path: root/Documentation/virt/paravirt_ops.rst
diff options
authorChristoph Hellwig <>2019-07-24 09:24:49 +0200
committerPaolo Bonzini <>2019-07-24 10:52:11 +0200
commit2f5947dfcaecb99f2dd559156eecbeb7b95e4c02 (patch)
treea16db9103d69f0d5fae6de67987a1f1476f4598b /Documentation/virt/paravirt_ops.rst
parentc6bf2ae931adbd3e10967e12142856439a211813 (diff)
Documentation: move Documentation/virtual to Documentation/virt
Renaming docs seems to be en vogue at the moment, so fix on of the grossly misnamed directories. We usually never use "virtual" as a shortcut for virtualization in the kernel, but always virt, as seen in the virt/ top-level directory. Fix up the documentation to match that. Fixes: ed16648eb5b8 ("Move kvm, uml, and lguest subdirectories under a common "virtual" directory, I.E:") Signed-off-by: Christoph Hellwig <> Signed-off-by: Paolo Bonzini <>
Diffstat (limited to 'Documentation/virt/paravirt_ops.rst')
1 files changed, 35 insertions, 0 deletions
diff --git a/Documentation/virt/paravirt_ops.rst b/Documentation/virt/paravirt_ops.rst
new file mode 100644
index 000000000000..6b789d27cead
--- /dev/null
+++ b/Documentation/virt/paravirt_ops.rst
@@ -0,0 +1,35 @@
+.. SPDX-License-Identifier: GPL-2.0
+Linux provides support for different hypervisor virtualization technologies.
+Historically different binary kernels would be required in order to support
+different hypervisors, this restriction was removed with pv_ops.
+Linux pv_ops is a virtualization API which enables support for different
+hypervisors. It allows each hypervisor to override critical operations and
+allows a single kernel binary to run on all supported execution environments
+including native machine -- without any hypervisors.
+pv_ops provides a set of function pointers which represent operations
+corresponding to low level critical instructions and high level
+functionalities in various areas. pv-ops allows for optimizations at run
+time by enabling binary patching of the low-ops critical operations
+at boot time.
+pv_ops operations are classified into three categories:
+- simple indirect call
+ These operations correspond to high level functionality where it is
+ known that the overhead of indirect call isn't very important.
+- indirect call which allows optimization with binary patch
+ Usually these operations correspond to low level critical instructions. They
+ are called frequently and are performance critical. The overhead is
+ very important.
+- a set of macros for hand written assembly code
+ Hand written assembly codes (.S files) also need paravirtualization
+ because they include sensitive instructions or some of code paths in
+ them are very performance critical.