summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/cpu/bugs.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2025-04-10 15:20:10 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2025-04-10 15:20:10 -0700
commit3c9de67dd37029cca1d0f391ff565b3809b40a1f (patch)
tree2a8dc5eb5b57ee2e43fda091ff90bddce9f86098 /arch/x86/kernel/cpu/bugs.c
parentac253a537da3b210fa4b65d522d5533fc68f9515 (diff)
parent1fac13956e9877483ece9d090a62239cdfe9deb7 (diff)
Merge tag 'x86-urgent-2025-04-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 fixes from Ingo Molnar: - Fix CPU topology related regression that limited Xen PV guests to a single CPU - Fix ancient e820__register_nosave_regions() bugs that were causing problems with kexec's artificial memory maps - Fix an S4 hibernation crash caused by two missing ENDBR's that were mistakenly removed in a recent commit - Fix a resctrl serialization bug - Fix early_printk documentation and comments - Fix RSB bugs, combined with preparatory updates to better match the code to vendor recommendations. - Add RSB mitigation document - Fix/update documentation - Fix the erratum_1386_microcode[] table to be NULL terminated * tag 'x86-urgent-2025-04-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/ibt: Fix hibernate x86/cpu: Avoid running off the end of an AMD erratum table Documentation/x86: Zap the subsection letters Documentation/x86: Update the naming of CPU features for /proc/cpuinfo x86/bugs: Add RSB mitigation document x86/bugs: Don't fill RSB on context switch with eIBRS x86/bugs: Don't fill RSB on VMEXIT with eIBRS+retpoline x86/bugs: Fix RSB clearing in indirect_branch_prediction_barrier() x86/bugs: Use SBPB in write_ibpb() if applicable x86/bugs: Rename entry_ibpb() to write_ibpb() x86/early_printk: Use 'mmio32' for consistency, fix comments x86/resctrl: Fix rdtgroup_mkdir()'s unlocked use of kernfs_node::name x86/e820: Fix handling of subpage regions when calculating nosave ranges in e820__register_nosave_regions() x86/acpi: Don't limit CPUs to 1 for Xen PV guests due to disabled ACPI
Diffstat (limited to 'arch/x86/kernel/cpu/bugs.c')
-rw-r--r--arch/x86/kernel/cpu/bugs.c101
1 files changed, 31 insertions, 70 deletions
diff --git a/arch/x86/kernel/cpu/bugs.c b/arch/x86/kernel/cpu/bugs.c
index 4386aa6c69e1..362602b705cc 100644
--- a/arch/x86/kernel/cpu/bugs.c
+++ b/arch/x86/kernel/cpu/bugs.c
@@ -59,7 +59,6 @@ DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
-EXPORT_SYMBOL_GPL(x86_pred_cmd);
static u64 __ro_after_init x86_arch_cap_msr;
@@ -1142,7 +1141,7 @@ do_cmd_auto:
setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
/*
- * There is no need for RSB filling: entry_ibpb() ensures
+ * There is no need for RSB filling: write_ibpb() ensures
* all predictions, including the RSB, are invalidated,
* regardless of IBPB implementation.
*/
@@ -1592,51 +1591,54 @@ static void __init spec_ctrl_disable_kernel_rrsba(void)
rrsba_disabled = true;
}
-static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
+static void __init spectre_v2_select_rsb_mitigation(enum spectre_v2_mitigation mode)
{
/*
- * Similar to context switches, there are two types of RSB attacks
- * after VM exit:
+ * WARNING! There are many subtleties to consider when changing *any*
+ * code related to RSB-related mitigations. Before doing so, carefully
+ * read the following document, and update if necessary:
*
- * 1) RSB underflow
+ * Documentation/admin-guide/hw-vuln/rsb.rst
*
- * 2) Poisoned RSB entry
+ * In an overly simplified nutshell:
*
- * When retpoline is enabled, both are mitigated by filling/clearing
- * the RSB.
+ * - User->user RSB attacks are conditionally mitigated during
+ * context switches by cond_mitigation -> write_ibpb().
*
- * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
- * prediction isolation protections, RSB still needs to be cleared
- * because of #2. Note that SMEP provides no protection here, unlike
- * user-space-poisoned RSB entries.
+ * - User->kernel and guest->host attacks are mitigated by eIBRS or
+ * RSB filling.
*
- * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
- * bug is present then a LITE version of RSB protection is required,
- * just a single call needs to retire before a RET is executed.
+ * Though, depending on config, note that other alternative
+ * mitigations may end up getting used instead, e.g., IBPB on
+ * entry/vmexit, call depth tracking, or return thunks.
*/
+
switch (mode) {
case SPECTRE_V2_NONE:
- return;
+ break;
- case SPECTRE_V2_EIBRS_LFENCE:
case SPECTRE_V2_EIBRS:
+ case SPECTRE_V2_EIBRS_LFENCE:
+ case SPECTRE_V2_EIBRS_RETPOLINE:
if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
- setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
+ setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
}
- return;
+ break;
- case SPECTRE_V2_EIBRS_RETPOLINE:
case SPECTRE_V2_RETPOLINE:
case SPECTRE_V2_LFENCE:
case SPECTRE_V2_IBRS:
+ pr_info("Spectre v2 / SpectreRSB: Filling RSB on context switch and VMEXIT\n");
+ setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
- pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
- return;
- }
+ break;
- pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
- dump_stack();
+ default:
+ pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation\n");
+ dump_stack();
+ break;
+ }
}
/*
@@ -1830,48 +1832,7 @@ static void __init spectre_v2_select_mitigation(void)
spectre_v2_enabled = mode;
pr_info("%s\n", spectre_v2_strings[mode]);
- /*
- * If Spectre v2 protection has been enabled, fill the RSB during a
- * context switch. In general there are two types of RSB attacks
- * across context switches, for which the CALLs/RETs may be unbalanced.
- *
- * 1) RSB underflow
- *
- * Some Intel parts have "bottomless RSB". When the RSB is empty,
- * speculated return targets may come from the branch predictor,
- * which could have a user-poisoned BTB or BHB entry.
- *
- * AMD has it even worse: *all* returns are speculated from the BTB,
- * regardless of the state of the RSB.
- *
- * When IBRS or eIBRS is enabled, the "user -> kernel" attack
- * scenario is mitigated by the IBRS branch prediction isolation
- * properties, so the RSB buffer filling wouldn't be necessary to
- * protect against this type of attack.
- *
- * The "user -> user" attack scenario is mitigated by RSB filling.
- *
- * 2) Poisoned RSB entry
- *
- * If the 'next' in-kernel return stack is shorter than 'prev',
- * 'next' could be tricked into speculating with a user-poisoned RSB
- * entry.
- *
- * The "user -> kernel" attack scenario is mitigated by SMEP and
- * eIBRS.
- *
- * The "user -> user" scenario, also known as SpectreBHB, requires
- * RSB clearing.
- *
- * So to mitigate all cases, unconditionally fill RSB on context
- * switches.
- *
- * FIXME: Is this pointless for retbleed-affected AMD?
- */
- setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
- pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
-
- spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
+ spectre_v2_select_rsb_mitigation(mode);
/*
* Retpoline protects the kernel, but doesn't protect firmware. IBRS
@@ -2676,7 +2637,7 @@ static void __init srso_select_mitigation(void)
setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
/*
- * There is no need for RSB filling: entry_ibpb() ensures
+ * There is no need for RSB filling: write_ibpb() ensures
* all predictions, including the RSB, are invalidated,
* regardless of IBPB implementation.
*/
@@ -2701,7 +2662,7 @@ ibpb_on_vmexit:
srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
/*
- * There is no need for RSB filling: entry_ibpb() ensures
+ * There is no need for RSB filling: write_ibpb() ensures
* all predictions, including the RSB, are invalidated,
* regardless of IBPB implementation.
*/