diff options
Diffstat (limited to 'bl31/context_mgmt.c')
-rw-r--r-- | bl31/context_mgmt.c | 217 |
1 files changed, 182 insertions, 35 deletions
diff --git a/bl31/context_mgmt.c b/bl31/context_mgmt.c index 67a6e037..81c7c568 100644 --- a/bl31/context_mgmt.c +++ b/bl31/context_mgmt.c @@ -40,6 +40,7 @@ #include <platform.h> #include <platform_def.h> #include <runtime_svc.h> +#include <string.h> /******************************************************************************* @@ -87,6 +88,177 @@ void cm_set_context_by_mpidr(uint64_t mpidr, void *context, uint32_t security_st } /******************************************************************************* + * This function is used to program the context that's used for exception + * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for + * the required security state + ******************************************************************************/ +static inline void cm_set_next_context(void *context) +{ +#if DEBUG + uint64_t sp_mode; + + /* + * Check that this function is called with SP_EL0 as the stack + * pointer + */ + __asm__ volatile("mrs %0, SPSel\n" + : "=r" (sp_mode)); + + assert(sp_mode == MODE_SP_EL0); +#endif + + __asm__ volatile("msr spsel, #1\n" + "mov sp, %0\n" + "msr spsel, #0\n" + : : "r" (context)); +} + +/******************************************************************************* + * The following function initializes a cpu_context for the current CPU for + * first use, and sets the initial entrypoint state as specified by the + * entry_point_info structure. + * + * The security state to initialize is determined by the SECURE attribute + * of the entry_point_info. The function returns a pointer to the initialized + * context and sets this as the next context to return to. + * + * The EE and ST attributes are used to configure the endianess and secure + * timer availability for the new excution context. + * + * To prepare the register state for entry call cm_prepare_el3_exit() and + * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to + * cm_e1_sysreg_context_restore(). + ******************************************************************************/ +void cm_init_context(uint64_t mpidr, const entry_point_info_t *ep) +{ + uint32_t security_state; + cpu_context_t *ctx; + uint32_t scr_el3; + el3_state_t *state; + gp_regs_t *gp_regs; + unsigned long sctlr_elx; + + security_state = GET_SECURITY_STATE(ep->h.attr); + ctx = cm_get_context_by_mpidr(mpidr, security_state); + assert(ctx); + + /* Clear any residual register values from the context */ + memset(ctx, 0, sizeof(*ctx)); + + /* + * Base the context SCR on the current value, adjust for entry point + * specific requirements and set trap bits from the IMF + * TODO: provide the base/global SCR bits using another mechanism? + */ + scr_el3 = read_scr(); + scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | + SCR_ST_BIT | SCR_HCE_BIT); + + if (security_state != SECURE) + scr_el3 |= SCR_NS_BIT; + + if (GET_RW(ep->spsr) == MODE_RW_64) + scr_el3 |= SCR_RW_BIT; + + if (EP_GET_ST(ep->h.attr)) + scr_el3 |= SCR_ST_BIT; + + scr_el3 |= get_scr_el3_from_routing_model(security_state); + + /* + * Set up SCTLR_ELx for the target exception level: + * EE bit is taken from the entrpoint attributes + * M, C and I bits must be zero (as required by PSCI specification) + * + * The target exception level is based on the spsr mode requested. + * If execution is requested to EL2 or hyp mode, HVC is enabled + * via SCR_EL3.HCE. + * + * Always compute the SCTLR_EL1 value and save in the cpu_context + * - the EL2 registers are set up by cm_preapre_ns_entry() as they + * are not part of the stored cpu_context + * + * TODO: In debug builds the spsr should be validated and checked + * against the CPU support, security state, endianess and pc + */ + sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; + sctlr_elx |= SCTLR_EL1_RES1; + write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); + + if ((GET_RW(ep->spsr) == MODE_RW_64 + && GET_EL(ep->spsr) == MODE_EL2) + || (GET_RW(ep->spsr) != MODE_RW_64 + && GET_M32(ep->spsr) == MODE32_hyp)) { + scr_el3 |= SCR_HCE_BIT; + } + + /* Populate EL3 state so that we've the right context before doing ERET */ + state = get_el3state_ctx(ctx); + write_ctx_reg(state, CTX_SCR_EL3, scr_el3); + write_ctx_reg(state, CTX_ELR_EL3, ep->pc); + write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); + + /* + * Store the X0-X7 value from the entrypoint into the context + * Use memcpy as we are in control of the layout of the structures + */ + gp_regs = get_gpregs_ctx(ctx); + memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); +} + +/******************************************************************************* + * Prepare the CPU system registers for first entry into secure or normal world + * + * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized + * If execution is requested to non-secure EL1 or svc mode, and the CPU supports + * EL2 then EL2 is disabled by configuring all necessary EL2 registers. + * For all entries, the EL1 registers are initialized from the cpu_context + ******************************************************************************/ +void cm_prepare_el3_exit(uint32_t security_state) +{ + uint32_t sctlr_elx, scr_el3, cptr_el2; + cpu_context_t *ctx = cm_get_context(security_state); + + assert(ctx); + + if (security_state == NON_SECURE) { + scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); + if (scr_el3 & SCR_HCE_BIT) { + /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ + sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), + CTX_SCTLR_EL1); + sctlr_elx &= ~SCTLR_EE_BIT; + sctlr_elx |= SCTLR_EL2_RES1; + write_sctlr_el2(sctlr_elx); + } else if (read_id_aa64pfr0_el1() & + (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) { + /* EL2 present but unused, need to disable safely */ + + /* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */ + write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0); + + /* SCTLR_EL2 : can be ignored when bypassing */ + + /* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */ + cptr_el2 = read_cptr_el2(); + cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT); + write_cptr_el2(cptr_el2); + + /* Enable EL1 access to timer */ + write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT); + + /* Set VPIDR, VMPIDR to match MIDR, MPIDR */ + write_vpidr_el2(read_midr_el1()); + write_vmpidr_el2(read_mpidr_el1()); + } + } + + el1_sysregs_context_restore(get_sysregs_ctx(ctx)); + + cm_set_next_context(ctx); +} + +/******************************************************************************* * The next four functions are used by runtime services to save and restore EL3 * and EL1 contexts on the 'cpu_context' structure for the specified security * state. @@ -132,13 +304,10 @@ void cm_el1_sysregs_context_restore(uint32_t security_state) } /******************************************************************************* - * This function populates 'cpu_context' pertaining to the given security state - * with the entrypoint, SPSR and SCR values so that an ERET from this security - * state correctly restores corresponding values to drop the CPU to the next - * exception level + * This function populates ELR_EL3 member of 'cpu_context' pertaining to the + * given security state with the given entrypoint ******************************************************************************/ -void cm_set_el3_eret_context(uint32_t security_state, uint64_t entrypoint, - uint32_t spsr, uint32_t scr) +void cm_set_elr_el3(uint32_t security_state, uint64_t entrypoint) { cpu_context_t *ctx; el3_state_t *state; @@ -146,23 +315,17 @@ void cm_set_el3_eret_context(uint32_t security_state, uint64_t entrypoint, ctx = cm_get_context(security_state); assert(ctx); - /* Program the interrupt routing model for this security state */ - scr &= ~SCR_FIQ_BIT; - scr &= ~SCR_IRQ_BIT; - scr |= get_scr_el3_from_routing_model(security_state); - - /* Populate EL3 state so that we've the right context before doing ERET */ + /* Populate EL3 state so that ERET jumps to the correct entry */ state = get_el3state_ctx(ctx); - write_ctx_reg(state, CTX_SPSR_EL3, spsr); write_ctx_reg(state, CTX_ELR_EL3, entrypoint); - write_ctx_reg(state, CTX_SCR_EL3, scr); } /******************************************************************************* - * This function populates ELR_EL3 member of 'cpu_context' pertaining to the - * given security state with the given entrypoint + * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' + * pertaining to the given security state ******************************************************************************/ -void cm_set_elr_el3(uint32_t security_state, uint64_t entrypoint) +void cm_set_elr_spsr_el3(uint32_t security_state, + uint64_t entrypoint, uint32_t spsr) { cpu_context_t *ctx; el3_state_t *state; @@ -173,6 +336,7 @@ void cm_set_elr_el3(uint32_t security_state, uint64_t entrypoint) /* Populate EL3 state so that ERET jumps to the correct entry */ state = get_el3state_ctx(ctx); write_ctx_reg(state, CTX_ELR_EL3, entrypoint); + write_ctx_reg(state, CTX_SPSR_EL3, spsr); } /******************************************************************************* @@ -233,26 +397,9 @@ uint32_t cm_get_scr_el3(uint32_t security_state) void cm_set_next_eret_context(uint32_t security_state) { cpu_context_t *ctx; -#if DEBUG - uint64_t sp_mode; -#endif ctx = cm_get_context(security_state); assert(ctx); -#if DEBUG - /* - * Check that this function is called with SP_EL0 as the stack - * pointer - */ - __asm__ volatile("mrs %0, SPSel\n" - : "=r" (sp_mode)); - - assert(sp_mode == MODE_SP_EL0); -#endif - - __asm__ volatile("msr spsel, #1\n" - "mov sp, %0\n" - "msr spsel, #0\n" - : : "r" (ctx)); + cm_set_next_context(ctx); } |