::device, opp_table: *mut bindings::opp_table, opp: *mut bindings::dev_pm_opp, _data: *mut kernel::ffi::c_void, scaling_down: bool, ) -> kernel::ffi::c_int { from_result(|| { // SAFETY: 'dev' is guaranteed by the C code to be valid. let dev = unsafe { Device::get_device(dev) }; T::config_clks( &dev, // SAFETY: 'opp_table' is guaranteed by the C code to be valid. &unsafe { Table::from_raw_table(opp_table, &dev) }, // SAFETY: 'opp' is guaranteed by the C code to be valid. unsafe { OPP::from_raw_opp(opp)? }, scaling_down, ) .map(|()| 0) }) } /// Config's regulator callback. /// /// SAFETY: Called from C. Inputs must be valid pointers. extern "C" fn config_regulators( dev: *mut bindings::device, old_opp: *mut bindings::dev_pm_opp, new_opp: *mut bindings::dev_pm_opp, regulators: *mut *mut bindings::regulator, count: kernel::ffi::c_uint, ) -> kernel::ffi::c_int { from_result(|| { // SAFETY: 'dev' is guaranteed by the C code to be valid. let dev = unsafe { Device::get_device(dev) }; T::config_regulators( &dev, // SAFETY: 'old_opp' is guaranteed by the C code to be valid. unsafe { OPP::from_raw_opp(old_opp)? }, // SAFETY: 'new_opp' is guaranteed by the C code to be valid. unsafe { OPP::from_raw_opp(new_opp)? }, regulators, count, ) .map(|()| 0) }) } } /// A reference-counted OPP table. /// /// Rust abstraction for the C `struct opp_table`. /// /// # Invariants /// /// The pointer stored in `Self` is non-null and valid for the lifetime of the [`Table`]. /// /// Instances of this type are reference-counted. /// /// ## Examples /// /// The following example demonstrates how to get OPP [`Table`] for a [`Cpumask`] and set its /// frequency. /// /// ``` /// # #![cfg(CONFIG_OF)] /// use kernel::clk::Hertz; /// use kernel::cpumask::Cpumask; /// use kernel::device::Device; /// use kernel::error::Result; /// use kernel::opp::Table; /// use kernel::types::ARef; /// /// fn get_table(dev: &ARef, mask: &mut Cpumask, freq: Hertz) -> Result { /// let mut opp_table = Table::from_of_cpumask(dev, mask)?; /// /// if opp_table.opp_count()? == 0 { /// return Err(EINVAL); /// } /// /// pr_info!("Max transition latency is: {} ns\n", opp_table.max_transition_latency_ns()); /// pr_info!("Suspend frequency is: {:?}\n", opp_table.suspend_freq()); /// /// opp_table.set_rate(freq)?; /// Ok(opp_table) /// } /// ``` pub struct Table { ptr: *mut bindings::opp_table, dev: ARef, #[allow(dead_code)] em: bool, #[allow(dead_code)] of: bool, cpus: Option, } /// SAFETY: It is okay to send ownership of [`Table`] across thread boundaries. unsafe impl Send for Table {} /// SAFETY: It is okay to access [`Table`] through shared references from other threads because /// we're either accessing properties that don't change or that are properly synchronised by C code. unsafe impl Sync for Table {} impl Table { /// Creates a new reference-counted [`Table`] from a raw pointer. /// /// # Safety /// /// Callers must ensure that `ptr` is valid and non-null. unsafe fn from_raw_table(ptr: *mut bindings::opp_table, dev: &ARef) -> Self { // SAFETY: By the safety requirements, ptr is valid and its refcount will be incremented. // // INVARIANT: The reference-count is decremented when [`Table`] goes out of scope. unsafe { bindings::dev_pm_opp_get_opp_table_ref(ptr) }; Self { ptr, dev: dev.clone(), em: false, of: false, cpus: None, } } /// Creates a new reference-counted [`Table`] instance for a [`Device`]. pub fn from_dev(dev: &Device) -> Result { // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety // requirements. // // INVARIANT: The reference-count is incremented by the C code and is decremented when // [`Table`] goes out of scope. let ptr = from_err_ptr(unsafe { bindings::dev_pm_opp_get_opp_table(dev.as_raw()) })?; Ok(Self { ptr, dev: dev.into(), em: false, of: false, cpus: None, }) } /// Creates a new reference-counted [`Table`] instance for a [`Device`] based on device tree /// entries. #[cfg(CONFIG_OF)] pub fn from_of(dev: &ARef, index: i32) -> Result { // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety // requirements. // // INVARIANT: The reference-count is incremented by the C code and is decremented when // [`Table`] goes out of scope. to_result(unsafe { bindings::dev_pm_opp_of_add_table_indexed(dev.as_raw(), index) })?; // Get the newly created [`Table`]. let mut table = Self::from_dev(dev)?; table.of = true; Ok(table) } /// Remove device tree based [`Table`]. #[cfg(CONFIG_OF)] #[inline] fn remove_of(&self) { // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety // requirements. We took the reference from [`from_of`] earlier, it is safe to drop the // same now. unsafe { bindings::dev_pm_opp_of_remove_table(self.dev.as_raw()) }; } /// Creates a new reference-counted [`Table`] instance for a [`Cpumask`] based on device tree /// entries. #[cfg(CONFIG_OF)] pub fn from_of_cpumask(dev: &Device, cpumask: &mut Cpumask) -> Result { // SAFETY: The cpumask is valid and the returned pointer will be owned by the [`Table`] // instance. // // INVARIANT: The reference-count is incremented by the C code and is decremented when // [`Table`] goes out of scope. to_result(unsafe { bindings::dev_pm_opp_of_cpumask_add_table(cpumask.as_raw()) })?; // Fetch the newly created table. let mut table = Self::from_dev(dev)?; table.cpus = Some(CpumaskVar::try_clone(cpumask)?); Ok(table) } /// Remove device tree based [`Table`] for a [`Cpumask`]. #[cfg(CONFIG_OF)] #[inline] fn remove_of_cpumask(&self, cpumask: &Cpumask) { // SAFETY: The cpumask is valid and we took the reference from [`from_of_cpumask`] earlier, // it is safe to drop the same now. unsafe { bindings::dev_pm_opp_of_cpumask_remove_table(cpumask.as_raw()) }; } /// Returns the number of [`OPP`]s in the [`Table`]. pub fn opp_count(&self) -> Result { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. let ret = unsafe { bindings::dev_pm_opp_get_opp_count(self.dev.as_raw()) }; if ret < 0 { Err(Error::from_errno(ret)) } else { Ok(ret as u32) } } /// Returns max clock latency (in nanoseconds) of the [`OPP`]s in the [`Table`]. #[inline] pub fn max_clock_latency_ns(&self) -> usize { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. unsafe { bindings::dev_pm_opp_get_max_clock_latency(self.dev.as_raw()) } } /// Returns max volt latency (in nanoseconds) of the [`OPP`]s in the [`Table`]. #[inline] pub fn max_volt_latency_ns(&self) -> usize { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. unsafe { bindings::dev_pm_opp_get_max_volt_latency(self.dev.as_raw()) } } /// Returns max transition latency (in nanoseconds) of the [`OPP`]s in the [`Table`]. #[inline] pub fn max_transition_latency_ns(&self) -> usize { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. unsafe { bindings::dev_pm_opp_get_max_transition_latency(self.dev.as_raw()) } } /// Returns the suspend [`OPP`]'s frequency. #[inline] pub fn suspend_freq(&self) -> Hertz { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. Hertz(unsafe { bindings::dev_pm_opp_get_suspend_opp_freq(self.dev.as_raw()) }) } /// Synchronizes regulators used by the [`Table`]. #[inline] pub fn sync_regulators(&self) -> Result { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. to_result(unsafe { bindings::dev_pm_opp_sync_regulators(self.dev.as_raw()) }) } /// Gets sharing CPUs. #[inline] pub fn sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. to_result(unsafe { bindings::dev_pm_opp_get_sharing_cpus(dev.as_raw(), cpumask.as_raw()) }) } /// Sets sharing CPUs. pub fn set_sharing_cpus(&mut self, cpumask: &mut Cpumask) -> Result { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. to_result(unsafe { bindings::dev_pm_opp_set_sharing_cpus(self.dev.as_raw(), cpumask.as_raw()) })?; if let Some(mask) = self.cpus.as_mut() { // Update the cpumask as this will be used while removing the table. cpumask.copy(mask); } Ok(()) } /// Gets sharing CPUs from device tree. #[cfg(CONFIG_OF)] #[inline] pub fn of_sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. to_result(unsafe { bindings::dev_pm_opp_of_get_sharing_cpus(dev.as_raw(), cpumask.as_raw()) }) } /// Updates the voltage value for an [`OPP`]. #[inline] pub fn adjust_voltage( &self, freq: Hertz, volt: MicroVolt, volt_min: MicroVolt, volt_max: MicroVolt, ) -> Result { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. to_result(unsafe { bindings::dev_pm_opp_adjust_voltage( self.dev.as_raw(), freq.into(), volt.into(), volt_min.into(), volt_max.into(), ) }) } /// Creates [`FreqTable`] from [`Table`]. #[cfg(CONFIG_CPU_FREQ)] #[inline] pub fn cpufreq_table(&mut self) -> Result { FreqTable::new(self) } /// Configures device with [`OPP`] matching the frequency value. #[inline] pub fn set_rate(&self, freq: Hertz) -> Result { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. to_result(unsafe { bindings::dev_pm_opp_set_rate(self.dev.as_raw(), freq.into()) }) } /// Configures device with [`OPP`]. #[inline] pub fn set_opp(&self, opp: &OPP) -> Result { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. to_result(unsafe { bindings::dev_pm_opp_set_opp(self.dev.as_raw(), opp.as_raw()) }) } /// Finds [`OPP`] based on frequency. pub fn opp_from_freq( &self, freq: Hertz, available: Option, index: Option, stype: SearchType, ) -> Result> { let raw_dev = self.dev.as_raw(); let index = index.unwrap_or(0); let mut rate = freq.into(); let ptr = from_err_ptr(match stype { SearchType::Exact => { if let Some(available) = available { // SAFETY: The requirements are satisfied by the existence of [`Device`] and // its safety requirements. The returned pointer will be owned by the new // [`OPP`] instance. unsafe { bindings::dev_pm_opp_find_freq_exact_indexed( raw_dev, rate, index, available, ) } } else { return Err(EINVAL); } } // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. The returned pointer will be owned by the new [`OPP`] instance. SearchType::Ceil => unsafe { bindings::dev_pm_opp_find_freq_ceil_indexed(raw_dev, &mut rate, index) }, // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. The returned pointer will be owned by the new [`OPP`] instance. SearchType::Floor => unsafe { bindings::dev_pm_opp_find_freq_floor_indexed(raw_dev, &mut rate, index) }, })?; // SAFETY: The `ptr` is guaranteed by the C code to be valid. unsafe { OPP::from_raw_opp_owned(ptr) } } /// Finds [`OPP`] based on level. pub fn opp_from_level(&self, mut level: u32, stype: SearchType) -> Result> { let raw_dev = self.dev.as_raw(); let ptr = from_err_ptr(match stype { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. The returned pointer will be owned by the new [`OPP`] instance. SearchType::Exact => unsafe { bindings::dev_pm_opp_find_level_exact(raw_dev, level) }, // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. The returned pointer will be owned by the new [`OPP`] instance. SearchType::Ceil => unsafe { bindings::dev_pm_opp_find_level_ceil(raw_dev, &mut level) }, // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. The returned pointer will be owned by the new [`OPP`] instance. SearchType::Floor => unsafe { bindings::dev_pm_opp_find_level_floor(raw_dev, &mut level) }, })?; // SAFETY: The `ptr` is guaranteed by the C code to be valid. unsafe { OPP::from_raw_opp_owned(ptr) } } /// Finds [`OPP`] based on bandwidth. pub fn opp_from_bw(&self, mut bw: u32, index: i32, stype: SearchType) -> Result> { let raw_dev = self.dev.as_raw(); let ptr = from_err_ptr(match stype { // The OPP core doesn't support this yet. SearchType::Exact => return Err(EINVAL), // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. The returned pointer will be owned by the new [`OPP`] instance. SearchType::Ceil => unsafe { bindings::dev_pm_opp_find_bw_ceil(raw_dev, &mut bw, index) }, // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. The returned pointer will be owned by the new [`OPP`] instance. SearchType::Floor => unsafe { bindings::dev_pm_opp_find_bw_floor(raw_dev, &mut bw, index) }, })?; // SAFETY: The `ptr` is guaranteed by the C code to be valid. unsafe { OPP::from_raw_opp_owned(ptr) } } /// Enables the [`OPP`]. #[inline] pub fn enable_opp(&self, freq: Hertz) -> Result { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. to_result(unsafe { bindings::dev_pm_opp_enable(self.dev.as_raw(), freq.into()) }) } /// Disables the [`OPP`]. #[inline] pub fn disable_opp(&self, freq: Hertz) -> Result { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. to_result(unsafe { bindings::dev_pm_opp_disable(self.dev.as_raw(), freq.into()) }) } /// Registers with the Energy model. #[cfg(CONFIG_OF)] pub fn of_register_em(&mut self, cpumask: &mut Cpumask) -> Result { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. to_result(unsafe { bindings::dev_pm_opp_of_register_em(self.dev.as_raw(), cpumask.as_raw()) })?; self.em = true; Ok(()) } /// Unregisters with the Energy model. #[cfg(all(CONFIG_OF, CONFIG_ENERGY_MODEL))] #[inline] fn of_unregister_em(&self) { // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety // requirements. We registered with the EM framework earlier, it is safe to unregister now. unsafe { bindings::em_dev_unregister_perf_domain(self.dev.as_raw()) }; } } impl Drop for Table { fn drop(&mut self) { // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe // to relinquish it now. unsafe { bindings::dev_pm_opp_put_opp_table(self.ptr) }; #[cfg(CONFIG_OF)] { #[cfg(CONFIG_ENERGY_MODEL)] if self.em { self.of_unregister_em(); } if self.of { self.remove_of(); } else if let Some(cpumask) = self.cpus.take() { self.remove_of_cpumask(&cpumask); } } } } /// A reference-counted Operating performance point (OPP). /// /// Rust abstraction for the C `struct dev_pm_opp`. /// /// # Invariants /// /// The pointer stored in `Self` is non-null and valid for the lifetime of the [`OPP`]. /// /// Instances of this type are reference-counted. The reference count is incremented by the /// `dev_pm_opp_get` function and decremented by `dev_pm_opp_put`. The Rust type `ARef` /// represents a pointer that owns a reference count on the [`OPP`]. /// /// A reference to the [`OPP`], &[`OPP`], isn't refcounted by the Rust code. /// /// ## Examples /// /// The following example demonstrates how to get [`OPP`] corresponding to a frequency value and /// configure the device with it. /// /// ``` /// use kernel::clk::Hertz; /// use kernel::error::Result; /// use kernel::opp::{SearchType, Table}; /// /// fn configure_opp(table: &Table, freq: Hertz) -> Result { /// let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?; /// /// if opp.freq(None) != freq { /// return Err(EINVAL); /// } /// /// table.set_opp(&opp) /// } /// ``` #[repr(transparent)] pub struct OPP(Opaque); /// SAFETY: It is okay to send the ownership of [`OPP`] across thread boundaries. unsafe impl Send for OPP {} /// SAFETY: It is okay to access [`OPP`] through shared references from other threads because we're /// either accessing properties that don't change or that are properly synchronised by C code. unsafe impl Sync for OPP {} /// SAFETY: The type invariants guarantee that [`OPP`] is always refcounted. unsafe impl AlwaysRefCounted for OPP { fn inc_ref(&self) { // SAFETY: The existence of a shared reference means that the refcount is nonzero. unsafe { bindings::dev_pm_opp_get(self.0.get()) }; } unsafe fn dec_ref(obj: ptr::NonNull) { // SAFETY: The safety requirements guarantee that the refcount is nonzero. unsafe { bindings::dev_pm_opp_put(obj.cast().as_ptr()) } } } impl OPP { /// Creates an owned reference to a [`OPP`] from a valid pointer. /// /// The refcount is incremented by the C code and will be decremented by `dec_ref` when the /// [`ARef`] object is dropped. /// /// # Safety /// /// The caller must ensure that `ptr` is valid and the refcount of the [`OPP`] is incremented. /// The caller must also ensure that it doesn't explicitly drop the refcount of the [`OPP`], as /// the returned [`ARef`] object takes over the refcount increment on the underlying object and /// the same will be dropped along with it. pub unsafe fn from_raw_opp_owned(ptr: *mut bindings::dev_pm_opp) -> Result> { let ptr = ptr::NonNull::new(ptr).ok_or(ENODEV)?; // SAFETY: The safety requirements guarantee the validity of the pointer. // // INVARIANT: The reference-count is decremented when [`OPP`] goes out of scope. Ok(unsafe { ARef::from_raw(ptr.cast()) }) } /// Creates a reference to a [`OPP`] from a valid pointer. /// /// The refcount is not updated by the Rust API unless the returned reference is converted to /// an [`ARef`] object. /// /// # Safety /// /// The caller must ensure that `ptr` is valid and remains valid for the duration of `'a`. #[inline] pub unsafe fn from_raw_opp<'a>(ptr: *mut bindings::dev_pm_opp) -> Result<&'a Self> { // SAFETY: The caller guarantees that the pointer is not dangling and stays valid for the // duration of 'a. The cast is okay because [`OPP`] is `repr(transparent)`. Ok(unsafe { &*ptr.cast() }) } #[inline] fn as_raw(&self) -> *mut bindings::dev_pm_opp { self.0.get() } /// Returns the frequency of an [`OPP`]. pub fn freq(&self, index: Option) -> Hertz { let index = index.unwrap_or(0); // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to // use it. Hertz(unsafe { bindings::dev_pm_opp_get_freq_indexed(self.as_raw(), index) }) } /// Returns the voltage of an [`OPP`]. #[inline] pub fn voltage(&self) -> MicroVolt { // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to // use it. MicroVolt(unsafe { bindings::dev_pm_opp_get_voltage(self.as_raw()) }) } /// Returns the level of an [`OPP`]. #[inline] pub fn level(&self) -> u32 { // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to // use it. unsafe { bindings::dev_pm_opp_get_level(self.as_raw()) } } /// Returns the power of an [`OPP`]. #[inline] pub fn power(&self) -> MicroWatt { // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to // use it. MicroWatt(unsafe { bindings::dev_pm_opp_get_power(self.as_raw()) }) } /// Returns the required pstate of an [`OPP`]. #[inline] pub fn required_pstate(&self, index: u32) -> u32 { // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to // use it. unsafe { bindings::dev_pm_opp_get_required_pstate(self.as_raw(), index) } } /// Returns true if the [`OPP`] is turbo. #[inline] pub fn is_turbo(&self) -> bool { // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to // use it. unsafe { bindings::dev_pm_opp_is_turbo(self.as_raw()) } } }