diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2025-03-24 11:41:41 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2025-03-24 11:41:41 -0700 |
commit | 130e696aa68b0e0c13f790898529b2cc1a5f8f8e (patch) | |
tree | 712df215342863f27e97f719a9e55599e9bcf52f /fs/namespace.c | |
parent | 74adf9e3538423256fe197bd235daa2b73c3af2c (diff) | |
parent | 06b1ce966e3f8bfef261c111feb3d4b33ede0cd8 (diff) |
Merge tag 'vfs-6.15-rc1.mount.namespace' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs mount namespace updates from Christian Brauner:
"This expands the ability of anonymous mount namespaces:
- Creating detached mounts from detached mounts
Currently, detached mounts can only be created from attached
mounts. This limitaton prevents various use-cases. For example, the
ability to mount a subdirectory without ever having to make the
whole filesystem visible first.
The current permission modelis:
(1) Check that the caller is privileged over the owning user
namespace of it's current mount namespace.
(2) Check that the caller is located in the mount namespace of the
mount it wants to create a detached copy of.
While it is not strictly necessary to do it this way it is
consistently applied in the new mount api. This model will also be
used when allowing the creation of detached mount from another
detached mount.
The (1) requirement can simply be met by performing the same check
as for the non-detached case, i.e., verify that the caller is
privileged over its current mount namespace.
To meet the (2) requirement it must be possible to infer the origin
mount namespace that the anonymous mount namespace of the detached
mount was created from.
The origin mount namespace of an anonymous mount is the mount
namespace that the mounts that were copied into the anonymous mount
namespace originate from.
In order to check the origin mount namespace of an anonymous mount
namespace the sequence number of the original mount namespace is
recorded in the anonymous mount namespace.
With this in place it is possible to perform an equivalent check
(2') to (2). The origin mount namespace of the anonymous mount
namespace must be the same as the caller's mount namespace. To
establish this the sequence number of the caller's mount namespace
and the origin sequence number of the anonymous mount namespace are
compared.
The caller is always located in a non-anonymous mount namespace
since anonymous mount namespaces cannot be setns()ed into. The
caller's mount namespace will thus always have a valid sequence
number.
The owning namespace of any mount namespace, anonymous or
non-anonymous, can never change. A mount attached to a
non-anonymous mount namespace can never change mount namespace.
If the sequence number of the non-anonymous mount namespace and the
origin sequence number of the anonymous mount namespace match, the
owning namespaces must match as well.
Hence, the capability check on the owning namespace of the caller's
mount namespace ensures that the caller has the ability to copy the
mount tree.
- Allow mount detached mounts on detached mounts
Currently, detached mounts can only be mounted onto attached
mounts. This limitation makes it impossible to assemble a new
private rootfs and move it into place. Instead, a detached tree
must be created, attached, then mounted open and then either moved
or detached again. Lift this restriction.
In order to allow mounting detached mounts onto other detached
mounts the same permission model used for creating detached mounts
from detached mounts can be used (cf. above).
Allowing to mount detached mounts onto detached mounts leaves three
cases to consider:
(1) The source mount is an attached mount and the target mount is
a detached mount. This would be equivalent to moving a mount
between different mount namespaces. A caller could move an
attached mount to a detached mount. The detached mount can now
be freely attached to any mount namespace. This changes the
current delegatioh model significantly for no good reason. So
this will fail.
(2) Anonymous mount namespaces are always attached fully, i.e., it
is not possible to only attach a subtree of an anoymous mount
namespace. This simplifies the implementation and reasoning.
Consequently, if the anonymous mount namespace of the source
detached mount and the target detached mount are the identical
the mount request will fail.
(3) The source mount's anonymous mount namespace is different from
the target mount's anonymous mount namespace.
In this case the source anonymous mount namespace of the
source mount tree must be freed after its mounts have been
moved to the target anonymous mount namespace. The source
anonymous mount namespace must be empty afterwards.
By allowing to mount detached mounts onto detached mounts a caller
may do the following:
fd_tree1 = open_tree(-EBADF, "/mnt", OPEN_TREE_CLONE)
fd_tree2 = open_tree(-EBADF, "/tmp", OPEN_TREE_CLONE)
fd_tree1 and fd_tree2 refer to two different detached mount trees
that belong to two different anonymous mount namespace.
It is important to note that fd_tree1 and fd_tree2 both refer to
the root of their respective anonymous mount namespaces.
By allowing to mount detached mounts onto detached mounts the
caller may now do:
move_mount(fd_tree1, "", fd_tree2, "",
MOVE_MOUNT_F_EMPTY_PATH | MOVE_MOUNT_T_EMPTY_PATH)
This will cause the detached mount referred to by fd_tree1 to be
mounted on top of the detached mount referred to by fd_tree2.
Thus, the detached mount fd_tree1 is moved from its separate
anonymous mount namespace into fd_tree2's anonymous mount
namespace.
It also means that while fd_tree2 continues to refer to the root of
its respective anonymous mount namespace fd_tree1 doesn't anymore.
This has the consequence that only fd_tree2 can be moved to another
anonymous or non-anonymous mount namespace. Moving fd_tree1 will
now fail as fd_tree1 doesn't refer to the root of an anoymous mount
namespace anymore.
Now fd_tree1 and fd_tree2 refer to separate detached mount trees
referring to the same anonymous mount namespace.
This is conceptually fine. The new mount api does allow for this to
happen already via:
mount -t tmpfs tmpfs /mnt
mkdir -p /mnt/A
mount -t tmpfs tmpfs /mnt/A
fd_tree3 = open_tree(-EBADF, "/mnt", OPEN_TREE_CLONE | AT_RECURSIVE)
fd_tree4 = open_tree(-EBADF, "/mnt/A", 0)
Both fd_tree3 and fd_tree4 refer to two different detached mount
trees but both detached mount trees refer to the same anonymous
mount namespace. An as with fd_tree1 and fd_tree2, only fd_tree3
may be moved another mount namespace as fd_tree3 refers to the root
of the anonymous mount namespace just while fd_tree4 doesn't.
However, there's an important difference between the
fd_tree3/fd_tree4 and the fd_tree1/fd_tree2 example.
Closing fd_tree4 and releasing the respective struct file will have
no further effect on fd_tree3's detached mount tree.
However, closing fd_tree3 will cause the mount tree and the
respective anonymous mount namespace to be destroyed causing the
detached mount tree of fd_tree4 to be invalid for further mounting.
By allowing to mount detached mounts on detached mounts as in the
fd_tree1/fd_tree2 example both struct files will affect each other.
Both fd_tree1 and fd_tree2 refer to struct files that have
FMODE_NEED_UNMOUNT set.
To handle this we use the fact that @fd_tree1 will have a parent
mount once it has been attached to @fd_tree2.
When dissolve_on_fput() is called the mount that has been passed in
will refer to the root of the anonymous mount namespace. If it
doesn't it would mean that mounts are leaked. So before allowing to
mount detached mounts onto detached mounts this would be a bug.
Now that detached mounts can be mounted onto detached mounts it
just means that the mount has been attached to another anonymous
mount namespace and thus dissolve_on_fput() must not unmount the
mount tree or free the anonymous mount namespace as the file
referring to the root of the namespace hasn't been closed yet.
If it had been closed yet it would be obvious because the mount
namespace would be NULL, i.e., the @fd_tree1 would have already
been unmounted. If @fd_tree1 hasn't been unmounted yet and has a
parent mount it is safe to skip any cleanup as closing @fd_tree2
will take care of all cleanup operations.
- Allow mount propagation for detached mount trees
In commit ee2e3f50629f ("mount: fix mounting of detached mounts
onto targets that reside on shared mounts") I fixed a bug where
propagating the source mount tree of an anonymous mount namespace
into a target mount tree of a non-anonymous mount namespace could
be used to trigger an integer overflow in the non-anonymous mount
namespace causing any new mounts to fail.
The cause of this was that the propagation algorithm was unable to
recognize mounts from the source mount tree that were already
propagated into the target mount tree and then reappeared as
propagation targets when walking the destination propagation mount
tree.
When fixing this I disabled mount propagation into anonymous mount
namespaces. Make it possible for anonymous mount namespace to
receive mount propagation events correctly. This is now also a
correctness issue now that we allow mounting detached mount trees
onto detached mount trees.
Mark the source anonymous mount namespace with MNTNS_PROPAGATING
indicating that all mounts belonging to this mount namespace are
currently in the process of being propagated and make the
propagation algorithm discard those if they appear as propagation
targets"
* tag 'vfs-6.15-rc1.mount.namespace' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (21 commits)
selftests: test subdirectory mounting
selftests: add test for detached mount tree propagation
fs: namespace: fix uninitialized variable use
mount: handle mount propagation for detached mount trees
fs: allow creating detached mounts from fsmount() file descriptors
selftests: seventh test for mounting detached mounts onto detached mounts
selftests: sixth test for mounting detached mounts onto detached mounts
selftests: fifth test for mounting detached mounts onto detached mounts
selftests: fourth test for mounting detached mounts onto detached mounts
selftests: third test for mounting detached mounts onto detached mounts
selftests: second test for mounting detached mounts onto detached mounts
selftests: first test for mounting detached mounts onto detached mounts
fs: mount detached mounts onto detached mounts
fs: support getname_maybe_null() in move_mount()
selftests: create detached mounts from detached mounts
fs: create detached mounts from detached mounts
fs: add may_copy_tree()
fs: add fastpath for dissolve_on_fput()
fs: add assert for move_mount()
fs: add mnt_ns_empty() helper
...
Diffstat (limited to 'fs/namespace.c')
-rw-r--r-- | fs/namespace.c | 367 |
1 files changed, 307 insertions, 60 deletions
diff --git a/fs/namespace.c b/fs/namespace.c index 4c8bd48c8a62..6100e5b962a6 100644 --- a/fs/namespace.c +++ b/fs/namespace.c @@ -1007,6 +1007,17 @@ static inline int check_mnt(struct mount *mnt) return mnt->mnt_ns == current->nsproxy->mnt_ns; } +static inline bool check_anonymous_mnt(struct mount *mnt) +{ + u64 seq; + + if (!is_anon_ns(mnt->mnt_ns)) + return false; + + seq = mnt->mnt_ns->seq_origin; + return !seq || (seq == current->nsproxy->mnt_ns->seq); +} + /* * vfsmount lock must be held for write */ @@ -2334,22 +2345,75 @@ struct vfsmount *collect_mounts(const struct path *path) static void free_mnt_ns(struct mnt_namespace *); static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); +static inline bool must_dissolve(struct mnt_namespace *mnt_ns) +{ + /* + * This mount belonged to an anonymous mount namespace + * but was moved to a non-anonymous mount namespace and + * then unmounted. + */ + if (unlikely(!mnt_ns)) + return false; + + /* + * This mount belongs to a non-anonymous mount namespace + * and we know that such a mount can never transition to + * an anonymous mount namespace again. + */ + if (!is_anon_ns(mnt_ns)) { + /* + * A detached mount either belongs to an anonymous mount + * namespace or a non-anonymous mount namespace. It + * should never belong to something purely internal. + */ + VFS_WARN_ON_ONCE(mnt_ns == MNT_NS_INTERNAL); + return false; + } + + return true; +} + void dissolve_on_fput(struct vfsmount *mnt) { struct mnt_namespace *ns; - namespace_lock(); - lock_mount_hash(); - ns = real_mount(mnt)->mnt_ns; - if (ns) { - if (is_anon_ns(ns)) - umount_tree(real_mount(mnt), UMOUNT_CONNECTED); - else - ns = NULL; + struct mount *m = real_mount(mnt); + + scoped_guard(rcu) { + if (!must_dissolve(READ_ONCE(m->mnt_ns))) + return; } - unlock_mount_hash(); - namespace_unlock(); - if (ns) - free_mnt_ns(ns); + + scoped_guard(rwsem_write, &namespace_sem) { + ns = m->mnt_ns; + if (!must_dissolve(ns)) + return; + + /* + * After must_dissolve() we know that this is a detached + * mount in an anonymous mount namespace. + * + * Now when mnt_has_parent() reports that this mount + * tree has a parent, we know that this anonymous mount + * tree has been moved to another anonymous mount + * namespace. + * + * So when closing this file we cannot unmount the mount + * tree. This will be done when the file referring to + * the root of the anonymous mount namespace will be + * closed (It could already be closed but it would sync + * on @namespace_sem and wait for us to finish.). + */ + if (mnt_has_parent(m)) + return; + + lock_mount_hash(); + umount_tree(m, UMOUNT_CONNECTED); + unlock_mount_hash(); + } + + /* Make sure we notice when we leak mounts. */ + VFS_WARN_ON_ONCE(!mnt_ns_empty(ns)); + free_mnt_ns(ns); } void drop_collected_mounts(struct vfsmount *mnt) @@ -2542,6 +2606,7 @@ int count_mounts(struct mnt_namespace *ns, struct mount *mnt) enum mnt_tree_flags_t { MNT_TREE_MOVE = BIT(0), MNT_TREE_BENEATH = BIT(1), + MNT_TREE_PROPAGATION = BIT(2), }; /** @@ -2892,6 +2957,71 @@ static int do_change_type(struct path *path, int ms_flags) return err; } +/* may_copy_tree() - check if a mount tree can be copied + * @path: path to the mount tree to be copied + * + * This helper checks if the caller may copy the mount tree starting + * from @path->mnt. The caller may copy the mount tree under the + * following circumstances: + * + * (1) The caller is located in the mount namespace of the mount tree. + * This also implies that the mount does not belong to an anonymous + * mount namespace. + * (2) The caller tries to copy an nfs mount referring to a mount + * namespace, i.e., the caller is trying to copy a mount namespace + * entry from nsfs. + * (3) The caller tries to copy a pidfs mount referring to a pidfd. + * (4) The caller is trying to copy a mount tree that belongs to an + * anonymous mount namespace. + * + * For that to be safe, this helper enforces that the origin mount + * namespace the anonymous mount namespace was created from is the + * same as the caller's mount namespace by comparing the sequence + * numbers. + * + * This is not strictly necessary. The current semantics of the new + * mount api enforce that the caller must be located in the same + * mount namespace as the mount tree it interacts with. Using the + * origin sequence number preserves these semantics even for + * anonymous mount namespaces. However, one could envision extending + * the api to directly operate across mount namespace if needed. + * + * The ownership of a non-anonymous mount namespace such as the + * caller's cannot change. + * => We know that the caller's mount namespace is stable. + * + * If the origin sequence number of the anonymous mount namespace is + * the same as the sequence number of the caller's mount namespace. + * => The owning namespaces are the same. + * + * ==> The earlier capability check on the owning namespace of the + * caller's mount namespace ensures that the caller has the + * ability to copy the mount tree. + * + * Returns true if the mount tree can be copied, false otherwise. + */ +static inline bool may_copy_tree(struct path *path) +{ + struct mount *mnt = real_mount(path->mnt); + const struct dentry_operations *d_op; + + if (check_mnt(mnt)) + return true; + + d_op = path->dentry->d_op; + if (d_op == &ns_dentry_operations) + return true; + + if (d_op == &pidfs_dentry_operations) + return true; + + if (!is_mounted(path->mnt)) + return false; + + return check_anonymous_mnt(mnt); +} + + static struct mount *__do_loopback(struct path *old_path, int recurse) { struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); @@ -2899,13 +3029,8 @@ static struct mount *__do_loopback(struct path *old_path, int recurse) if (IS_MNT_UNBINDABLE(old)) return mnt; - if (!check_mnt(old)) { - const struct dentry_operations *d_op = old_path->dentry->d_op; - - if (d_op != &ns_dentry_operations && - d_op != &pidfs_dentry_operations) - return mnt; - } + if (!may_copy_tree(old_path)) + return mnt; if (!recurse && has_locked_children(old, old_path->dentry)) return mnt; @@ -2972,15 +3097,30 @@ out: static struct file *open_detached_copy(struct path *path, bool recursive) { - struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; - struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); + struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns; + struct user_namespace *user_ns = mnt_ns->user_ns; struct mount *mnt, *p; struct file *file; + ns = alloc_mnt_ns(user_ns, true); if (IS_ERR(ns)) return ERR_CAST(ns); namespace_lock(); + + /* + * Record the sequence number of the source mount namespace. + * This needs to hold namespace_sem to ensure that the mount + * doesn't get attached. + */ + if (is_mounted(path->mnt)) { + src_mnt_ns = real_mount(path->mnt)->mnt_ns; + if (is_anon_ns(src_mnt_ns)) + ns->seq_origin = src_mnt_ns->seq_origin; + else + ns->seq_origin = src_mnt_ns->seq; + } + mnt = __do_loopback(path, recursive); if (IS_ERR(mnt)) { namespace_unlock(); @@ -3420,8 +3560,56 @@ static int can_move_mount_beneath(const struct path *from, return 0; } -static int do_move_mount(struct path *old_path, struct path *new_path, - bool beneath) +/* may_use_mount() - check if a mount tree can be used + * @mnt: vfsmount to be used + * + * This helper checks if the caller may use the mount tree starting + * from @path->mnt. The caller may use the mount tree under the + * following circumstances: + * + * (1) The caller is located in the mount namespace of the mount tree. + * This also implies that the mount does not belong to an anonymous + * mount namespace. + * (2) The caller is trying to use a mount tree that belongs to an + * anonymous mount namespace. + * + * For that to be safe, this helper enforces that the origin mount + * namespace the anonymous mount namespace was created from is the + * same as the caller's mount namespace by comparing the sequence + * numbers. + * + * The ownership of a non-anonymous mount namespace such as the + * caller's cannot change. + * => We know that the caller's mount namespace is stable. + * + * If the origin sequence number of the anonymous mount namespace is + * the same as the sequence number of the caller's mount namespace. + * => The owning namespaces are the same. + * + * ==> The earlier capability check on the owning namespace of the + * caller's mount namespace ensures that the caller has the + * ability to use the mount tree. + * + * Returns true if the mount tree can be used, false otherwise. + */ +static inline bool may_use_mount(struct mount *mnt) +{ + if (check_mnt(mnt)) + return true; + + /* + * Make sure that noone unmounted the target path or somehow + * managed to get their hands on something purely kernel + * internal. + */ + if (!is_mounted(&mnt->mnt)) + return false; + + return check_anonymous_mnt(mnt); +} + +static int do_move_mount(struct path *old_path, + struct path *new_path, enum mnt_tree_flags_t flags) { struct mnt_namespace *ns; struct mount *p; @@ -3429,8 +3617,7 @@ static int do_move_mount(struct path *old_path, struct path *new_path, struct mount *parent; struct mountpoint *mp, *old_mp; int err; - bool attached; - enum mnt_tree_flags_t flags = 0; + bool attached, beneath = flags & MNT_TREE_BENEATH; mp = do_lock_mount(new_path, beneath); if (IS_ERR(mp)) @@ -3446,8 +3633,7 @@ static int do_move_mount(struct path *old_path, struct path *new_path, ns = old->mnt_ns; err = -EINVAL; - /* The mountpoint must be in our namespace. */ - if (!check_mnt(p)) + if (!may_use_mount(p)) goto out; /* The thing moved must be mounted... */ @@ -3458,6 +3644,32 @@ static int do_move_mount(struct path *old_path, struct path *new_path, if (!(attached ? check_mnt(old) : is_anon_ns(ns))) goto out; + if (is_anon_ns(ns)) { + /* + * Ending up with two files referring to the root of the + * same anonymous mount namespace would cause an error + * as this would mean trying to move the same mount + * twice into the mount tree which would be rejected + * later. But be explicit about it right here. + */ + if ((is_anon_ns(p->mnt_ns) && ns == p->mnt_ns)) + goto out; + + /* + * If this is an anonymous mount tree ensure that mount + * propagation can detect mounts that were just + * propagated to the target mount tree so we don't + * propagate onto them. + */ + ns->mntns_flags |= MNTNS_PROPAGATING; + } else if (is_anon_ns(p->mnt_ns)) { + /* + * Don't allow moving an attached mount tree to an + * anonymous mount tree. + */ + goto out; + } + if (old->mnt.mnt_flags & MNT_LOCKED) goto out; @@ -3500,6 +3712,9 @@ static int do_move_mount(struct path *old_path, struct path *new_path, if (err) goto out; + if (is_anon_ns(ns)) + ns->mntns_flags &= ~MNTNS_PROPAGATING; + /* if the mount is moved, it should no longer be expire * automatically */ list_del_init(&old->mnt_expire); @@ -3508,10 +3723,13 @@ static int do_move_mount(struct path *old_path, struct path *new_path, out: unlock_mount(mp); if (!err) { - if (attached) + if (attached) { mntput_no_expire(parent); - else + } else { + /* Make sure we notice when we leak mounts. */ + VFS_WARN_ON_ONCE(!mnt_ns_empty(ns)); free_mnt_ns(ns); + } } return err; } @@ -3528,7 +3746,7 @@ static int do_move_mount_old(struct path *path, const char *old_name) if (err) return err; - err = do_move_mount(&old_path, path, false); + err = do_move_mount(&old_path, path, 0); path_put(&old_path); return err; } @@ -4369,6 +4587,21 @@ err_unlock: return ret; } +static inline int vfs_move_mount(struct path *from_path, struct path *to_path, + enum mnt_tree_flags_t mflags) +{ + int ret; + + ret = security_move_mount(from_path, to_path); + if (ret) + return ret; + + if (mflags & MNT_TREE_PROPAGATION) + return do_set_group(from_path, to_path); + + return do_move_mount(from_path, to_path, mflags); +} + /* * Move a mount from one place to another. In combination with * fsopen()/fsmount() this is used to install a new mount and in combination @@ -4382,8 +4615,12 @@ SYSCALL_DEFINE5(move_mount, int, to_dfd, const char __user *, to_pathname, unsigned int, flags) { - struct path from_path, to_path; - unsigned int lflags; + struct path to_path __free(path_put) = {}; + struct path from_path __free(path_put) = {}; + struct filename *to_name __free(putname) = NULL; + struct filename *from_name __free(putname) = NULL; + unsigned int lflags, uflags; + enum mnt_tree_flags_t mflags = 0; int ret = 0; if (!may_mount()) @@ -4396,43 +4633,53 @@ SYSCALL_DEFINE5(move_mount, (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) return -EINVAL; - /* If someone gives a pathname, they aren't permitted to move - * from an fd that requires unmount as we can't get at the flag - * to clear it afterwards. - */ + if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION; + if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH; + lflags = 0; if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; - if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; - - ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); - if (ret < 0) - return ret; + uflags = 0; + if (flags & MOVE_MOUNT_F_EMPTY_PATH) uflags = AT_EMPTY_PATH; + from_name = getname_maybe_null(from_pathname, uflags); + if (IS_ERR(from_name)) + return PTR_ERR(from_name); lflags = 0; if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; - if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; + uflags = 0; + if (flags & MOVE_MOUNT_T_EMPTY_PATH) uflags = AT_EMPTY_PATH; + to_name = getname_maybe_null(to_pathname, uflags); + if (IS_ERR(to_name)) + return PTR_ERR(to_name); + + if (!to_name && to_dfd >= 0) { + CLASS(fd_raw, f_to)(to_dfd); + if (fd_empty(f_to)) + return -EBADF; + + to_path = fd_file(f_to)->f_path; + path_get(&to_path); + } else { + ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL); + if (ret) + return ret; + } - ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); - if (ret < 0) - goto out_from; + if (!from_name && from_dfd >= 0) { + CLASS(fd_raw, f_from)(from_dfd); + if (fd_empty(f_from)) + return -EBADF; - ret = security_move_mount(&from_path, &to_path); - if (ret < 0) - goto out_to; + return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags); + } - if (flags & MOVE_MOUNT_SET_GROUP) - ret = do_set_group(&from_path, &to_path); - else - ret = do_move_mount(&from_path, &to_path, - (flags & MOVE_MOUNT_BENEATH)); + ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL); + if (ret) + return ret; -out_to: - path_put(&to_path); -out_from: - path_put(&from_path); - return ret; + return vfs_move_mount(&from_path, &to_path, mflags); } /* @@ -5516,7 +5763,7 @@ static int grab_requested_root(struct mnt_namespace *ns, struct path *root) * We have to find the first mount in our ns and use that, however it * may not exist, so handle that properly. */ - if (RB_EMPTY_ROOT(&ns->mounts)) + if (mnt_ns_empty(ns)) return -ENOENT; first = child = ns->root; @@ -5556,7 +5803,7 @@ static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id, int err; /* Has the namespace already been emptied? */ - if (mnt_ns_id && RB_EMPTY_ROOT(&ns->mounts)) + if (mnt_ns_id && mnt_ns_empty(ns)) return -ENOENT; s->mnt = lookup_mnt_in_ns(mnt_id, ns); |