Age | Commit message (Collapse) | Author |
|
Add platform support files for Marvell A7K and A7K SoC
families.
Change-Id: I4f8b0a7cd222be5b7f43577172f1cdba58ffc124
Signed-off-by: Haim Boot <hayim@marvell.com>
Signed-off-by: Konstantin Porotchkin <kostap@marvell.com>
Reviewed-on: http://vgitil04.il.marvell.com:8080/37918
|
|
Add common platform components to be used by all
supported Marvell platforms.
Change-Id: Ie5f70fc7ff668c8f8073d6dd936458f35890ebcf
Signed-off-by: Haim Boot <hayim@marvell.com>
Signed-off-by: Konstantin Porotchkin <kostap@marvell.com>
Reviewed-on: http://vgitil04.il.marvell.com:8080/38133
|
|
This patch adds support in SP_MIN to receive generic and
platform specific arguments from BL2.
The new signature is as following:
void sp_min_early_platform_setup(void *from_bl2,
void *plat_params_from_bl2);
ARM platforms have been modified to use this support.
Note: Platforms may break if using old signature.
Default value for RESET_TO_SP_MIN is changed to 0.
Change-Id: I008d4b09fd3803c7b6231587ebf02a047bdba8d0
|
|
This patch adds common changes to support AArch32 state in
BL1 and BL2. Following are the changes:
* Added functions for disabling MMU from Secure state.
* Added AArch32 specific SMC function.
* Added semihosting support.
* Added reporting of unhandled exceptions.
* Added uniprocessor stack support.
* Added `el3_entrypoint_common` macro that can be
shared by BL1 and BL32 (SP_MIN) BL stages. The
`el3_entrypoint_common` is similar to the AArch64
counterpart with the main difference in the assembly
instructions and the registers that are relevant to
AArch32 execution state.
* Enabled `LOAD_IMAGE_V2` flag in Makefile for
`ARCH=aarch32` and added check to make sure that
platform has not overridden to disable it.
Change-Id: I33c6d8dfefb2e5d142fdfd06a0f4a7332962e1a3
|
|
This patch adds changes in ARM platform code to use new
version of image loading.
Following are the major changes:
-Refactor the signatures for bl31_early_platform_setup()
and arm_bl31_early_platform_setup() function to use
`void *` instead of `bl31_params_t *`.
-Introduce `plat_arm_bl2_handle_scp_bl2()` to handle
loading of SCP_BL2 image from BL2.
-Remove usage of reserve_mem() function from
`arm_bl1_early_platform_setup()`
-Extract BL32 & BL33 entrypoint info, from the link list
passed by BL2, in `arm_bl31_early_platform_setup()`
-Provides weak definitions for following platform functions:
plat_get_bl_image_load_info
plat_get_next_bl_params
plat_flush_next_bl_params
bl2_plat_handle_post_image_load
-Instantiates a descriptor array for ARM platforms
describing image and entrypoint information for
`SCP_BL2`, `BL31`, `BL32` and `BL33` images.
All the above changes are conditionally compiled using the
`LOAD_IMAGE_V2` flag.
Change-Id: I5e88b9785a3df1a2b2bbbb37d85b8e353ca61049
|
|
This patch adds changes in BL1 & BL2 to use new version
of image loading to load the BL images.
Following are the changes in BL1:
-Use new version of load_auth_image() to load BL2
-Modified `bl1_init_bl2_mem_layout()` to remove using
`reserve_mem()` and to calculate `bl2_mem_layout`.
`bl2_mem_layout` calculation now assumes that BL1 RW
data is at the top of the bl1_mem_layout, which is more
restrictive than the previous BL1 behaviour.
Following are the changes in BL2:
-The `bl2_main.c` is refactored and all the functions
for loading BLxx images are now moved to `bl2_image_load.c`
`bl2_main.c` now calls a top level `bl2_load_images()` to
load all the images that are applicable in BL2.
-Added new file `bl2_image_load_v2.c` that uses new version
of image loading to load the BL images in BL2.
All the above changes are conditionally compiled using the
`LOAD_IMAGE_V2` flag.
Change-Id: Ic6dcde5a484495bdc05526d9121c59fa50c1bf23
|
|
This patch adds capability to load BL images based on image
descriptors instead of hard coded way of loading BL images.
This framework is designed such that it can be readily adapted
by any BL stage that needs to load images.
In order to provide the above capability the following new
platform functions are introduced:
bl_load_info_t *plat_get_bl_image_load_info(void);
This function returns pointer to the list of images that the
platform has populated to load.
bl_params_t *plat_get_next_bl_params(void);
This function returns a pointer to the shared memory that the
platform has kept aside to pass trusted firmware related
information that next BL image needs.
void plat_flush_next_bl_params(void);
This function flushes to main memory all the params that
are passed to next image.
int bl2_plat_handle_post_image_load(unsigned int image_id)
This function can be used by the platforms to update/use
image information for given `image_id`.
`desc_image_load.c` contains utility functions which can be used
by the platforms to generate, load and executable, image list
based on the registered image descriptors.
This patch also adds new version of `load_image/load_auth_image`
functions in-order to achieve the above capability.
Following are the changes for the new version as compared to old:
- Refactor the signature and only keep image_id and image_info_t
arguments. Removed image_base argument as it is already passed
through image_info_t. Given that the BL image base addresses and
limit/size are already provided by the platforms, the meminfo_t
and entry_point_info arguments are not needed to provide/reserve
the extent of free memory for the given BL image.
- Added check for the image size against the defined max size.
This is needed because the image size could come from an
unauthenticated source (e.g. the FIP header).
To make this check, new member is added to the image_info_t
struct for identifying the image maximum size.
New flag `LOAD_IMAGE_V2` is added in the Makefile.
Default value is 0.
NOTE: `TRUSTED_BOARD_BOOT` is currently not supported when
`LOAD_IMAGE_V2` is enabled.
Change-Id: Ia7b643f4817a170d5a2fbf479b9bc12e63112e79
|
|
Support for PSCI NODE_HW_STATE
|
|
This patch implements CSS platform hook to support NODE_HW_STATE PSCI
API. The platform hook queries SCP to obtain CSS power state. Power
states returned by SCP are then converted to expected PSCI return codes.
Juno's PSCI operation structure is modified to use the CSS
implementation.
Change-Id: I4a5edac0e5895dd77b51398cbd78f934831dafc0
|
|
This patch adds a couple of missing forward declarations in plat_arm.h
so that all types it references are known within this header file,
without relying on previous header inclusions. This concerns the
meminfo and bl31_params structures, which are defined in bl_common.h.
Other external types referenced from plat_arm.h (e.g. mmap_region_t)
get declared through header files included by arm_plat.h so they
don't need forward declarations.
Change-Id: I471d5aa487919aff3fa979fc65e053f4f5b0ef32
|
|
This patch implements the support for SP_MIN in FVP. The SP_MIN platform
APIs are implemented and the required makefile support is added for FVP.
Change-Id: Id50bd6093eccbd5e38894e3fd2b20d5baeac5452
|
|
This patch adds AArch32 support for FVP and implements common platform APIs
like `plat_get_my_stack`, `plat_set_my_stack`, `plat_my_core_cos` for AArch32.
Only Multi Processor(MP) implementations of these functions are considered in
this patch. The ARM Standard platform layer helpers are implemented for
AArch32 and the common makefiles are modified to cater for both AArch64 and
AArch32 builds. Compatibility with the deprecated platform API is not
supported for AArch32.
Change-Id: Iad228400613eec91abf731b49e21a15bcf2833ea
|
|
ARM platforms: Define common image sizes
|
|
Compile option `ARM_BOARD_OPTIMISE_MMAP` has been renamed to
`ARM_BOARD_OPTIMISE_MEM` because it now applies not only to defines
related to the translation tables but to the image size as well.
The defines `PLAT_ARM_MAX_BL1_RW_SIZE`, `PLAT_ARM_MAX_BL2_SIZE` and
`PLAT_ARM_MAX_BL31_SIZE` have been moved to the file board_arm_def.h.
This way, ARM platforms no longer have to set their own values if
`ARM_BOARD_OPTIMISE_MEM=0` and they can specify optimized values
otherwise. The common sizes have been set to the highest values used
for any of the current build configurations.
This is needed because in some build configurations some images are
running out of space. This way there is a common set of values known
to work for all of them and it can be optimized for each particular
platform if needed.
The space reserved for BL2 when `TRUSTED_BOARD_BOOT=0` has been
increased. This is needed because when memory optimisations are
disabled the values for Juno of `PLAT_ARM_MMAP_ENTRIES` and
`MAX_XLAT_TABLES` are higher. If in this situation the code is
compiled in debug mode and with "-O0", the code won't fit.
Change-Id: I70a3d8d3a0b0cad1d6b602c01a7ea334776e718e
|
|
This patch reworks type usage in generic code, drivers and ARM platform files
to make it more portable. The major changes done with respect to
type usage are as listed below:
* Use uintptr_t for storing address instead of uint64_t or unsigned long.
* Review usage of unsigned long as it can no longer be assumed to be 64 bit.
* Use u_register_t for register values whose width varies depending on
whether AArch64 or AArch32.
* Use generic C types where-ever possible.
In addition to the above changes, this patch also modifies format specifiers
in print invocations so that they are AArch64/AArch32 agnostic. Only files
related to upcoming feature development have been reworked.
Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
|
|
On ARM CSS platforms, the whole flash used to be mapped as executable.
This is not required, given that the flash is used to store the BL1
and FIP images and:
- The FIP is not executed in place, its images are copied to RAM
and executed from there.
- BL1 is executed in place from flash but only its code needs to be
mapped as executable and platform code takes care of re-mapping
BL1's read-only section as executable.
Therefore, this patch now maps the flash as non-executable by default
on these platforms. This increases security by restricting the
executable region to what is strictly needed.
This patch also adds some comments to clarify the memory mapping
attributes on these platforms.
Change-Id: I4db3c145508bea1f43fbe0f6dcd551e1aec1ecd3
|
|
The arm_setup_page_tables() function used to expect a single set of
addresses defining the extents of the whole read-only section, code
and read-only data mixed up, which was mapped as executable.
This patch changes this behaviour. arm_setup_page_tables() now
expects 2 separate sets of addresses:
- the extents of the code section;
- the extents of the read-only data section.
The code is mapped as executable, whereas the data is mapped as
execute-never. New #defines have been introduced to identify the
extents of the code and the read-only data section. Given that
all BL images except BL1 share the same memory layout and linker
script structure, these #defines are common across these images.
The slight memory layout differences in BL1 have been handled by
providing values specific to BL1.
Note that this patch also affects the Xilinx platform port, which
uses the arm_setup_page_tables() function. It has been updated
accordingly, such that the memory mappings on this platform are
unchanged. This is achieved by passing null values as the extents
of the read-only data section so that it is ignored. As a result,
the whole read-only section is still mapped as executable.
Fixes ARM-software/tf-issues#85
Change-Id: I1f95865c53ce6e253a01286ff56e0aa1161abac5
|
|
This patch introduces a new header file: include/lib/utils.h.
Its purpose is to provide generic macros and helper functions that
are independent of any BL image, architecture, platform and even
not specific to Trusted Firmware.
For now, it contains only 2 macros: ARRAY_SIZE() and
IS_POWER_OF_TWO(). These were previously defined in bl_common.h and
xlat_tables.c respectively.
bl_common.h includes utils.h to retain compatibility for platforms
that relied on bl_common.h for the ARRAY_SIZE() macro. Upstream
platform ports that use this macro have been updated to include
utils.h.
Change-Id: I960450f54134f25d1710bfbdc4184f12c049a9a9
|
|
This patch introduces the arm_setup_page_tables() function to
set up page tables on ARM platforms. It replaces the
arm_configure_mmu_elx() functions and does the same thing except
that it doesn't enable the MMU at the end. The idea is to reduce
the amount of per-EL code that is generated by the C preprocessor
by splitting the memory regions definitions and page tables creation
(which is generic) from the MMU enablement (which is the only per-EL
configuration).
As a consequence, the call to the enable_mmu_elx() function has been
moved up into the plat_arch_setup() hook. Any other ARM standard
platforms that use the functions `arm_configure_mmu_elx()` must be
updated.
Change-Id: I6f12a20ce4e5187b3849a8574aac841a136de83d
|
|
A production ROM with TBB enabled must have the ability to boot test software
before a real ROTPK is deployed (e.g. manufacturing mode). Previously the
function plat_get_rotpk_info() must return a valid ROTPK for TBB to succeed.
This patch adds an additional bit `ROTPK_NOT_DEPLOYED` in the output `flags`
parameter from plat_get_rotpk_info(). If this bit is set, then the ROTPK
in certificate is used without verifying against the platform value.
Fixes ARM-software/tf-issues#381
Change-Id: Icbbffab6bff8ed76b72431ee21337f550d8fdbbb
|
|
Added plat_get_syscnt_freq2, which is a 32 bit variant of the 64 bit
plat_get_syscnt_freq. The old one has been flagged as deprecated.
Common code has been updated to use this new version. Porting guide
has been updated.
Change-Id: I9e913544926c418970972bfe7d81ee88b4da837e
|
|
This patch moves the definition for `plat_get_syscnt_freq()`
from arm_bl31_setup.c to arm_common.c. This could be useful
in case a delay timer needs to be installed based on the
generic timer in other BLs.
This patch also modifies the return type for this function
from `uint64_t` to `unsigned long long` within ARM and other
platform files.
Change-Id: Iccdfa811948e660d4fdcaae60ad1d700e4eda80d
|
|
It is up to the platform to implement the new plat_crash_print_regs macro to
report all relevant platform registers helpful for troubleshooting.
plat_crash_print_regs merges or calls previously defined plat_print_gic_regs
and plat_print_interconnect_regs macros for each existing platforms.
NOTE: THIS COMMIT REQUIRES ALL PLATFORMS THAT ENABLE THE `CRASH_REPORTING`
BUILD FLAG TO MIGRATE TO USE THE NEW `plat_crash_print_regs()` MACRO. BY
DEFAULT, `CRASH_REPORTING` IS ENABLED IN DEBUG BUILDS FOR ALL PLATFORMS.
Fixes: arm-software/tf-issues#373
Signed-off-by: Gerald Lejeune <gerald.lejeune@st.com>
|
|
Remove BL32_BASE when building without SPD for FVP
|
|
Previously, when building TF without SPD support, BL2 tried to load a
BL32 image from the FIP and fails to find one, which resulted on
warning messages on the console. Even if there is a BL32 image in the
FIP it shouldn't be loaded because there is no way to transfer
control to the Secure Payload without SPD support.
The Makefile has been modified to pass a define of the form
SPD_${SPD} to the source code the same way it's done for PLAT. The
define SPD_none is then used to undefine BL32_BASE when BL32 is not
used to prevent BL2 from trying to load a BL32 image and failing,
thus removing the warning messages mentioned above.
Fixes ARM-software/tf-issues#287
Change-Id: Ifeb6f1c26935efb76afd353fea88e87ba09e9658
|
|
Refactor the TZC driver and add DMC-500 driver
|
|
TBB NVcounter support
|
|
This patch modifies the return type of the platform API
`plat_get_ns_image_entrypoint()` from `unsigned long` to
`uintptr_t` in accordance with the coding guidelines.
Change-Id: Icb4510ca98b706aa4d535fe27e203394184fb4ca
|
|
This patch adds support to program TrustZone protection on ARM platforms that
implement a DMC-500. arm_dmc_500.c has been added which implements the
arm_dmc_tzc_setup() function. This function relies on constants related to TZC
programming that are exported by each platform to program TrustZone protection
using the DMC-500 TrustZone controller driver. This function should be called
from plat_arm_security_setup() which is implemented by each platform.
Change-Id: I5400bdee9e4b29155fd11296a40693d512312f29
|
|
This patch migrates ARM Standard platforms to the refactored TZC driver.
Change-Id: I2a2f60b645f73e14d8f416740c4551cec87cb1fb
|
|
This patch adds support for non-volatile counter authentication to
the Authentication Module. This method consists of matching the
counter values provided in the certificates with the ones stored
in the platform. If the value from the certificate is lower than
the platform, the boot process is aborted. This mechanism protects
the system against rollback.
The TBBR CoT has been updated to include this method as part of the
authentication process. Two counters are used: one for the trusted
world images and another for the non trusted world images.
** NEW PLATFORM APIs (mandatory when TBB is enabled) **
int plat_get_nv_ctr(void *cookie, unsigned int *nv_ctr);
This API returns the non-volatile counter value stored
in the platform. The cookie in the first argument may be
used to select the counter in case the platform provides
more than one (i.e. TBSA compliant platforms must provide
trusted and non-trusted counters). This cookie is specified
in the CoT.
int plat_set_nv_ctr(void *cookie, unsigned int nv_ctr);
This API sets a new counter value. The cookie may be
used to select the counter to be updated.
An implementation of these new APIs for ARM platforms is also
provided. The values are obtained from the Trusted Non-Volatile
Counters peripheral. The cookie is used to pass the extension OID.
This OID may be interpreted by the platform to know which counter
must return. On Juno, The trusted and non-trusted counter values
have been tied to 31 and 223, respectively, and cannot be modified.
** IMPORTANT **
THIS PATCH BREAKS THE BUILD WHEN TRUSTED_BOARD_BOOT IS ENABLED. THE
NEW PLATFORM APIs INTRODUCED IN THIS PATCH MUST BE IMPLEMENTED IN
ORDER TO SUCCESSFULLY BUILD TF.
Change-Id: Ic943b76b25f2a37f490eaaab6d87b4a8b3cbc89a
|
|
This patch adds an option to the ARM common platforms to load BL31 in the
TZC secured DRAM instead of the default secure SRAM.
To enable this feature, set `ARM_BL31_IN_DRAM` to 1 in build options.
If TSP is present, then setting this option also sets the TSP location
to DRAM and ignores the `ARM_TSP_RAM_LOCATION` build flag.
To use this feature, BL2 platform code must map in the DRAM used by
BL31. The macro ARM_MAP_BL31_SEC_DRAM is provided for this purpose.
Currently, only the FVP BL2 platform code maps in this DRAM.
Change-Id: If5f7cc9deb569cfe68353a174d4caa48acd78d67
|
|
Added a new platform porting function plat_panic_handler, to allow
platforms to handle unexpected error situations. It must be
implemented in assembly as it may be called before the C environment
is initialized. A default implementation is provided, which simply
spins.
Corrected all dead loops in generic code to call this function
instead. This includes the dead loop that occurs at the end of the
call to panic().
All unnecesary wfis from bl32/tsp/aarch64/tsp_exceptions.S have
been removed.
Change-Id: I67cb85f6112fa8e77bd62f5718efcef4173d8134
|
|
Fix the inconsistencies in bl1_tbbr_image_descs[]
|
|
This patch fixes inconsistencies in bl1_tbbr_image_descs[]
and miscellaneous fixes in Firmware Update code.
Following are the changes:
* As part of the original FWU changes, a `copied_size`
field was added to `image_info_t`. This was a subtle binary
compatibility break because it changed the size of the
`bl31_params_t` struct, which could cause problems if
somebody used different versions of BL2 or BL31, one with
the old `image_info_t` and one with the new version.
This patch put the `copied_size` within the `image_desc_t`.
* EXECUTABLE flag is now stored in `ep_info.h.attr` in place
of `image_info.h.attr`, associating it to an entrypoint.
* The `image_info.image_base` is only relevant for secure
images that are copied from non-secure memory into secure
memory. This patch removes initializing `image_base` for
non secure images in the bl1_tbbr_image_descs[].
* A new macro `SET_STATIC_PARAM_HEAD` is added for populating
bl1_tbbr_image_descs[].ep_info/image_info.h members statically.
The version, image_type and image attributes are now
populated using this new macro.
* Added PLAT_ARM_NVM_BASE and PLAT_ARM_NVM_SIZE to avoid direct
usage of V2M_FLASH0_XXX in plat/arm/common/arm_bl1_fwu.c.
* Refactoring of code/macros related to SECURE and EXECUTABLE flags.
NOTE: PLATFORM PORTS THAT RELY ON THE SIZE OF `image_info_t`
OR USE the "EXECUTABLE" BIT WITHIN `image_info_t.h.attr`
OR USE THEIR OWN `image_desc_t` ARRAY IN BL1, MAY BE
BROKEN BY THIS CHANGE. THIS IS CONSIDERED UNLIKELY.
Change-Id: Id4e5989af7bf0ed263d19d3751939da1169b561d
|
|
Rationalise MMU and Page table related constants on ARM platforms
|
|
`board_arm_def.h` contains multiple definitions of
`PLAT_ARM_MMAP_ENTRIES` and `MAX_XLAT_TABLES` that are optimised for
memory usage depending upon the chosen build configuration. To ease
maintenance of these constants, this patch replaces their multiple
definitions with a single set of definitions that will work on all ARM
platforms.
Platforms can override the defaults with optimal values by enabling the
`ARM_BOARD_OPTIMISE_MMAP` build option. An example has been provided in
the Juno ADP port.
Additionally, `PLAT_ARM_MMAP_ENTRIES` is increased by one to accomodate
future ARM platforms.
Change-Id: I5ba6490fdd1e118cc9cc2d988ad7e9c38492b6f0
|
|
Allow multi cluster topology definitions for ARM platforms
|
|
The common topology description helper funtions and macros for
ARM Standard platforms assumed a dual cluster system. This is not
flexible enough to scale to multi cluster platforms. This patch does
the following changes for more flexibility in defining topology:
1. The `plat_get_power_domain_tree_desc()` definition is moved from
`arm_topology.c` to platform specific files, that is `fvp_topology.c`
and `juno_topology.c`. Similarly the common definition of the porting
macro `PLATFORM_CORE_COUNT` in `arm_def.h` is moved to platform
specific `platform_def.h` header.
2. The ARM common layer porting macros which were dual cluster specific
are now removed and a new macro PLAT_ARM_CLUSTER_COUNT is introduced
which must be defined by each ARM standard platform.
3. A new mandatory ARM common layer porting API
`plat_arm_get_cluster_core_count()` is introduced to enable the common
implementation of `arm_check_mpidr()` to validate MPIDR.
4. For the FVP platforms, a new build option `FVP_NUM_CLUSTERS` has been
introduced which allows the user to specify the cluster count to be
used to build the topology tree within Trusted Firmare. This enables
Trusted Firmware to be built for multi cluster FVP models.
Change-Id: Ie7a2e38e5661fe2fdb2c8fdf5641d2b2614c2b6b
|
|
ARM platforms: rationalise memory attributes of shared memory
|
|
The shared memory region on ARM platforms contains the mailboxes and,
on Juno, the payload area for communication with the SCP. This shared
memory may be configured as normal memory or device memory at build
time by setting the platform flag 'PLAT_ARM_SHARED_RAM_CACHED' (on
Juno, the value of this flag is defined by 'MHU_PAYLOAD_CACHED').
When set as normal memory, the platform port performs the corresponding
cache maintenance operations. From a functional point of view, this is
the equivalent of setting the shared memory as device memory, so there
is no need to maintain both options.
This patch removes the option to specify the shared memory as normal
memory on ARM platforms. Shared memory is always treated as device
memory. Cache maintenance operations are no longer needed and have
been replaced by data memory barriers to guarantee that payload and
MHU are accessed in the right order.
Change-Id: I7f958621d6a536dd4f0fa8768385eedc4295e79f
|
|
ARM Trusted Firmware supports 2 different interconnect peripheral
drivers: CCI and CCN. ARM platforms are implemented using either of the
interconnect peripherals.
This patch adds a layer of abstraction to help ARM platform ports to
choose the right interconnect driver and corresponding platform support.
This is as described below:
1. A set of ARM common functions have been implemented to initialise an
interconnect and for entering/exiting a cluster from coherency. These
functions are prefixed as "plat_arm_interconnect_". Weak definitions of
these functions have been provided for each type of driver.
2.`plat_print_interconnect_regs` macro used for printing CCI registers is
moved from a common arm_macros.S to cci_macros.S.
3. The `ARM_CONFIG_HAS_CCI` flag used in `arm_config_flags` structure
is renamed to `ARM_CONFIG_HAS_INTERCONNECT`.
Change-Id: I02f31184fbf79b784175892d5ce1161b65a0066c
|
|
Vk/scp flexibility
|
|
Current code mandates loading of SCP_BL2/SCP_BL2U images for all
CSS platforms. On future ARM CSS platforms, the Application
Processor (AP) might not need to load these images. So, these
items can be removed from the FIP on those platforms.
BL2 tries to load SCP_BL2/SCP_BL2U images if their base
addresses are defined causing boot error if the images are not
found in FIP.
This change adds a make flag `CSS_LOAD_SCP_IMAGES` which if set
to `1` does:
1. Adds SCP_BL2, SCP_BL2U images to FIP.
2. Defines the base addresses of these images so that AP loads
them.
And vice-versa if it is set to `0`. The default value is set to
`1`.
Change-Id: I5abfe22d5dc1e9d80d7809acefc87b42a462204a
|
|
Current code assumes `SCP_COM_SHARED_MEM_BASE` as the base address
for BOM/SCPI protocol between AP<->SCP on all CSS platforms. To
cater for future ARM platforms this is made platform specific.
Similarly, the bit shifts of `SCP_BOOT_CONFIG_ADDR` are also made
platform specific.
Change-Id: Ie8866c167abf0229a37b3c72576917f085c142e8
|
|
Functions to configure the MMU in S-EL1 and EL3 on ARM platforms
expect each platform to export its memory map in the `plat_arm_mmap`
data structure. This approach does not scale well in case the memory
map cannot be determined until runtime. To cater for this possibility,
this patch introduces the plat_arm_get_mmap() API. It returns a
reference to the `plat_arm_mmap` by default but can be overridden
by a platform if required.
Change-Id: Idae6ad8fdf40cdddcd8b992abc188455fa047c74
|
|
Each ARM Compute Subsystem based platform implements a System Security
Control (SSC) Registers Unit. The SSC_VERSION register inside it carries
information to identify the platform. This enables ARM Trusted Firmware
to compile in support for multiple ARM platforms and choose one at
runtime. This patch adds macros to enable access to this register.
Each platform is expected to export its PART_NUMBER separately.
Additionally, it also adds juno part number.
Change-Id: I2b1d5f5b65a9c7b76c6f64480cc7cf0aef019422
|
|
This patch moves the definition of some macros used only on
ARM platforms from common headers to platform specific headers.
It also forces all ARM standard platforms to have distinct
definitions (even if they are usually the same).
1. `PLAT_ARM_TZC_BASE` and `PLAT_ARM_NSTIMER_FRAME_ID` have been
moved from `css_def.h` to `platform_def.h`.
2. `MHU_BASE` used in CSS platforms is moved from common css_def.h
to platform specific header `platform_def.h` on Juno and
renamed as `PLAT_ARM_MHU_BASE`.
3. To cater for different sizes of BL images, new macros like
`PLAT_ARM_MAX_BL31_SIZE` have been created for each BL image. All
ARM platforms need to define them for each image.
Change-Id: I9255448bddfad734b387922aa9e68d2117338c3f
|
|
The debug prints used to debug translation table setup in xlat_tables.c
used the `printf()` standard library function instead of the stack
optimized `tf_printf()` API. DEBUG_XLAT_TABLE option was used to enable
debug logs within xlat_tables.c and it configured a much larger stack
size for the platform in case it was enabled. This patch modifies these
debug prints within xlat_tables.c to use tf_printf() and modifies the format
specifiers to be compatible with tf_printf(). The debug prints are now enabled
if the VERBOSE prints are enabled in Trusted Firmware via LOG_LEVEL build
option.
The much larger stack size definition when DEBUG_XLAT_TABLE is defined
is no longer required and the platform ports are modified to remove this
stack size definition.
Change-Id: I2f7d77ea12a04b827fa15e2adc3125b1175e4c23
|
|
Use the new __deprecated macro from the generic cdefs header and remove
the deprecated __warn_deprecated.
Signed-off-by: Soren Brinkmann <soren.brinkmann@xilinx.com>
|