diff options
Diffstat (limited to 'bl31/context_mgmt.c')
-rw-r--r-- | bl31/context_mgmt.c | 473 |
1 files changed, 0 insertions, 473 deletions
diff --git a/bl31/context_mgmt.c b/bl31/context_mgmt.c deleted file mode 100644 index 2b619aaa..00000000 --- a/bl31/context_mgmt.c +++ /dev/null @@ -1,473 +0,0 @@ -/* - * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are met: - * - * Redistributions of source code must retain the above copyright notice, this - * list of conditions and the following disclaimer. - * - * Redistributions in binary form must reproduce the above copyright notice, - * this list of conditions and the following disclaimer in the documentation - * and/or other materials provided with the distribution. - * - * Neither the name of ARM nor the names of its contributors may be used - * to endorse or promote products derived from this software without specific - * prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#include <arch.h> -#include <arch_helpers.h> -#include <assert.h> -#include <bl_common.h> -#include <bl31.h> -#include <context.h> -#include <context_mgmt.h> -#include <cpu_data.h> -#include <interrupt_mgmt.h> -#include <platform.h> -#include <platform_def.h> -#include <runtime_svc.h> -#include <string.h> - - -/******************************************************************************* - * Context management library initialisation routine. This library is used by - * runtime services to share pointers to 'cpu_context' structures for the secure - * and non-secure states. Management of the structures and their associated - * memory is not done by the context management library e.g. the PSCI service - * manages the cpu context used for entry from and exit to the non-secure state. - * The Secure payload dispatcher service manages the context(s) corresponding to - * the secure state. It also uses this library to get access to the non-secure - * state cpu context pointers. - * Lastly, this library provides the api to make SP_EL3 point to the cpu context - * which will used for programming an entry into a lower EL. The same context - * will used to save state upon exception entry from that EL. - ******************************************************************************/ -void cm_init(void) -{ - /* - * The context management library has only global data to intialize, but - * that will be done when the BSS is zeroed out - */ -} - -/******************************************************************************* - * This function returns a pointer to the most recent 'cpu_context' structure - * for the CPU identified by `cpu_idx` that was set as the context for the - * specified security state. NULL is returned if no such structure has been - * specified. - ******************************************************************************/ -void *cm_get_context_by_index(unsigned int cpu_idx, - unsigned int security_state) -{ - assert(sec_state_is_valid(security_state)); - - return get_cpu_data_by_index(cpu_idx, cpu_context[security_state]); -} - -/******************************************************************************* - * This function sets the pointer to the current 'cpu_context' structure for the - * specified security state for the CPU identified by CPU index. - ******************************************************************************/ -void cm_set_context_by_index(unsigned int cpu_idx, void *context, - unsigned int security_state) -{ - assert(sec_state_is_valid(security_state)); - - set_cpu_data_by_index(cpu_idx, cpu_context[security_state], context); -} - -#if !ERROR_DEPRECATED -/* - * These context management helpers are deprecated but are maintained for use - * by SPDs which have not migrated to the new API. If ERROR_DEPRECATED - * is enabled, these are excluded from the build so as to force users to - * migrate to the new API. - */ - -/******************************************************************************* - * This function returns a pointer to the most recent 'cpu_context' structure - * for the CPU identified by MPIDR that was set as the context for the specified - * security state. NULL is returned if no such structure has been specified. - ******************************************************************************/ -void *cm_get_context_by_mpidr(uint64_t mpidr, uint32_t security_state) -{ - assert(sec_state_is_valid(security_state)); - - return cm_get_context_by_index(platform_get_core_pos(mpidr), security_state); -} - -/******************************************************************************* - * This function sets the pointer to the current 'cpu_context' structure for the - * specified security state for the CPU identified by MPIDR - ******************************************************************************/ -void cm_set_context_by_mpidr(uint64_t mpidr, void *context, uint32_t security_state) -{ - assert(sec_state_is_valid(security_state)); - - cm_set_context_by_index(platform_get_core_pos(mpidr), - context, security_state); -} - -/******************************************************************************* - * The following function provides a compatibility function for SPDs using the - * existing cm library routines. This function is expected to be invoked for - * initializing the cpu_context for the CPU specified by MPIDR for first use. - ******************************************************************************/ -void cm_init_context(unsigned long mpidr, const entry_point_info_t *ep) -{ - if ((mpidr & MPIDR_AFFINITY_MASK) == - (read_mpidr_el1() & MPIDR_AFFINITY_MASK)) - cm_init_my_context(ep); - else - cm_init_context_by_index(platform_get_core_pos(mpidr), ep); -} -#endif - -/******************************************************************************* - * This function is used to program the context that's used for exception - * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for - * the required security state - ******************************************************************************/ -static inline void cm_set_next_context(void *context) -{ -#if DEBUG - uint64_t sp_mode; - - /* - * Check that this function is called with SP_EL0 as the stack - * pointer - */ - __asm__ volatile("mrs %0, SPSel\n" - : "=r" (sp_mode)); - - assert(sp_mode == MODE_SP_EL0); -#endif - - __asm__ volatile("msr spsel, #1\n" - "mov sp, %0\n" - "msr spsel, #0\n" - : : "r" (context)); -} - -/******************************************************************************* - * The following function initializes the cpu_context 'ctx' for - * first use, and sets the initial entrypoint state as specified by the - * entry_point_info structure. - * - * The security state to initialize is determined by the SECURE attribute - * of the entry_point_info. The function returns a pointer to the initialized - * context and sets this as the next context to return to. - * - * The EE and ST attributes are used to configure the endianess and secure - * timer availability for the new execution context. - * - * To prepare the register state for entry call cm_prepare_el3_exit() and - * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to - * cm_e1_sysreg_context_restore(). - ******************************************************************************/ -static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) -{ - unsigned int security_state; - uint32_t scr_el3; - el3_state_t *state; - gp_regs_t *gp_regs; - unsigned long sctlr_elx; - - assert(ctx); - - security_state = GET_SECURITY_STATE(ep->h.attr); - - /* Clear any residual register values from the context */ - memset(ctx, 0, sizeof(*ctx)); - - /* - * Base the context SCR on the current value, adjust for entry point - * specific requirements and set trap bits from the IMF - * TODO: provide the base/global SCR bits using another mechanism? - */ - scr_el3 = read_scr(); - scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | - SCR_ST_BIT | SCR_HCE_BIT); - - if (security_state != SECURE) - scr_el3 |= SCR_NS_BIT; - - if (GET_RW(ep->spsr) == MODE_RW_64) - scr_el3 |= SCR_RW_BIT; - - if (EP_GET_ST(ep->h.attr)) - scr_el3 |= SCR_ST_BIT; - - scr_el3 |= get_scr_el3_from_routing_model(security_state); - - /* - * Set up SCTLR_ELx for the target exception level: - * EE bit is taken from the entrpoint attributes - * M, C and I bits must be zero (as required by PSCI specification) - * - * The target exception level is based on the spsr mode requested. - * If execution is requested to EL2 or hyp mode, HVC is enabled - * via SCR_EL3.HCE. - * - * Always compute the SCTLR_EL1 value and save in the cpu_context - * - the EL2 registers are set up by cm_preapre_ns_entry() as they - * are not part of the stored cpu_context - * - * TODO: In debug builds the spsr should be validated and checked - * against the CPU support, security state, endianess and pc - */ - sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; - if (GET_RW(ep->spsr) == MODE_RW_64) - sctlr_elx |= SCTLR_EL1_RES1; - else - sctlr_elx |= SCTLR_AARCH32_EL1_RES1; - write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); - - if ((GET_RW(ep->spsr) == MODE_RW_64 - && GET_EL(ep->spsr) == MODE_EL2) - || (GET_RW(ep->spsr) != MODE_RW_64 - && GET_M32(ep->spsr) == MODE32_hyp)) { - scr_el3 |= SCR_HCE_BIT; - } - - /* Populate EL3 state so that we've the right context before doing ERET */ - state = get_el3state_ctx(ctx); - write_ctx_reg(state, CTX_SCR_EL3, scr_el3); - write_ctx_reg(state, CTX_ELR_EL3, ep->pc); - write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); - - /* - * Store the X0-X7 value from the entrypoint into the context - * Use memcpy as we are in control of the layout of the structures - */ - gp_regs = get_gpregs_ctx(ctx); - memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); -} - -/******************************************************************************* - * The following function initializes the cpu_context for a CPU specified by - * its `cpu_idx` for first use, and sets the initial entrypoint state as - * specified by the entry_point_info structure. - ******************************************************************************/ -void cm_init_context_by_index(unsigned int cpu_idx, - const entry_point_info_t *ep) -{ - cpu_context_t *ctx; - ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); - cm_init_context_common(ctx, ep); -} - -/******************************************************************************* - * The following function initializes the cpu_context for the current CPU - * for first use, and sets the initial entrypoint state as specified by the - * entry_point_info structure. - ******************************************************************************/ -void cm_init_my_context(const entry_point_info_t *ep) -{ - cpu_context_t *ctx; - ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); - cm_init_context_common(ctx, ep); -} - -/******************************************************************************* - * Prepare the CPU system registers for first entry into secure or normal world - * - * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized - * If execution is requested to non-secure EL1 or svc mode, and the CPU supports - * EL2 then EL2 is disabled by configuring all necessary EL2 registers. - * For all entries, the EL1 registers are initialized from the cpu_context - ******************************************************************************/ -void cm_prepare_el3_exit(uint32_t security_state) -{ - uint32_t sctlr_elx, scr_el3, cptr_el2; - cpu_context_t *ctx = cm_get_context(security_state); - - assert(ctx); - - if (security_state == NON_SECURE) { - scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); - if (scr_el3 & SCR_HCE_BIT) { - /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ - sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), - CTX_SCTLR_EL1); - sctlr_elx &= ~SCTLR_EE_BIT; - sctlr_elx |= SCTLR_EL2_RES1; - write_sctlr_el2(sctlr_elx); - } else if (read_id_aa64pfr0_el1() & - (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) { - /* EL2 present but unused, need to disable safely */ - - /* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */ - write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0); - - /* SCTLR_EL2 : can be ignored when bypassing */ - - /* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */ - cptr_el2 = read_cptr_el2(); - cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT); - write_cptr_el2(cptr_el2); - - /* Enable EL1 access to timer */ - write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT); - - /* Reset CNTVOFF_EL2 */ - write_cntvoff_el2(0); - - /* Set VPIDR, VMPIDR to match MIDR, MPIDR */ - write_vpidr_el2(read_midr_el1()); - write_vmpidr_el2(read_mpidr_el1()); - - /* - * Reset VTTBR_EL2. - * Needed because cache maintenance operations depend on - * the VMID even when non-secure EL1&0 stage 2 address - * translation are disabled. - */ - write_vttbr_el2(0); - } - } - - el1_sysregs_context_restore(get_sysregs_ctx(ctx)); - - cm_set_next_context(ctx); -} - -/******************************************************************************* - * The next four functions are used by runtime services to save and restore - * EL1 context on the 'cpu_context' structure for the specified security - * state. - ******************************************************************************/ -void cm_el1_sysregs_context_save(uint32_t security_state) -{ - cpu_context_t *ctx; - - ctx = cm_get_context(security_state); - assert(ctx); - - el1_sysregs_context_save(get_sysregs_ctx(ctx)); -} - -void cm_el1_sysregs_context_restore(uint32_t security_state) -{ - cpu_context_t *ctx; - - ctx = cm_get_context(security_state); - assert(ctx); - - el1_sysregs_context_restore(get_sysregs_ctx(ctx)); -} - -/******************************************************************************* - * This function populates ELR_EL3 member of 'cpu_context' pertaining to the - * given security state with the given entrypoint - ******************************************************************************/ -void cm_set_elr_el3(uint32_t security_state, uint64_t entrypoint) -{ - cpu_context_t *ctx; - el3_state_t *state; - - ctx = cm_get_context(security_state); - assert(ctx); - - /* Populate EL3 state so that ERET jumps to the correct entry */ - state = get_el3state_ctx(ctx); - write_ctx_reg(state, CTX_ELR_EL3, entrypoint); -} - -/******************************************************************************* - * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' - * pertaining to the given security state - ******************************************************************************/ -void cm_set_elr_spsr_el3(uint32_t security_state, - uint64_t entrypoint, uint32_t spsr) -{ - cpu_context_t *ctx; - el3_state_t *state; - - ctx = cm_get_context(security_state); - assert(ctx); - - /* Populate EL3 state so that ERET jumps to the correct entry */ - state = get_el3state_ctx(ctx); - write_ctx_reg(state, CTX_ELR_EL3, entrypoint); - write_ctx_reg(state, CTX_SPSR_EL3, spsr); -} - -/******************************************************************************* - * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' - * pertaining to the given security state using the value and bit position - * specified in the parameters. It preserves all other bits. - ******************************************************************************/ -void cm_write_scr_el3_bit(uint32_t security_state, - uint32_t bit_pos, - uint32_t value) -{ - cpu_context_t *ctx; - el3_state_t *state; - uint32_t scr_el3; - - ctx = cm_get_context(security_state); - assert(ctx); - - /* Ensure that the bit position is a valid one */ - assert((1 << bit_pos) & SCR_VALID_BIT_MASK); - - /* Ensure that the 'value' is only a bit wide */ - assert(value <= 1); - - /* - * Get the SCR_EL3 value from the cpu context, clear the desired bit - * and set it to its new value. - */ - state = get_el3state_ctx(ctx); - scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); - scr_el3 &= ~(1 << bit_pos); - scr_el3 |= value << bit_pos; - write_ctx_reg(state, CTX_SCR_EL3, scr_el3); -} - -/******************************************************************************* - * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the - * given security state. - ******************************************************************************/ -uint32_t cm_get_scr_el3(uint32_t security_state) -{ - cpu_context_t *ctx; - el3_state_t *state; - - ctx = cm_get_context(security_state); - assert(ctx); - - /* Populate EL3 state so that ERET jumps to the correct entry */ - state = get_el3state_ctx(ctx); - return read_ctx_reg(state, CTX_SCR_EL3); -} - -/******************************************************************************* - * This function is used to program the context that's used for exception - * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for - * the required security state - ******************************************************************************/ -void cm_set_next_eret_context(uint32_t security_state) -{ - cpu_context_t *ctx; - - ctx = cm_get_context(security_state); - assert(ctx); - - cm_set_next_context(ctx); -} |