// SPDX-License-Identifier: GPL-2.0 //! String representations. use crate::{ alloc::{flags::*, AllocError, KVec}, error::{to_result, Result}, fmt::{self, Write}, prelude::*, }; use core::{ marker::PhantomData, ops::{Deref, DerefMut, Index}, }; pub use crate::prelude::CStr; /// Byte string without UTF-8 validity guarantee. #[repr(transparent)] pub struct BStr([u8]); impl BStr { /// Returns the length of this string. #[inline] pub const fn len(&self) -> usize { self.0.len() } /// Returns `true` if the string is empty. #[inline] pub const fn is_empty(&self) -> bool { self.len() == 0 } /// Creates a [`BStr`] from a `[u8]`. #[inline] pub const fn from_bytes(bytes: &[u8]) -> &Self { // SAFETY: `BStr` is transparent to `[u8]`. unsafe { &*(core::ptr::from_ref(bytes) as *const BStr) } } /// Strip a prefix from `self`. Delegates to [`slice::strip_prefix`]. /// /// # Examples /// /// ``` /// # use kernel::b_str; /// assert_eq!(Some(b_str!("bar")), b_str!("foobar").strip_prefix(b_str!("foo"))); /// assert_eq!(None, b_str!("foobar").strip_prefix(b_str!("bar"))); /// assert_eq!(Some(b_str!("foobar")), b_str!("foobar").strip_prefix(b_str!(""))); /// assert_eq!(Some(b_str!("")), b_str!("foobar").strip_prefix(b_str!("foobar"))); /// ``` pub fn strip_prefix(&self, pattern: impl AsRef) -> Option<&BStr> { self.deref() .strip_prefix(pattern.as_ref().deref()) .map(Self::from_bytes) } } impl fmt::Display for BStr { /// Formats printable ASCII characters, escaping the rest. /// /// ``` /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}}; /// let ascii = b_str!("Hello, BStr!"); /// let s = CString::try_from_fmt(fmt!("{ascii}"))?; /// assert_eq!(s.to_bytes(), "Hello, BStr!".as_bytes()); /// /// let non_ascii = b_str!("🦀"); /// let s = CString::try_from_fmt(fmt!("{non_ascii}"))?; /// assert_eq!(s.to_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes()); /// # Ok::<(), kernel::error::Error>(()) /// ``` fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { for &b in &self.0 { match b { // Common escape codes. b'\t' => f.write_str("\\t")?, b'\n' => f.write_str("\\n")?, b'\r' => f.write_str("\\r")?, // Printable characters. 0x20..=0x7e => f.write_char(b as char)?, _ => write!(f, "\\x{b:02x}")?, } } Ok(()) } } impl fmt::Debug for BStr { /// Formats printable ASCII characters with a double quote on either end, /// escaping the rest. /// /// ``` /// # use kernel::{prelude::fmt, b_str, str::{BStr, CString}}; /// // Embedded double quotes are escaped. /// let ascii = b_str!("Hello, \"BStr\"!"); /// let s = CString::try_from_fmt(fmt!("{ascii:?}"))?; /// assert_eq!(s.to_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes()); /// /// let non_ascii = b_str!("😺"); /// let s = CString::try_from_fmt(fmt!("{non_ascii:?}"))?; /// assert_eq!(s.to_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes()); /// # Ok::<(), kernel::error::Error>(()) /// ``` fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_char('"')?; for &b in &self.0 { match b { // Common escape codes. b'\t' => f.write_str("\\t")?, b'\n' => f.write_str("\\n")?, b'\r' => f.write_str("\\r")?, // String escape characters. b'\"' => f.write_str("\\\"")?, b'\\' => f.write_str("\\\\")?, // Printable characters. 0x20..=0x7e => f.write_char(b as char)?, _ => write!(f, "\\x{b:02x}")?, } } f.write_char('"') } } impl Deref for BStr { type Target = [u8]; #[inline] fn deref(&self) -> &Self::Target { &self.0 } } impl PartialEq for BStr { fn eq(&self, other: &Self) -> bool { self.deref().eq(other.deref()) } } impl Index for BStr where [u8]: Index, { type Output = Self; fn index(&self, index: Idx) -> &Self::Output { BStr::from_bytes(&self.0[index]) } } impl AsRef for [u8] { fn as_ref(&self) -> &BStr { BStr::from_bytes(self) } } impl AsRef for BStr { fn as_ref(&self) -> &BStr { self } } /// Creates a new [`BStr`] from a string literal. /// /// `b_str!` converts the supplied string literal to byte string, so non-ASCII /// characters can be included. /// /// # Examples /// /// ``` /// # use kernel::b_str; /// # use kernel::str::BStr; /// const MY_BSTR: &BStr = b_str!("My awesome BStr!"); /// ``` #[macro_export] macro_rules! b_str { ($str:literal) => {{ const S: &'static str = $str; const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes()); C }}; } /// Returns a C pointer to the string. // It is a free function rather than a method on an extension trait because: // // - error[E0379]: functions in trait impls cannot be declared const #[inline] pub const fn as_char_ptr_in_const_context(c_str: &CStr) -> *const c_char { c_str.as_ptr().cast() } mod private { pub trait Sealed {} impl Sealed for super::CStr {} } /// Extensions to [`CStr`]. pub trait CStrExt: private::Sealed { /// Wraps a raw C string pointer. /// /// # Safety /// /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr` /// must not be mutated. // This function exists to paper over the fact that `CStr::from_ptr` takes a `*const // core::ffi::c_char` rather than a `*const crate::ffi::c_char`. unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self; /// Creates a mutable [`CStr`] from a `[u8]` without performing any /// additional checks. /// /// # Safety /// /// `bytes` *must* end with a `NUL` byte, and should only have a single /// `NUL` byte (or the string will be truncated). unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self; /// Returns a C pointer to the string. // This function exists to paper over the fact that `CStr::as_ptr` returns a `*const // core::ffi::c_char` rather than a `*const crate::ffi::c_char`. fn as_char_ptr(&self) -> *const c_char; /// Convert this [`CStr`] into a [`CString`] by allocating memory and /// copying over the string data. fn to_cstring(&self) -> Result; /// Converts this [`CStr`] to its ASCII lower case equivalent in-place. /// /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', /// but non-ASCII letters are unchanged. /// /// To return a new lowercased value without modifying the existing one, use /// [`to_ascii_lowercase()`]. /// /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase fn make_ascii_lowercase(&mut self); /// Converts this [`CStr`] to its ASCII upper case equivalent in-place. /// /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', /// but non-ASCII letters are unchanged. /// /// To return a new uppercased value without modifying the existing one, use /// [`to_ascii_uppercase()`]. /// /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase fn make_ascii_uppercase(&mut self); /// Returns a copy of this [`CString`] where each character is mapped to its /// ASCII lower case equivalent. /// /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', /// but non-ASCII letters are unchanged. /// /// To lowercase the value in-place, use [`make_ascii_lowercase`]. /// /// [`make_ascii_lowercase`]: str::make_ascii_lowercase fn to_ascii_lowercase(&self) -> Result; /// Returns a copy of this [`CString`] where each character is mapped to its /// ASCII upper case equivalent. /// /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', /// but non-ASCII letters are unchanged. /// /// To uppercase the value in-place, use [`make_ascii_uppercase`]. /// /// [`make_ascii_uppercase`]: str::make_ascii_uppercase fn to_ascii_uppercase(&self) -> Result; } impl fmt::Display for CStr { /// Formats printable ASCII characters, escaping the rest. /// /// ``` /// # use kernel::prelude::fmt; /// # use kernel::str::CStr; /// # use kernel::str::CString; /// let penguin = c"🐧"; /// let s = CString::try_from_fmt(fmt!("{penguin}"))?; /// assert_eq!(s.to_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes()); /// /// let ascii = c"so \"cool\""; /// let s = CString::try_from_fmt(fmt!("{ascii}"))?; /// assert_eq!(s.to_bytes_with_nul(), "so \"cool\"\0".as_bytes()); /// # Ok::<(), kernel::error::Error>(()) /// ``` fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { for &c in self.to_bytes() { if (0x20..0x7f).contains(&c) { // Printable character. f.write_char(c as char)?; } else { write!(f, "\\x{c:02x}")?; } } Ok(()) } } /// Converts a mutable C string to a mutable byte slice. /// /// # Safety /// /// The caller must ensure that the slice ends in a NUL byte and contains no other NUL bytes before /// the borrow ends and the underlying [`CStr`] is used. unsafe fn to_bytes_mut(s: &mut CStr) -> &mut [u8] { // SAFETY: the cast from `&CStr` to `&[u8]` is safe since `CStr` has the same layout as `&[u8]` // (this is technically not guaranteed, but we rely on it here). The pointer dereference is // safe since it comes from a mutable reference which is guaranteed to be valid for writes. unsafe { &mut *(core::ptr::from_mut(s) as *mut [u8]) } } impl CStrExt for CStr { #[inline] unsafe fn from_char_ptr<'a>(ptr: *const c_char) -> &'a Self { // SAFETY: The safety preconditions are the same as for `CStr::from_ptr`. unsafe { CStr::from_ptr(ptr.cast()) } } #[inline] unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut Self { // SAFETY: the cast from `&[u8]` to `&CStr` is safe since the properties of `bytes` are // guaranteed by the safety precondition and `CStr` has the same layout as `&[u8]` (this is // technically not guaranteed, but we rely on it here). The pointer dereference is safe // since it comes from a mutable reference which is guaranteed to be valid for writes. unsafe { &mut *(core::ptr::from_mut(bytes) as *mut CStr) } } #[inline] fn as_char_ptr(&self) -> *const c_char { self.as_ptr().cast() } fn to_cstring(&self) -> Result { CString::try_from(self) } fn make_ascii_lowercase(&mut self) { // SAFETY: This doesn't introduce or remove NUL bytes in the C string. unsafe { to_bytes_mut(self) }.make_ascii_lowercase(); } fn make_ascii_uppercase(&mut self) { // SAFETY: This doesn't introduce or remove NUL bytes in the C string. unsafe { to_bytes_mut(self) }.make_ascii_uppercase(); } fn to_ascii_lowercase(&self) -> Result { let mut s = self.to_cstring()?; s.make_ascii_lowercase(); Ok(s) } fn to_ascii_uppercase(&self) -> Result { let mut s = self.to_cstring()?; s.make_ascii_uppercase(); Ok(s) } } impl AsRef for CStr { #[inline] fn as_ref(&self) -> &BStr { BStr::from_bytes(self.to_bytes()) } } /// Creates a new [`CStr`] from a string literal. /// /// The string literal should not contain any `NUL` bytes. /// /// # Examples /// /// ``` /// # use kernel::c_str; /// # use kernel::str::CStr; /// const MY_CSTR: &CStr = c_str!("My awesome CStr!"); /// ``` #[macro_export] macro_rules! c_str { ($str:expr) => {{ const S: &str = concat!($str, "\0"); const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) { Ok(v) => v, Err(_) => panic!("string contains interior NUL"), }; C }}; } #[kunit_tests(rust_kernel_str)] mod tests { use super::*; impl From for Error { #[inline] fn from(_: core::ffi::FromBytesWithNulError) -> Error { EINVAL } } macro_rules! format { ($($f:tt)*) => ({ CString::try_from_fmt(fmt!($($f)*))?.to_str()? }) } const ALL_ASCII_CHARS: &str = "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\ \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \ !\"#$%&'()*+,-./0123456789:;<=>?@\ ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\ \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\ \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\ \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\ \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\ \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\ \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\ \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\ \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff"; #[test] fn test_cstr_to_str() -> Result { let cstr = c"\xf0\x9f\xa6\x80"; let checked_str = cstr.to_str()?; assert_eq!(checked_str, "🦀"); Ok(()) } #[test] fn test_cstr_to_str_invalid_utf8() -> Result { let cstr = c"\xc3\x28"; assert!(cstr.to_str().is_err()); Ok(()) } #[test] fn test_cstr_display() -> Result { let hello_world = c"hello, world!"; assert_eq!(format!("{hello_world}"), "hello, world!"); let non_printables = c"\x01\x09\x0a"; assert_eq!(format!("{non_printables}"), "\\x01\\x09\\x0a"); let non_ascii = c"d\xe9j\xe0 vu"; assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu"); let good_bytes = c"\xf0\x9f\xa6\x80"; assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80"); Ok(()) } #[test] fn test_cstr_display_all_bytes() -> Result { let mut bytes: [u8; 256] = [0; 256]; // fill `bytes` with [1..=255] + [0] for i in u8::MIN..=u8::MAX { bytes[i as usize] = i.wrapping_add(1); } let cstr = CStr::from_bytes_with_nul(&bytes)?; assert_eq!(format!("{cstr}"), ALL_ASCII_CHARS); Ok(()) } #[test] fn test_cstr_debug() -> Result { let hello_world = c"hello, world!"; assert_eq!(format!("{hello_world:?}"), "\"hello, world!\""); let non_printables = c"\x01\x09\x0a"; assert_eq!(format!("{non_printables:?}"), "\"\\x01\\t\\n\""); let non_ascii = c"d\xe9j\xe0 vu"; assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\""); Ok(()) } #[test] fn test_bstr_display() -> Result { let hello_world = BStr::from_bytes(b"hello, world!"); assert_eq!(format!("{hello_world}"), "hello, world!"); let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); assert_eq!(format!("{escapes}"), "_\\t_\\n_\\r_\\_'_\"_"); let others = BStr::from_bytes(b"\x01"); assert_eq!(format!("{others}"), "\\x01"); let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu"); let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80"); Ok(()) } #[test] fn test_bstr_debug() -> Result { let hello_world = BStr::from_bytes(b"hello, world!"); assert_eq!(format!("{hello_world:?}"), "\"hello, world!\""); let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_"); assert_eq!(format!("{escapes:?}"), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\""); let others = BStr::from_bytes(b"\x01"); assert_eq!(format!("{others:?}"), "\"\\x01\""); let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu"); assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\""); let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80"); assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\""); Ok(()) } } /// Allows formatting of [`fmt::Arguments`] into a raw buffer. /// /// It does not fail if callers write past the end of the buffer so that they can calculate the /// size required to fit everything. /// /// # Invariants /// /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos` /// is less than `end`. pub struct RawFormatter { // Use `usize` to use `saturating_*` functions. beg: usize, pos: usize, end: usize, } impl RawFormatter { /// Creates a new instance of [`RawFormatter`] with an empty buffer. fn new() -> Self { // INVARIANT: The buffer is empty, so the region that needs to be writable is empty. Self { beg: 0, pos: 0, end: 0, } } /// Creates a new instance of [`RawFormatter`] with the given buffer pointers. /// /// # Safety /// /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end` /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`]. pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self { // INVARIANT: The safety requirements guarantee the type invariants. Self { beg: pos as usize, pos: pos as usize, end: end as usize, } } /// Creates a new instance of [`RawFormatter`] with the given buffer. /// /// # Safety /// /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes /// for the lifetime of the returned [`RawFormatter`]. pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { let pos = buf as usize; // INVARIANT: We ensure that `end` is never less than `buf`, and the safety requirements // guarantees that the memory region is valid for writes. Self { pos, beg: pos, end: pos.saturating_add(len), } } /// Returns the current insert position. /// /// N.B. It may point to invalid memory. pub(crate) fn pos(&self) -> *mut u8 { self.pos as *mut u8 } /// Returns the number of bytes written to the formatter. pub fn bytes_written(&self) -> usize { self.pos - self.beg } } impl fmt::Write for RawFormatter { fn write_str(&mut self, s: &str) -> fmt::Result { // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we // don't want it to wrap around to 0. let pos_new = self.pos.saturating_add(s.len()); // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`. let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos); if len_to_copy > 0 { // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end` // yet, so it is valid for write per the type invariants. unsafe { core::ptr::copy_nonoverlapping( s.as_bytes().as_ptr(), self.pos as *mut u8, len_to_copy, ) }; } self.pos = pos_new; Ok(()) } } /// Allows formatting of [`fmt::Arguments`] into a raw buffer. /// /// Fails if callers attempt to write more than will fit in the buffer. pub struct Formatter<'a>(RawFormatter, PhantomData<&'a mut ()>); impl Formatter<'_> { /// Creates a new instance of [`Formatter`] with the given buffer. /// /// # Safety /// /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes /// for the lifetime of the returned [`Formatter`]. pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self { // SAFETY: The safety requirements of this function satisfy those of the callee. Self(unsafe { RawFormatter::from_buffer(buf, len) }, PhantomData) } /// Create a new [`Self`] instance. pub fn new(buffer: &mut [u8]) -> Self { // SAFETY: `buffer` is valid for writes for the entire length for // the lifetime of `Self`. unsafe { Formatter::from_buffer(buffer.as_mut_ptr(), buffer.len()) } } } impl Deref for Formatter<'_> { type Target = RawFormatter; fn deref(&self) -> &Self::Target { &self.0 } } impl fmt::Write for Formatter<'_> { fn write_str(&mut self, s: &str) -> fmt::Result { self.0.write_str(s)?; // Fail the request if we go past the end of the buffer. if self.0.pos > self.0.end { Err(fmt::Error) } else { Ok(()) } } } /// A mutable reference to a byte buffer where a string can be written into. /// /// The buffer will be automatically null terminated after the last written character. /// /// # Invariants /// /// * The first byte of `buffer` is always zero. /// * The length of `buffer` is at least 1. pub(crate) struct NullTerminatedFormatter<'a> { buffer: &'a mut [u8], } impl<'a> NullTerminatedFormatter<'a> { /// Create a new [`Self`] instance. pub(crate) fn new(buffer: &'a mut [u8]) -> Option> { *(buffer.first_mut()?) = 0; // INVARIANT: // - We wrote zero to the first byte above. // - If buffer was not at least length 1, `buffer.first_mut()` would return None. Some(Self { buffer }) } } impl Write for NullTerminatedFormatter<'_> { fn write_str(&mut self, s: &str) -> fmt::Result { let bytes = s.as_bytes(); let len = bytes.len(); // We want space for a zero. By type invariant, buffer length is always at least 1, so no // underflow. if len > self.buffer.len() - 1 { return Err(fmt::Error); } let buffer = core::mem::take(&mut self.buffer); // We break the zero start invariant for a short while. buffer[..len].copy_from_slice(bytes); // INVARIANT: We checked above that buffer will have size at least 1 after this assignment. self.buffer = &mut buffer[len..]; // INVARIANT: We write zero to the first byte of the buffer. self.buffer[0] = 0; Ok(()) } } /// # Safety /// /// - `string` must point to a null terminated string that is valid for read. unsafe fn kstrtobool_raw(string: *const u8) -> Result { let mut result: bool = false; // SAFETY: // - By function safety requirement, `string` is a valid null-terminated string. // - `result` is a valid `bool` that we own. to_result(unsafe { bindings::kstrtobool(string, &mut result) })?; Ok(result) } /// Convert common user inputs into boolean values using the kernel's `kstrtobool` function. /// /// This routine returns `Ok(bool)` if the first character is one of 'YyTt1NnFf0', or /// \[oO\]\[NnFf\] for "on" and "off". Otherwise it will return `Err(EINVAL)`. /// /// # Examples /// /// ``` /// # use kernel::str::kstrtobool; /// /// // Lowercase /// assert_eq!(kstrtobool(c"true"), Ok(true)); /// assert_eq!(kstrtobool(c"tr"), Ok(true)); /// assert_eq!(kstrtobool(c"t"), Ok(true)); /// assert_eq!(kstrtobool(c"twrong"), Ok(true)); /// assert_eq!(kstrtobool(c"false"), Ok(false)); /// assert_eq!(kstrtobool(c"f"), Ok(false)); /// assert_eq!(kstrtobool(c"yes"), Ok(true)); /// assert_eq!(kstrtobool(c"no"), Ok(false)); /// assert_eq!(kstrtobool(c"on"), Ok(true)); /// assert_eq!(kstrtobool(c"off"), Ok(false)); /// /// // Camel case /// assert_eq!(kstrtobool(c"True"), Ok(true)); /// assert_eq!(kstrtobool(c"False"), Ok(false)); /// assert_eq!(kstrtobool(c"Yes"), Ok(true)); /// assert_eq!(kstrtobool(c"No"), Ok(false)); /// assert_eq!(kstrtobool(c"On"), Ok(true)); /// assert_eq!(kstrtobool(c"Off"), Ok(false)); /// /// // All caps /// assert_eq!(kstrtobool(c"TRUE"), Ok(true)); /// assert_eq!(kstrtobool(c"FALSE"), Ok(false)); /// assert_eq!(kstrtobool(c"YES"), Ok(true)); /// assert_eq!(kstrtobool(c"NO"), Ok(false)); /// assert_eq!(kstrtobool(c"ON"), Ok(true)); /// assert_eq!(kstrtobool(c"OFF"), Ok(false)); /// /// // Numeric /// assert_eq!(kstrtobool(c"1"), Ok(true)); /// assert_eq!(kstrtobool(c"0"), Ok(false)); /// /// // Invalid input /// assert_eq!(kstrtobool(c"invalid"), Err(EINVAL)); /// assert_eq!(kstrtobool(c"2"), Err(EINVAL)); /// ``` pub fn kstrtobool(string: &CStr) -> Result { // SAFETY: // - The pointer returned by `CStr::as_char_ptr` is guaranteed to be // null terminated. // - `string` is live and thus the string is valid for read. unsafe { kstrtobool_raw(string.as_char_ptr()) } } /// Convert `&[u8]` to `bool` by deferring to [`kernel::str::kstrtobool`]. /// /// Only considers at most the first two bytes of `bytes`. pub fn kstrtobool_bytes(bytes: &[u8]) -> Result { // `ktostrbool` only considers the first two bytes of the input. let stack_string = [*bytes.first().unwrap_or(&0), *bytes.get(1).unwrap_or(&0), 0]; // SAFETY: `stack_string` is null terminated and it is live on the stack so // it is valid for read. unsafe { kstrtobool_raw(stack_string.as_ptr()) } } /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end. /// /// Used for interoperability with kernel APIs that take C strings. /// /// # Invariants /// /// The string is always `NUL`-terminated and contains no other `NUL` bytes. /// /// # Examples /// /// ``` /// use kernel::{str::CString, prelude::fmt}; /// /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?; /// assert_eq!(s.to_bytes_with_nul(), "abc1020\0".as_bytes()); /// /// let tmp = "testing"; /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?; /// assert_eq!(s.to_bytes_with_nul(), "testing123\0".as_bytes()); /// /// // This fails because it has an embedded `NUL` byte. /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123)); /// assert_eq!(s.is_ok(), false); /// # Ok::<(), kernel::error::Error>(()) /// ``` pub struct CString { buf: KVec, } impl CString { /// Creates an instance of [`CString`] from the given formatted arguments. pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result { // Calculate the size needed (formatted string plus `NUL` terminator). let mut f = RawFormatter::new(); f.write_fmt(args)?; f.write_str("\0")?; let size = f.bytes_written(); // Allocate a vector with the required number of bytes, and write to it. let mut buf = KVec::with_capacity(size, GFP_KERNEL)?; // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes. let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) }; f.write_fmt(args)?; f.write_str("\0")?; // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`. unsafe { buf.inc_len(f.bytes_written()) }; // Check that there are no `NUL` bytes before the end. // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size` // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator) // so `f.bytes_written() - 1` doesn't underflow. let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) }; if !ptr.is_null() { return Err(EINVAL); } // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes // exist in the buffer. Ok(Self { buf }) } } impl Deref for CString { type Target = CStr; fn deref(&self) -> &Self::Target { // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no // other `NUL` bytes exist. unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) } } } impl DerefMut for CString { fn deref_mut(&mut self) -> &mut Self::Target { // SAFETY: A `CString` is always NUL-terminated and contains no other // NUL bytes. unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) } } } impl<'a> TryFrom<&'a CStr> for CString { type Error = AllocError; fn try_from(cstr: &'a CStr) -> Result { let mut buf = KVec::new(); buf.extend_from_slice(cstr.to_bytes_with_nul(), GFP_KERNEL)?; // INVARIANT: The `CStr` and `CString` types have the same invariants for // the string data, and we copied it over without changes. Ok(CString { buf }) } } impl fmt::Debug for CString { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Debug::fmt(&**self, f) } }