summaryrefslogtreecommitdiffstats
path: root/tools/testing/radix-tree/multiorder.c
blob: 60786fa55302504d297f00a4134596ad0b2b41f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
/*
 * multiorder.c: Multi-order radix tree entry testing
 * Copyright (c) 2016 Intel Corporation
 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */
#include <linux/radix-tree.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <pthread.h>

#include "test.h"

#define for_each_index(i, base, order) \
	for (i = base; i < base + (1 << order); i++)

static void __multiorder_tag_test(int index, int order)
{
	RADIX_TREE(tree, GFP_KERNEL);
	int base, err, i;

	/* our canonical entry */
	base = index & ~((1 << order) - 1);

	printv(2, "Multiorder tag test with index %d, canonical entry %d\n",
			index, base);

	err = item_insert_order(&tree, index, order);
	assert(!err);

	/*
	 * Verify we get collisions for covered indices.  We try and fail to
	 * insert a value entry so we don't leak memory via
	 * item_insert_order().
	 */
	for_each_index(i, base, order) {
		err = __radix_tree_insert(&tree, i, order, xa_mk_value(0xA0));
		assert(err == -EEXIST);
	}

	for_each_index(i, base, order) {
		assert(!radix_tree_tag_get(&tree, i, 0));
		assert(!radix_tree_tag_get(&tree, i, 1));
	}

	assert(radix_tree_tag_set(&tree, index, 0));

	for_each_index(i, base, order) {
		assert(radix_tree_tag_get(&tree, i, 0));
		assert(!radix_tree_tag_get(&tree, i, 1));
	}

	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1);
	assert(radix_tree_tag_clear(&tree, index, 0));

	for_each_index(i, base, order) {
		assert(!radix_tree_tag_get(&tree, i, 0));
		assert(radix_tree_tag_get(&tree, i, 1));
	}

	assert(radix_tree_tag_clear(&tree, index, 1));

	assert(!radix_tree_tagged(&tree, 0));
	assert(!radix_tree_tagged(&tree, 1));

	item_kill_tree(&tree);
}

static void __multiorder_tag_test2(unsigned order, unsigned long index2)
{
	RADIX_TREE(tree, GFP_KERNEL);
	unsigned long index = (1 << order);
	index2 += index;

	assert(item_insert_order(&tree, 0, order) == 0);
	assert(item_insert(&tree, index2) == 0);

	assert(radix_tree_tag_set(&tree, 0, 0));
	assert(radix_tree_tag_set(&tree, index2, 0));

	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 2);

	item_kill_tree(&tree);
}

static void multiorder_tag_tests(void)
{
	int i, j;

	/* test multi-order entry for indices 0-7 with no sibling pointers */
	__multiorder_tag_test(0, 3);
	__multiorder_tag_test(5, 3);

	/* test multi-order entry for indices 8-15 with no sibling pointers */
	__multiorder_tag_test(8, 3);
	__multiorder_tag_test(15, 3);

	/*
	 * Our order 5 entry covers indices 0-31 in a tree with height=2.
	 * This is broken up as follows:
	 * 0-7:		canonical entry
	 * 8-15:	sibling 1
	 * 16-23:	sibling 2
	 * 24-31:	sibling 3
	 */
	__multiorder_tag_test(0, 5);
	__multiorder_tag_test(29, 5);

	/* same test, but with indices 32-63 */
	__multiorder_tag_test(32, 5);
	__multiorder_tag_test(44, 5);

	/*
	 * Our order 8 entry covers indices 0-255 in a tree with height=3.
	 * This is broken up as follows:
	 * 0-63:	canonical entry
	 * 64-127:	sibling 1
	 * 128-191:	sibling 2
	 * 192-255:	sibling 3
	 */
	__multiorder_tag_test(0, 8);
	__multiorder_tag_test(190, 8);

	/* same test, but with indices 256-511 */
	__multiorder_tag_test(256, 8);
	__multiorder_tag_test(300, 8);

	__multiorder_tag_test(0x12345678UL, 8);

	for (i = 1; i < 10; i++)
		for (j = 0; j < (10 << i); j++)
			__multiorder_tag_test2(i, j);
}

static void multiorder_check(unsigned long index, int order)
{
	unsigned long i;
	unsigned long min = index & ~((1UL << order) - 1);
	unsigned long max = min + (1UL << order);
	void **slot;
	struct item *item2 = item_create(min, order);
	RADIX_TREE(tree, GFP_KERNEL);

	printv(2, "Multiorder index %ld, order %d\n", index, order);

	assert(item_insert_order(&tree, index, order) == 0);

	for (i = min; i < max; i++) {
		struct item *item = item_lookup(&tree, i);
		assert(item != 0);
		assert(item->index == index);
	}
	for (i = 0; i < min; i++)
		item_check_absent(&tree, i);
	for (i = max; i < 2*max; i++)
		item_check_absent(&tree, i);
	for (i = min; i < max; i++)
		assert(radix_tree_insert(&tree, i, item2) == -EEXIST);

	slot = radix_tree_lookup_slot(&tree, index);
	free(*slot);
	radix_tree_replace_slot(&tree, slot, item2);
	for (i = min; i < max; i++) {
		struct item *item = item_lookup(&tree, i);
		assert(item != 0);
		assert(item->index == min);
	}

	assert(item_delete(&tree, min) != 0);

	for (i = 0; i < 2*max; i++)
		item_check_absent(&tree, i);
}

static void multiorder_shrink(unsigned long index, int order)
{
	unsigned long i;
	unsigned long max = 1 << order;
	RADIX_TREE(tree, GFP_KERNEL);
	struct radix_tree_node *node;

	printv(2, "Multiorder shrink index %ld, order %d\n", index, order);

	assert(item_insert_order(&tree, 0, order) == 0);

	node = tree.xa_head;

	assert(item_insert(&tree, index) == 0);
	assert(node != tree.xa_head);

	assert(item_delete(&tree, index) != 0);
	assert(node == tree.xa_head);

	for (i = 0; i < max; i++) {
		struct item *item = item_lookup(&tree, i);
		assert(item != 0);
		assert(item->index == 0);
	}
	for (i = max; i < 2*max; i++)
		item_check_absent(&tree, i);

	if (!item_delete(&tree, 0)) {
		printv(2, "failed to delete index %ld (order %d)\n", index, order);
		abort();
	}

	for (i = 0; i < 2*max; i++)
		item_check_absent(&tree, i);
}

static void multiorder_insert_bug(void)
{
	RADIX_TREE(tree, GFP_KERNEL);

	item_insert(&tree, 0);
	radix_tree_tag_set(&tree, 0, 0);
	item_insert_order(&tree, 3 << 6, 6);

	item_kill_tree(&tree);
}

void multiorder_iteration(void)
{
	RADIX_TREE(tree, GFP_KERNEL);
	struct radix_tree_iter iter;
	void **slot;
	int i, j, err;

	printv(1, "Multiorder iteration test\n");

#define NUM_ENTRIES 11
	int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
	int order[NUM_ENTRIES] = {1, 1, 2, 3,  4,  1,  0,  1,  3,  0, 7};

	for (i = 0; i < NUM_ENTRIES; i++) {
		err = item_insert_order(&tree, index[i], order[i]);
		assert(!err);
	}

	for (j = 0; j < 256; j++) {
		for (i = 0; i < NUM_ENTRIES; i++)
			if (j <= (index[i] | ((1 << order[i]) - 1)))
				break;

		radix_tree_for_each_slot(slot, &tree, &iter, j) {
			int height = order[i] / RADIX_TREE_MAP_SHIFT;
			int shift = height * RADIX_TREE_MAP_SHIFT;
			unsigned long mask = (1UL << order[i]) - 1;
			struct item *item = *slot;

			assert((iter.index | mask) == (index[i] | mask));
			assert(iter.shift == shift);
			assert(!radix_tree_is_internal_node(item));
			assert((item->index | mask) == (index[i] | mask));
			assert(item->order == order[i]);
			i++;
		}
	}

	item_kill_tree(&tree);
}

void multiorder_tagged_iteration(void)
{
	RADIX_TREE(tree, GFP_KERNEL);
	struct radix_tree_iter iter;
	void **slot;
	int i, j;

	printv(1, "Multiorder tagged iteration test\n");

#define MT_NUM_ENTRIES 9
	int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
	int order[MT_NUM_ENTRIES] = {1, 0, 2, 4,  3,  1,  3,  0,   7};

#define TAG_ENTRIES 7
	int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};

	for (i = 0; i < MT_NUM_ENTRIES; i++)
		assert(!item_insert_order(&tree, index[i], order[i]));

	assert(!radix_tree_tagged(&tree, 1));

	for (i = 0; i < TAG_ENTRIES; i++)
		assert(radix_tree_tag_set(&tree, tag_index[i], 1));

	for (j = 0; j < 256; j++) {
		int k;

		for (i = 0; i < TAG_ENTRIES; i++) {
			for (k = i; index[k] < tag_index[i]; k++)
				;
			if (j <= (index[k] | ((1 << order[k]) - 1)))
				break;
		}

		radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
			unsigned long mask;
			struct item *item = *slot;
			for (k = i; index[k] < tag_index[i]; k++)
				;
			mask = (1UL << order[k]) - 1;

			assert((iter.index | mask) == (tag_index[i] | mask));
			assert(!radix_tree_is_internal_node(item));
			assert((item->index | mask) == (tag_index[i] | mask));
			assert(item->order == order[k]);
			i++;
		}
	}

	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) ==
				TAG_ENTRIES);

	for (j = 0; j < 256; j++) {
		int mask, k;

		for (i = 0; i < TAG_ENTRIES; i++) {
			for (k = i; index[k] < tag_index[i]; k++)
				;
			if (j <= (index[k] | ((1 << order[k]) - 1)))
				break;
		}

		radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
			struct item *item = *slot;
			for (k = i; index[k] < tag_index[i]; k++)
				;
			mask = (1 << order[k]) - 1;

			assert((iter.index | mask) == (tag_index[i] | mask));
			assert(!radix_tree_is_internal_node(item));
			assert((item->index | mask) == (tag_index[i] | mask));
			assert(item->order == order[k]);
			i++;
		}
	}

	assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0)
			== TAG_ENTRIES);
	i = 0;
	radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
		assert(iter.index == tag_index[i]);
		i++;
	}

	item_kill_tree(&tree);
}

/*
 * Basic join checks: make sure we can't find an entry in the tree after
 * a larger entry has replaced it
 */
static void multiorder_join1(unsigned long index,
				unsigned order1, unsigned order2)
{
	unsigned long loc;
	void *item, *item2 = item_create(index + 1, order1);
	RADIX_TREE(tree, GFP_KERNEL);

	item_insert_order(&tree, index, order2);
	item = radix_tree_lookup(&tree, index);
	radix_tree_join(&tree, index + 1, order1, item2);
	loc = find_item(&tree, item);
	if (loc == -1)
		free(item);
	item = radix_tree_lookup(&tree, index + 1);
	assert(item == item2);
	item_kill_tree(&tree);
}

/*
 * Check that the accounting of value entries is handled correctly
 * by joining a value entry to a normal pointer.
 */
static void multiorder_join2(unsigned order1, unsigned order2)
{
	RADIX_TREE(tree, GFP_KERNEL);
	struct radix_tree_node *node;
	void *item1 = item_create(0, order1);
	void *item2;

	item_insert_order(&tree, 0, order2);
	radix_tree_insert(&tree, 1 << order2, xa_mk_value(5));
	item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
	assert(item2 == xa_mk_value(5));
	assert(node->nr_values == 1);

	item2 = radix_tree_lookup(&tree, 0);
	free(item2);

	radix_tree_join(&tree, 0, order1, item1);
	item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
	assert(item2 == item1);
	assert(node->nr_values == 0);
	item_kill_tree(&tree);
}

/*
 * This test revealed an accounting bug for value entries at one point.
 * Nodes were being freed back into the pool with an elevated exception count
 * by radix_tree_join() and then radix_tree_split() was failing to zero the
 * count of value entries.
 */
static void multiorder_join3(unsigned int order)
{
	RADIX_TREE(tree, GFP_KERNEL);
	struct radix_tree_node *node;
	void **slot;
	struct radix_tree_iter iter;
	unsigned long i;

	for (i = 0; i < (1 << order); i++) {
		radix_tree_insert(&tree, i, xa_mk_value(5));
	}

	radix_tree_join(&tree, 0, order, xa_mk_value(7));
	rcu_barrier();

	radix_tree_split(&tree, 0, 0);

	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
		radix_tree_iter_replace(&tree, &iter, slot, xa_mk_value(5));
	}

	__radix_tree_lookup(&tree, 0, &node, NULL);
	assert(node->nr_values == node->count);

	item_kill_tree(&tree);
}

static void multiorder_join(void)
{
	int i, j, idx;

	for (idx = 0; idx < 1024; idx = idx * 2 + 3) {
		for (i = 1; i < 15; i++) {
			for (j = 0; j < i; j++) {
				multiorder_join1(idx, i, j);
			}
		}
	}

	for (i = 1; i < 15; i++) {
		for (j = 0; j < i; j++) {
			multiorder_join2(i, j);
		}
	}

	for (i = 3; i < 10; i++) {
		multiorder_join3(i);
	}
}

static void check_mem(unsigned old_order, unsigned new_order, unsigned alloc)
{
	struct radix_tree_preload *rtp = &radix_tree_preloads;
	if (rtp->nr != 0)
		printv(2, "split(%u %u) remaining %u\n", old_order, new_order,
							rtp->nr);
	/*
	 * Can't check for equality here as some nodes may have been
	 * RCU-freed while we ran.  But we should never finish with more
	 * nodes allocated since they should have all been preloaded.
	 */
	if (nr_allocated > alloc)
		printv(2, "split(%u %u) allocated %u %u\n", old_order, new_order,
							alloc, nr_allocated);
}

static void __multiorder_split(int old_order, int new_order)
{
	RADIX_TREE(tree, GFP_ATOMIC);
	void **slot;
	struct radix_tree_iter iter;
	unsigned alloc;
	struct item *item;

	radix_tree_preload(GFP_KERNEL);
	assert(item_insert_order(&tree, 0, old_order) == 0);
	radix_tree_preload_end();

	/* Wipe out the preloaded cache or it'll confuse check_mem() */
	radix_tree_cpu_dead(0);

	item = radix_tree_tag_set(&tree, 0, 2);

	radix_tree_split_preload(old_order, new_order, GFP_KERNEL);
	alloc = nr_allocated;
	radix_tree_split(&tree, 0, new_order);
	check_mem(old_order, new_order, alloc);
	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
		radix_tree_iter_replace(&tree, &iter, slot,
					item_create(iter.index, new_order));
	}
	radix_tree_preload_end();

	item_kill_tree(&tree);
	free(item);
}

static void __multiorder_split2(int old_order, int new_order)
{
	RADIX_TREE(tree, GFP_KERNEL);
	void **slot;
	struct radix_tree_iter iter;
	struct radix_tree_node *node;
	void *item;

	__radix_tree_insert(&tree, 0, old_order, xa_mk_value(5));

	item = __radix_tree_lookup(&tree, 0, &node, NULL);
	assert(item == xa_mk_value(5));
	assert(node->nr_values > 0);

	radix_tree_split(&tree, 0, new_order);
	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
		radix_tree_iter_replace(&tree, &iter, slot,
					item_create(iter.index, new_order));
	}

	item = __radix_tree_lookup(&tree, 0, &node, NULL);
	assert(item != xa_mk_value(5));
	assert(node->nr_values == 0);

	item_kill_tree(&tree);
}

static void __multiorder_split3(int old_order, int new_order)
{
	RADIX_TREE(tree, GFP_KERNEL);
	void **slot;
	struct radix_tree_iter iter;
	struct radix_tree_node *node;
	void *item;

	__radix_tree_insert(&tree, 0, old_order, xa_mk_value(5));

	item = __radix_tree_lookup(&tree, 0, &node, NULL);
	assert(item == xa_mk_value(5));
	assert(node->nr_values > 0);

	radix_tree_split(&tree, 0, new_order);
	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
		radix_tree_iter_replace(&tree, &iter, slot, xa_mk_value(7));
	}

	item = __radix_tree_lookup(&tree, 0, &node, NULL);
	assert(item == xa_mk_value(7));
	assert(node->nr_values > 0);

	item_kill_tree(&tree);

	__radix_tree_insert(&tree, 0, old_order, xa_mk_value(5));

	item = __radix_tree_lookup(&tree, 0, &node, NULL);
	assert(item == xa_mk_value(5));
	assert(node->nr_values > 0);

	radix_tree_split(&tree, 0, new_order);
	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
		if (iter.index == (1 << new_order))
			radix_tree_iter_replace(&tree, &iter, slot,
						xa_mk_value(7));
		else
			radix_tree_iter_replace(&tree, &iter, slot, NULL);
	}

	item = __radix_tree_lookup(&tree, 1 << new_order, &node, NULL);
	assert(item == xa_mk_value(7));
	assert(node->count == node->nr_values);
	do {
		node = node->parent;
		if (!node)
			break;
		assert(node->count == 1);
		assert(node->nr_values == 0);
	} while (1);

	item_kill_tree(&tree);
}

static void multiorder_split(void)
{
	int i, j;

	for (i = 3; i < 11; i++)
		for (j = 0; j < i; j++) {
			__multiorder_split(i, j);
			__multiorder_split2(i, j);
			__multiorder_split3(i, j);
		}
}

static void multiorder_account(void)
{
	RADIX_TREE(tree, GFP_KERNEL);
	struct radix_tree_node *node;
	void **slot;

	item_insert_order(&tree, 0, 5);

	__radix_tree_insert(&tree, 1 << 5, 5, xa_mk_value(5));
	__radix_tree_lookup(&tree, 0, &node, NULL);
	assert(node->count == node->nr_values * 2);
	radix_tree_delete(&tree, 1 << 5);
	assert(node->nr_values == 0);

	__radix_tree_insert(&tree, 1 << 5, 5, xa_mk_value(5));
	__radix_tree_lookup(&tree, 1 << 5, &node, &slot);
	assert(node->count == node->nr_values * 2);
	__radix_tree_replace(&tree, node, slot, NULL, NULL);
	assert(node->nr_values == 0);

	item_kill_tree(&tree);
}

bool stop_iteration = false;

static void *creator_func(void *ptr)
{
	/* 'order' is set up to ensure we have sibling entries */
	unsigned int order = RADIX_TREE_MAP_SHIFT - 1;
	struct radix_tree_root *tree = ptr;
	int i;

	for (i = 0; i < 10000; i++) {
		item_insert_order(tree, 0, order);
		item_delete_rcu(tree, 0);
	}

	stop_iteration = true;
	return NULL;
}

static void *iterator_func(void *ptr)
{
	struct radix_tree_root *tree = ptr;
	struct radix_tree_iter iter;
	struct item *item;
	void **slot;

	while (!stop_iteration) {
		rcu_read_lock();
		radix_tree_for_each_slot(slot, tree, &iter, 0) {
			item = radix_tree_deref_slot(slot);

			if (!item)
				continue;
			if (radix_tree_deref_retry(item)) {
				slot = radix_tree_iter_retry(&iter);
				continue;
			}

			item_sanity(item, iter.index);
		}
		rcu_read_unlock();
	}
	return NULL;
}

static void multiorder_iteration_race(void)
{
	const int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
	pthread_t worker_thread[num_threads];
	RADIX_TREE(tree, GFP_KERNEL);
	int i;

	pthread_create(&worker_thread[0], NULL, &creator_func, &tree);
	for (i = 1; i < num_threads; i++)
		pthread_create(&worker_thread[i], NULL, &iterator_func, &tree);

	for (i = 0; i < num_threads; i++)
		pthread_join(worker_thread[i], NULL);

	item_kill_tree(&tree);
}

void multiorder_checks(void)
{
	int i;

	for (i = 0; i < 20; i++) {
		multiorder_check(200, i);
		multiorder_check(0, i);
		multiorder_check((1UL << i) + 1, i);
	}

	for (i = 0; i < 15; i++)
		multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);

	multiorder_insert_bug();
	multiorder_tag_tests();
	multiorder_iteration();
	multiorder_tagged_iteration();
	multiorder_join();
	multiorder_split();
	multiorder_account();
	multiorder_iteration_race();

	radix_tree_cpu_dead(0);
}

int __weak main(void)
{
	radix_tree_init();
	multiorder_checks();
	return 0;
}