summaryrefslogtreecommitdiff
path: root/Makefile
diff options
context:
space:
mode:
authorPeter Zijlstra <peterz@infradead.org>2025-02-24 13:37:12 +0100
committerIngo Molnar <mingo@kernel.org>2025-02-26 13:49:11 +0100
commit0c92385dc05ee9637c04372ea95a11bbf6e010ff (patch)
tree118adfe27ef26e4e53729790a631dad6ecd87844 /Makefile
parentb815f6877d8063482fe745f098eeef632679aa8a (diff)
x86/ibt: Implement FineIBT-BHI mitigation
While WAIT_FOR_ENDBR is specified to be a full speculation stop; it has been shown that some implementations are 'leaky' to such an extend that speculation can escape even the FineIBT preamble. To deal with this, add additional hardening to the FineIBT preamble. Notably, using a new LLVM feature: https://github.com/llvm/llvm-project/commit/e223485c9b38a5579991b8cebb6a200153eee245 which encodes the number of arguments in the kCFI preamble's register. Using this register<->arity mapping, have the FineIBT preamble CALL into a stub clobbering the relevant argument registers in the speculative case. Scott sayeth thusly: Microarchitectural attacks such as Branch History Injection (BHI) and Intra-mode Branch Target Injection (IMBTI) [1] can cause an indirect call to mispredict to an adversary-influenced target within the same hardware domain (e.g., within the kernel). Instructions at the mispredicted target may execute speculatively and potentially expose kernel data (e.g., to a user-mode adversary) through a microarchitectural covert channel such as CPU cache state. CET-IBT [2] is a coarse-grained control-flow integrity (CFI) ISA extension that enforces that each indirect call (or indirect jump) must land on an ENDBR (end branch) instruction, even speculatively*. FineIBT is a software technique that refines CET-IBT by associating each function type with a 32-bit hash and enforcing (at the callee) that the hash of the caller's function pointer type matches the hash of the callee's function type. However, recent research [3] has demonstrated that the conditional branch that enforces FineIBT's hash check can be coerced to mispredict, potentially allowing an adversary to speculatively bypass the hash check: __cfi_foo: ENDBR64 SUB R10d, 0x01234567 JZ foo # Even if the hash check fails and ZF=0, this branch could still mispredict as taken UD2 foo: ... The techniques demonstrated in [3] require the attacker to be able to control the contents of at least one live register at the mispredicted target. Therefore, this patch set introduces a sequence of CMOV instructions at each indirect-callable target that poisons every live register with data that the attacker cannot control whenever the FineIBT hash check fails, thus mitigating any potential attack. The security provided by this scheme has been discussed in detail on an earlier thread [4]. [1] https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html [2] Intel Software Developer's Manual, Volume 1, Chapter 18 [3] https://www.vusec.net/projects/native-bhi/ [4] https://lore.kernel.org/lkml/20240927194925.707462984@infradead.org/ *There are some caveats for certain processors, see [1] for more info Suggested-by: Scott Constable <scott.d.constable@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Kees Cook <kees@kernel.org> Link: https://lore.kernel.org/r/20250224124200.820402212@infradead.org
Diffstat (limited to 'Makefile')
-rw-r--r--Makefile3
1 files changed, 3 insertions, 0 deletions
diff --git a/Makefile b/Makefile
index 96407c1d6be1..f19431f25ed7 100644
--- a/Makefile
+++ b/Makefile
@@ -1014,6 +1014,9 @@ CC_FLAGS_CFI := -fsanitize=kcfi
ifdef CONFIG_CFI_ICALL_NORMALIZE_INTEGERS
CC_FLAGS_CFI += -fsanitize-cfi-icall-experimental-normalize-integers
endif
+ifdef CONFIG_FINEIBT_BHI
+ CC_FLAGS_CFI += -fsanitize-kcfi-arity
+endif
ifdef CONFIG_RUST
# Always pass -Zsanitizer-cfi-normalize-integers as CONFIG_RUST selects
# CONFIG_CFI_ICALL_NORMALIZE_INTEGERS.