diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2024-09-16 12:13:31 +0200 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2024-09-16 12:13:31 +0200 |
commit | 35219bc5c71f4197c8bd10297597de797c1eece5 (patch) | |
tree | 2448156135b78f54cd341a8457ccd84a371ddac7 /lib/scatterlist.c | |
parent | 9020d0d844ad58a051f90b1e5b82ba34123925b9 (diff) | |
parent | 4b40d43d9f951d87ae8dc414c2ef5ae50303a266 (diff) |
Merge tag 'vfs-6.12.netfs' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull netfs updates from Christian Brauner:
"This contains the work to improve read/write performance for the new
netfs library.
The main performance enhancing changes are:
- Define a structure, struct folio_queue, and a new iterator type,
ITER_FOLIOQ, to hold a buffer as a replacement for ITER_XARRAY. See
that patch for questions about naming and form.
ITER_FOLIOQ is provided as a replacement for ITER_XARRAY. The
problem with an xarray is that accessing it requires the use of a
lock (typically the RCU read lock) - and this means that we can't
supply iterate_and_advance() with a step function that might sleep
(crypto for example) without having to drop the lock between pages.
ITER_FOLIOQ is the iterator for a chain of folio_queue structs,
where each folio_queue holds a small list of folios. A folio_queue
struct is a simpler structure than xarray and is not subject to
concurrent manipulation by the VM. folio_queue is used rather than
a bvec[] as it can form lists of indefinite size, adding to one end
and removing from the other on the fly.
- Provide a copy_folio_from_iter() wrapper.
- Make cifs RDMA support ITER_FOLIOQ.
- Use folio queues in the write-side helpers instead of xarrays.
- Add a function to reset the iterator in a subrequest.
- Simplify the write-side helpers to use sheaves to skip gaps rather
than trying to work out where gaps are.
- In afs, make the read subrequests asynchronous, putting them into
work items to allow the next patch to do progressive
unlocking/reading.
- Overhaul the read-side helpers to improve performance.
- Fix the caching of a partial block at the end of a file.
- Allow a store to be cancelled.
Then some changes for cifs to make it use folio queues instead of
xarrays for crypto bufferage:
- Use raw iteration functions rather than manually coding iteration
when hashing data.
- Switch to using folio_queue for crypto buffers.
- Remove the xarray bits.
Make some adjustments to the /proc/fs/netfs/stats file such that:
- All the netfs stats lines begin 'Netfs:' but change this to
something a bit more useful.
- Add a couple of stats counters to track the numbers of skips and
waits on the per-inode writeback serialisation lock to make it
easier to check for this as a source of performance loss.
Miscellaneous work:
- Ensure that the sb_writers lock is taken around
vfs_{set,remove}xattr() in the cachefiles code.
- Reduce the number of conditional branches in netfs_perform_write().
- Move the CIFS_INO_MODIFIED_ATTR flag to the netfs_inode struct and
remove cifs_post_modify().
- Move the max_len/max_nr_segs members from netfs_io_subrequest to
netfs_io_request as they're only needed for one subreq at a time.
- Add an 'unknown' source value for tracing purposes.
- Remove NETFS_COPY_TO_CACHE as it's no longer used.
- Set the request work function up front at allocation time.
- Use bh-disabling spinlocks for rreq->lock as cachefiles completion
may be run from block-filesystem DIO completion in softirq context.
- Remove fs/netfs/io.c"
* tag 'vfs-6.12.netfs' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (25 commits)
docs: filesystems: corrected grammar of netfs page
cifs: Don't support ITER_XARRAY
cifs: Switch crypto buffer to use a folio_queue rather than an xarray
cifs: Use iterate_and_advance*() routines directly for hashing
netfs: Cancel dirty folios that have no storage destination
cachefiles, netfs: Fix write to partial block at EOF
netfs: Remove fs/netfs/io.c
netfs: Speed up buffered reading
afs: Make read subreqs async
netfs: Simplify the writeback code
netfs: Provide an iterator-reset function
netfs: Use new folio_queue data type and iterator instead of xarray iter
cifs: Provide the capability to extract from ITER_FOLIOQ to RDMA SGEs
iov_iter: Provide copy_folio_from_iter()
mm: Define struct folio_queue and ITER_FOLIOQ to handle a sequence of folios
netfs: Use bh-disabling spinlocks for rreq->lock
netfs: Set the request work function upon allocation
netfs: Remove NETFS_COPY_TO_CACHE
netfs: Reserve netfs_sreq_source 0 as unset/unknown
netfs: Move max_len/max_nr_segs from netfs_io_subrequest to netfs_io_stream
...
Diffstat (limited to 'lib/scatterlist.c')
-rw-r--r-- | lib/scatterlist.c | 69 |
1 files changed, 67 insertions, 2 deletions
diff --git a/lib/scatterlist.c b/lib/scatterlist.c index 7bc2220fea80..473b2646f71c 100644 --- a/lib/scatterlist.c +++ b/lib/scatterlist.c @@ -11,6 +11,7 @@ #include <linux/kmemleak.h> #include <linux/bvec.h> #include <linux/uio.h> +#include <linux/folio_queue.h> /** * sg_next - return the next scatterlist entry in a list @@ -1262,6 +1263,67 @@ static ssize_t extract_kvec_to_sg(struct iov_iter *iter, } /* + * Extract up to sg_max folios from an FOLIOQ-type iterator and add them to + * the scatterlist. The pages are not pinned. + */ +static ssize_t extract_folioq_to_sg(struct iov_iter *iter, + ssize_t maxsize, + struct sg_table *sgtable, + unsigned int sg_max, + iov_iter_extraction_t extraction_flags) +{ + const struct folio_queue *folioq = iter->folioq; + struct scatterlist *sg = sgtable->sgl + sgtable->nents; + unsigned int slot = iter->folioq_slot; + ssize_t ret = 0; + size_t offset = iter->iov_offset; + + BUG_ON(!folioq); + + if (slot >= folioq_nr_slots(folioq)) { + folioq = folioq->next; + if (WARN_ON_ONCE(!folioq)) + return 0; + slot = 0; + } + + do { + struct folio *folio = folioq_folio(folioq, slot); + size_t fsize = folioq_folio_size(folioq, slot); + + if (offset < fsize) { + size_t part = umin(maxsize - ret, fsize - offset); + + sg_set_page(sg, folio_page(folio, 0), part, offset); + sgtable->nents++; + sg++; + sg_max--; + offset += part; + ret += part; + } + + if (offset >= fsize) { + offset = 0; + slot++; + if (slot >= folioq_nr_slots(folioq)) { + if (!folioq->next) { + WARN_ON_ONCE(ret < iter->count); + break; + } + folioq = folioq->next; + slot = 0; + } + } + } while (sg_max > 0 && ret < maxsize); + + iter->folioq = folioq; + iter->folioq_slot = slot; + iter->iov_offset = offset; + iter->count -= ret; + return ret; +} + +/* * Extract up to sg_max folios from an XARRAY-type iterator and add them to * the scatterlist. The pages are not pinned. */ @@ -1323,8 +1385,8 @@ static ssize_t extract_xarray_to_sg(struct iov_iter *iter, * addition of @sg_max elements. * * The pages referred to by UBUF- and IOVEC-type iterators are extracted and - * pinned; BVEC-, KVEC- and XARRAY-type are extracted but aren't pinned; PIPE- - * and DISCARD-type are not supported. + * pinned; BVEC-, KVEC-, FOLIOQ- and XARRAY-type are extracted but aren't + * pinned; DISCARD-type is not supported. * * No end mark is placed on the scatterlist; that's left to the caller. * @@ -1356,6 +1418,9 @@ ssize_t extract_iter_to_sg(struct iov_iter *iter, size_t maxsize, case ITER_KVEC: return extract_kvec_to_sg(iter, maxsize, sgtable, sg_max, extraction_flags); + case ITER_FOLIOQ: + return extract_folioq_to_sg(iter, maxsize, sgtable, sg_max, + extraction_flags); case ITER_XARRAY: return extract_xarray_to_sg(iter, maxsize, sgtable, sg_max, extraction_flags); |