Age | Commit message (Collapse) | Author |
|
Currently the TCR bits are hardcoded in xlat_tables.c. In order to
map higher physical address into low virtual address, the TCR bits
need to be configured accordingly.
This patch is to save the max VA and PA and calculate the TCR.PS/IPS
and t0sz bits in init_xlat_tables function.
Change-Id: Ia7a58e5372b20200153057d457f4be5ddbb7dae4
|
|
Inline the mmio accessor functions
|
|
Remove all checkpatch errors from codebase
|
|
Remove calling CPU mpidr from bakery lock API
|
|
Making the simple mmio_read_*() and mmio_write_*() functions inline
saves 360 bytes of code in FVP release build.
Fixes ARM-software/tf-issues#210
Change-Id: I65134f9069f3b2d8821d882daaa5fdfe16355e2f
|
|
Exclude stdlib files because they do not follow kernel code style.
Fixes ARM-software/tf-issues#73
Change-Id: I4cfafa38ab436f5ab22c277cb38f884346a267ab
|
|
The bakery lock code currently expects the calling code to pass
the MPIDR_EL1 of the current CPU.
This is not always done correctly. Also the change to provide
inline access to system registers makes it more efficient for the
bakery lock code to obtain the MPIDR_EL1 directly.
This change removes the mpidr parameter from the bakery lock
interface, and results in a code reduction of 160 bytes for the
ARM FVP port.
Fixes ARM-software/tf-issues#213
Change-Id: I7ec7bd117bcc9794a0d948990fcf3336a367d543
|
|
Consolidate all BL3-1 CPU context initialization for cold boot, PSCI
and SPDs into two functions:
* The first uses entry_point_info to initialize the relevant
cpu_context for first entry into a lower exception level on a CPU
* The second populates the EL1 and EL2 system registers as needed
from the cpu_context to ensure correct entry into the lower EL
This patch alters the way that BL3-1 determines which exception level
is used when first entering EL1 or EL2 during cold boot - this is now
fully determined by the SPSR value in the entry_point_info for BL3-3,
as set up by the platform code in BL2 (or otherwise provided to BL3-1).
In the situation that EL1 (or svc mode) is selected for a processor
that supports EL2, the context management code will now configure all
essential EL2 register state to ensure correct execution of EL1. This
allows the platform code to run non-secure EL1 payloads directly
without requiring a small EL2 stub or OS loader.
Change-Id: If9fbb2417e82d2226e47568203d5a369f39d3b0f
|
|
Make system register functions inline assembly v2
|
|
Replace the current out-of-line assembler implementations of
the system register and system instruction operations with
inline assembler.
This enables better compiler optimisation and code generation
when accessing system registers.
Fixes ARM-software/tf-issues#91
Change-Id: I149af3a94e1e5e5140a3e44b9abfc37ba2324476
|
|
Current ATF uses a direct physical-to-virtual mapping, that is, a physical
address is mapped to the same address in the virtual space. For example,
physical address 0x8000_0000 is mapped to 0x8000_0000 virtual. This
approach works fine for FVP as all its physical addresses fall into 0 to
4GB range. But for other platform where all I/O addresses are 48-bit long,
If we follow the same direct mapping, we would need virtual address range
from 0 to 0x8fff_ffff_ffff, which is about 144TB. This requires a
significant amount of memory for MMU tables and it is not necessary to use
that much virtual space in ATF.
The patch is to enable mapping a physical address range to an arbitrary
virtual address range (instead of flat mapping)
Changed "base" to "base_va" and added "base_pa" in mmap_region_t and
modified functions such as mmap_add_region and init_xlation_table etc.
Fixes ARM-software/tf-issues#158
|
|
Previously, the enable_mmu_elX() functions were implicitly part of
the platform porting layer since they were included by generic
code. These functions have been placed behind 2 new platform
functions, bl31_plat_enable_mmu() and bl32_plat_enable_mmu().
These are weakly defined so that they can be optionally overridden
by platform ports.
Also, the enable_mmu_elX() functions have been moved to
lib/aarch64/xlat_tables.c for optional re-use by platform ports.
These functions are tightly coupled with the translation table
initialization code.
Fixes ARM-software/tf-issues#152
Change-Id: I0a2251ce76acfa3c27541f832a9efaa49135cc1c
|
|
Previously, platform.h contained many declarations and definitions
used for different purposes. This file has been split so that:
* Platform definitions used by common code that must be defined
by the platform are now in platform_def.h. The exact include
path is exported through $PLAT_INCLUDES in the platform makefile.
* Platform definitions specific to the FVP platform are now in
/plat/fvp/fvp_def.h.
* Platform API declarations specific to the FVP platform are now
in /plat/fvp/fvp_private.h.
* The remaining platform API declarations that must be ported by
each platform are still in platform.h but this file has been
moved to /include/plat/common since this can be shared by all
platforms.
Change-Id: Ieb3bb22fbab3ee8027413c6b39a783534aee474a
|
|
Function declarations implicitly have external linkage so do not
need the extern keyword.
Change-Id: Ia0549786796d8bf5956487e8996450a0b3d79f32
|
|
This patch adds support in the TSP to program the secure physical
generic timer to generate a EL-1 interrupt every half second. It also
adds support for maintaining the timer state across power management
operations. The TSPD ensures that S-EL1 can access the timer by
programming the SCR_EL3.ST bit.
This patch does not actually enable the timer. This will be done in a
subsequent patch once the complete framework for handling S-EL1
interrupts is in place.
Change-Id: I1b3985cfb50262f60824be3a51c6314ce90571bc
|
|
This patch adds an API to write to any bit in the SCR_EL3 member of
the 'cpu_context' structure of the current CPU for a specified
security state. This API will be used in subsequent patches which
introduce interrupt management in EL3 to specify the interrupt routing
model when execution is not in EL3.
It also renames the cm_set_el3_elr() function to cm_set_elr_el3()
which is more in line with the system register name being targeted by
the API.
Change-Id: I310fa7d8f827ad3f350325eca2fb28cb350a85ed
|
|
This patch introduces macros (SPSR_64 and SPSR_32) to
create a SPSR for both aarch32 and aarch64 execution
states. These macros allow the user to set fields
in the SPSR depending upon its format.
The make_spsr() function which did not allow
manipulation of all the fields in the aarch32 SPSR
has been replaced by these new macros.
Change-Id: I9425dda0923e8d5f03d03ddb8fa0e28392c4c61e
|
|
This patch implements the register reporting when unhandled exceptions are
taken in BL3-1. Unhandled exceptions will result in a dump of registers
to the console, before halting execution by that CPU. The Crash Stack,
previously called the Exception Stack, is used for this activity.
This stack is used to preserve the CPU context and runtime stack
contents for debugging and analysis.
This also introduces the per_cpu_ptr_cache, referenced by tpidr_el3,
to provide easy access to some of BL3-1 per-cpu data structures.
Initially, this is used to provide a pointer to the Crash stack.
panic() now prints the the error file and line number in Debug mode
and prints the PC value in release mode.
The Exception Stack is renamed to Crash Stack with this patch.
The original intention of exception stack is no longer valid
since we intend to support several valid exceptions like IRQ
and FIQ in the trusted firmware context. This stack is now
utilized for dumping and reporting the system state when a
crash happens and hence the rename.
Fixes ARM-software/tf-issues#79 Improve reporting of unhandled exception
Change-Id: I260791dc05536b78547412d147193cdccae7811a
|
|
The goal of these macros is to improve code readability by providing
a concise way to check whether we are running in the expected
exception level.
Change-Id: If9aebadfb6299a5196e9a582b442f0971d9909b1
|
|
There are a small number of non-EL specific helper functions
which are no longer used, and also some unusable helper
functions for non-existant registers.
This change removes all of these functions.
Change-Id: Idd656cef3b59cf5c46fe2be4029d72288b649c24
|
|
disable_mmu() cannot work as a C function as there is no control
over data accesses generated by the compiler between disabling and
cleaning the data cache. This results in reading stale data from
main memory.
As assembler version is provided for EL3, and a variant that also
disables the instruction cache which is now used by the BL1
exception handling function.
Fixes ARM-software/tf-issues#147
Change-Id: I0cf394d2579a125a23c2f2989c2e92ace6ddb1a6
|
|
Update code base to remove variables from the .data section,
mainly by using const static data where possible and adding
the const specifier as required. Most changes are to the IO
subsystem, including the framework APIs. The FVP power
management code is also affected.
Delay initialization of the global static variable,
next_image_type in bl31_main.c, until it is realy needed.
Doing this moves the variable from the .data to the .bss
section.
Also review the IO interface for inconsistencies, using
uintptr_t where possible instead of void *. Remove the
io_handle and io_dev_handle typedefs, which were
unnecessary, replacing instances with uintptr_t.
Fixes ARM-software/tf-issues#107.
Change-Id: I085a62197c82410b566e4698e5590063563ed304
|
|
Reduce the number of header files included from other header
files as much as possible without splitting the files. Use forward
declarations where possible. This allows removal of some unnecessary
"#ifndef __ASSEMBLY__" statements.
Also, review the .c and .S files for which header files really need
including and reorder the #include statements alphabetically.
Fixes ARM-software/tf-issues#31
Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
|
|
Add tag names to all unnamed structs in header files. This
allows forward declaration of structs, which is necessary to
reduce header file nesting (to be implemented in a subsequent
commit).
Also change the typedef names across the codebase to use the _t
suffix to be more conformant with the Linux coding style. The
coding style actually prefers us not to use typedefs at all but
this is considered a step too far for Trusted Firmware.
Also change the IO framework structs defintions to use typedef'd
structs to be consistent with the rest of the codebase.
Change-Id: I722b2c86fc0d92e4da3b15e5cab20373dd26786f
|
|
Move the BL function prototypes out of arch.h and into the
appropriate header files to allow more efficient header file
inclusion. Create new BL private header files where there is no
sensible existing header file.
Change-Id: I45f3e10b72b5d835254a6f25a5e47cf4cfb274c3
|
|
Separate out the CASSERT macro out of bl_common.h into its own
header to allow more efficient header inclusion.
Change-Id: I291be0b6b8f9879645e839a8f0dd1ec9b3db9639
|
|
Move almost all system include files to a logical sub-directory
under ./include. The only remaining system include directories
not under ./include are specific to the platform. Move the
corresponding source files to match the include directory
structure.
Also remove pm.h as it is no longer used.
Change-Id: Ie5ea6368ec5fad459f3e8a802ad129135527f0b3
|