summaryrefslogtreecommitdiff
path: root/fs/btrfs/disk-io.c
AgeCommit message (Collapse)Author
2025-04-01Merge tag 'mm-nonmm-stable-2025-03-30-18-23' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull non-MM updates from Andrew Morton: - The series "powerpc/crash: use generic crashkernel reservation" from Sourabh Jain changes powerpc's kexec code to use more of the generic layers. - The series "get_maintainer: report subsystem status separately" from Vlastimil Babka makes some long-requested improvements to the get_maintainer output. - The series "ucount: Simplify refcounting with rcuref_t" from Sebastian Siewior cleans up and optimizing the refcounting in the ucount code. - The series "reboot: support runtime configuration of emergency hw_protection action" from Ahmad Fatoum improves the ability for a driver to perform an emergency system shutdown or reboot. - The series "Converge on using secs_to_jiffies() part two" from Easwar Hariharan performs further migrations from msecs_to_jiffies() to secs_to_jiffies(). - The series "lib/interval_tree: add some test cases and cleanup" from Wei Yang permits more userspace testing of kernel library code, adds some more tests and performs some cleanups. - The series "hung_task: Dump the blocking task stacktrace" from Masami Hiramatsu arranges for the hung_task detector to dump the stack of the blocking task and not just that of the blocked task. - The series "resource: Split and use DEFINE_RES*() macros" from Andy Shevchenko provides some cleanups to the resource definition macros. - Plus the usual shower of singleton patches - please see the individual changelogs for details. * tag 'mm-nonmm-stable-2025-03-30-18-23' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (77 commits) mailmap: consolidate email addresses of Alexander Sverdlin fs/procfs: fix the comment above proc_pid_wchan() relay: use kasprintf() instead of fixed buffer formatting resource: replace open coded variant of DEFINE_RES() resource: replace open coded variants of DEFINE_RES_*_NAMED() resource: replace open coded variant of DEFINE_RES_NAMED_DESC() resource: split DEFINE_RES_NAMED_DESC() out of DEFINE_RES_NAMED() samples: add hung_task detector mutex blocking sample hung_task: show the blocker task if the task is hung on mutex kexec_core: accept unaccepted kexec segments' destination addresses watchdog/perf: optimize bytes copied and remove manual NUL-termination lib/interval_tree: fix the comment of interval_tree_span_iter_next_gap() lib/interval_tree: skip the check before go to the right subtree lib/interval_tree: add test case for span iteration lib/interval_tree: add test case for interval_tree_iter_xxx() helpers lib/rbtree: add random seed lib/rbtree: split tests lib/rbtree: enable userland test suite for rbtree related data structure checkpatch: describe --min-conf-desc-length scripts/gdb/symbols: determine KASLR offset on s390 ...
2025-03-18btrfs: don't clobber ret in btrfs_validate_super()Mark Harmstone
Commit 2a9bb78cfd36 ("btrfs: validate system chunk array at btrfs_validate_super()") introduces a call to validate_sys_chunk_array() in btrfs_validate_super(), which clobbers the value of ret set earlier. This has the effect of negating the validity checks done earlier, making it so btrfs could potentially try to mount invalid filesystems. Fixes: 2a9bb78cfd36 ("btrfs: validate system chunk array at btrfs_validate_super()") Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Mark Harmstone <maharmstone@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18btrfs: add extra warning if delayed iput is added when it's not allowedQu Wenruo
Since I have triggered the ASSERT() on the delayed iput too many times, now is the time to add some extra debug warnings for delayed iput. All delayed iputs should be queued after all ordered extents finish their IO and all involved workqueues are flushed. Thus after the btrfs_run_delayed_iputs() inside close_ctree(), there should be no more delayed puts added. So introduce a new BTRFS_FS_STATE_NO_DELAYED_IPUT, set after the above mentioned timing. And all btrfs_add_delayed_iput() will check that flag and give a WARN_ON_ONCE(). Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18btrfs: run btrfs_error_commit_super() earlyQu Wenruo
[BUG] Even after all the error fixes related the "ASSERT(list_empty(&fs_info->delayed_iputs));" in close_ctree(), I can still hit it reliably with my experimental 2K block size. [CAUSE] In my case, all the error is triggered after the fs is already in error status. I find the following call trace to be the cause of race: Main thread | endio_write_workers ---------------------------------------------+--------------------------- close_ctree() | |- btrfs_error_commit_super() | | |- btrfs_cleanup_transaction() | | | |- btrfs_destroy_all_ordered_extents() | | | |- btrfs_wait_ordered_roots() | | |- btrfs_run_delayed_iputs() | | | btrfs_finish_ordered_io() | | |- btrfs_put_ordered_extent() | | |- btrfs_add_delayed_iput() |- ASSERT(list_empty(delayed_iputs)) | !!! Triggered !!! The root cause is that, btrfs_wait_ordered_roots() only wait for ordered extents to finish their IOs, not to wait for them to finish and removed. [FIX] Since btrfs_error_commit_super() will flush and wait for all ordered extents, it should be executed early, before we start flushing the workqueues. And since btrfs_error_commit_super() now runs early, there is no need to run btrfs_run_delayed_iputs() inside it, so just remove the btrfs_run_delayed_iputs() call from btrfs_error_commit_super(). Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18btrfs: fix non-empty delayed iputs list on unmount due to async workersFilipe Manana
At close_ctree() after we have ran delayed iputs either explicitly through calling btrfs_run_delayed_iputs() or later during the call to btrfs_commit_super() or btrfs_error_commit_super(), we assert that the delayed iputs list is empty. We have (another) race where this assertion might fail because we have queued an async write into the fs_info->workers workqueue. Here's how it happens: 1) We are submitting a data bio for an inode that is not the data relocation inode, so we call btrfs_wq_submit_bio(); 2) btrfs_wq_submit_bio() submits a work for the fs_info->workers queue that will run run_one_async_done(); 3) We enter close_ctree(), flush several work queues except fs_info->workers, explicitly run delayed iputs with a call to btrfs_run_delayed_iputs() and then again shortly after by calling btrfs_commit_super() or btrfs_error_commit_super(), which also run delayed iputs; 4) run_one_async_done() is executed in the work queue, and because there was an IO error (bio->bi_status is not 0) it calls btrfs_bio_end_io(), which drops the final reference on the associated ordered extent by calling btrfs_put_ordered_extent() - and that adds a delayed iput for the inode; 5) At close_ctree() we find that after stopping the cleaner and transaction kthreads the delayed iputs list is not empty, failing the following assertion: ASSERT(list_empty(&fs_info->delayed_iputs)); Fix this by flushing the fs_info->workers workqueue before running delayed iputs at close_ctree(). David reported this when running generic/648, which exercises IO error paths by using the DM error table. Reported-by: David Sterba <dsterba@suse.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18btrfs: fix non-empty delayed iputs list on unmount due to compressed write ↵Filipe Manana
workers At close_ctree() after we have ran delayed iputs either through explicitly calling btrfs_run_delayed_iputs() or later during the call to btrfs_commit_super() or btrfs_error_commit_super(), we assert that the delayed iputs list is empty. When we have compressed writes this assertion may fail because delayed iputs may have been added to the list after we last ran delayed iputs. This happens like this: 1) We have a compressed write bio executing; 2) We enter close_ctree() and flush the fs_info->endio_write_workers queue which is the queue used for running ordered extent completion; 3) The compressed write bio finishes and enters btrfs_finish_compressed_write_work(), where it calls btrfs_finish_ordered_extent() which in turn calls btrfs_queue_ordered_fn(), which queues a work item in the fs_info->endio_write_workers queue that we have flushed before; 4) At close_ctree() we proceed, run all existing delayed iputs and call btrfs_commit_super() (which also runs delayed iputs), but before we run the following assertion below: ASSERT(list_empty(&fs_info->delayed_iputs)) A delayed iput is added by the step below... 5) The ordered extent completion job queued in step 3 runs and results in creating a delayed iput when dropping the last reference of the ordered extent (a call to btrfs_put_ordered_extent() made from btrfs_finish_one_ordered()); 6) At this point the delayed iputs list is not empty, so the assertion at close_ctree() fails. Fix this by flushing the fs_info->compressed_write_workers queue at close_ctree() before flushing the fs_info->endio_write_workers queue, respecting the queue dependency as the later is responsible for the execution of ordered extent completion. CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18btrfs: allow debug builds to accept 2K block sizeQu Wenruo
Currently we only support two block sizes, 4K and PAGE_SIZE. This means on the most common architecture x86_64, we have no way to test subpage block size. And that's exactly I have an aarch64 machine dedicated for subpage tests. But this is still a hurdle for a lot of btrfs developers, and to improve the test coverage mostly on x86_64, here we enable debug builds to accept 2K block size. This involves: - Introduce a dedicated minimal block size macro BTRFS_MIN_BLOCKSIZE, which depends on if CONFIG_BTRFS_DEBUG is set. If so it's 2K, otherwise it's 4K as usual. - Allow 4K, PAGE_SIZE and BTRFS_MIN_BLOCKSIZE as block size - Update subpage block size checks to be based on BTRFS_MIN_BLOCKSIZE - Export the new supported blocksize through sysfs interfaces As most of the subpage support is already pretty mature, there is no extra work needed to support the extra 2K block size. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18btrfs: remove the subpage related warning messageQu Wenruo
Since the initial enablement of block size < page size support for btrfs in v5.15, we have hit several milestones for block size < page size (subpage) support: - RAID56 subpage support In v5.19 - Refactored scrub support to support subpage better In v6.4 - Block perfect (previously requires page aligned ranges) compressed write In v6.13 - Various error handling fixes involving subpage In v6.14 Finally the only missing feature is the pretty simple and harmless inlined data extent creation, just added in previous patches. Now btrfs has all of its features ready for both regular and subpage cases, there is no reason to output a warning about the experimental subpage support, and we can finally remove it now. Acked-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18btrfs: use BTRFS_PATH_AUTO_FREE in btrfs_init_root_free_objectid()David Sterba
This is the trivial pattern for path auto free, initialize at the beginning and free at the end with simple goto -> return conversions. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18btrfs: use BTRFS_PATH_AUTO_FREE in load_global_roots()David Sterba
This is the trivial pattern for path auto free, initialize at the beginning and free at the end with simple goto -> return conversions. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18btrfs: do trivial BTRFS_PATH_AUTO_FREE conversionsDavid Sterba
The most trivial pattern for the auto freeing when the variable is declared with the macro and the final btrfs_free_path() is removed. There are almost none goto -> return conversions and there's no other function cleanup. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18btrfs: use num_extent_folios() in for loop boundsDavid Sterba
As the helper num_extent_folios() is now __pure, we can use it in for loop without storing its value in a variable explicitly, the compiler will do this for us. The effects on btrfs.ko is -200 bytes and there are stack space savings too: btrfs_clone_extent_buffer -8 (32 -> 24) btrfs_clear_buffer_dirty -8 (48 -> 40) clear_extent_buffer_uptodate -8 (40 -> 32) set_extent_buffer_dirty -8 (32 -> 24) write_one_eb -8 (88 -> 80) set_extent_buffer_uptodate -8 (40 -> 32) read_extent_buffer_pages_nowait -16 (64 -> 48) find_extent_buffer -8 (32 -> 24) Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18btrfs: simplify parameters of metadata folio helpersDavid Sterba
Unlike folio helpers for date the ones for metadata always take the extent buffer start and length, so they can be simplified to take the eb only. The fs_info can be obtained from eb too so it can be dropped as parameter. Added in patch "btrfs: use metadata specific helpers to simplify extent buffer helpers". Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18btrfs: simplify returns and labels in btrfs_init_fs_root()David Sterba
There's a label that does nothing else than return, so remove it and also change other gotos to immediate returns as the function is short enough for this pattern. Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18btrfs: require strict data/metadata split for subpage checksQu Wenruo
Since we have btrfs_meta_is_subpage(), we should make btrfs_is_subpage() to be data inode specific. This change involves: - Simplify btrfs_is_subpage() Now we only need to do a very simple sectorsize check against PAGE_SIZE. And since the function is pretty simple now, just make it an inline function. - Add an extra ASSERT() to make sure btrfs_is_subpage() is only called on data inode mapping - Migrate btree_csum_one_bio() to use btrfs_meta_folio_*() helpers - Migrate alloc_extent_buffer() to use btrfs_meta_folio_*() helpers - Migrate end_bbio_meta_write() to use btrfs_meta_folio_*() helpers Or we will trigger the ASSERT() due to calling btrfs_folio_*() on metadata folios. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18btrfs: remove btrfs_fs_info::sectors_per_pageQu Wenruo
For the future large folio support, our filemap can have folios with different sizes, thus we can no longer rely on a fixed blocks_per_page value. To prepare for that future, here we do: - Remove btrfs_fs_info::sectors_per_page - Introduce a helper, btrfs_blocks_per_folio() Which uses the folio size to calculate the number of blocks for each folio. - Migrate the existing btrfs_fs_info::sectors_per_page to use that helper There are some exceptions: * Metadata nodesize < page size support In the future, even if we support large folios, we will only allocate a folio that matches our nodesize. Thus we won't have a folio covering multiple metadata unless nodesize < page size. * Existing subpage bitmap dump We use a single unsigned long to store the bitmap. That means until we change the bitmap dumping code, our upper limit for folio size will only be 256K (4K block size, 64 bit unsigned long). * btrfs_is_subpage() check This will be migrated into a future patch. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-16btrfs: convert timeouts to secs_to_jiffies()Easwar Hariharan
Commit b35108a51cf7 ("jiffies: Define secs_to_jiffies()") introduced secs_to_jiffies(). As the value here is a multiple of 1000, use secs_to_jiffies() instead of msecs_to_jiffies() to avoid the multiplication This is converted using scripts/coccinelle/misc/secs_to_jiffies.cocci with the following Coccinelle rules: @depends on patch@ expression E; @@ -msecs_to_jiffies +secs_to_jiffies (E - * \( 1000 \| MSEC_PER_SEC \) ) Link: https://lkml.kernel.org/r/20250225-converge-secs-to-jiffies-part-two-v3-5-a43967e36c88@linux.microsoft.com Signed-off-by: Easwar Hariharan <eahariha@linux.microsoft.com> Acked-by: David Sterba <dsterba@suse.com> Cc: Carlos Maiolino <cem@kernel.org> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Chris Mason <clm@fb.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Damien Le Maol <dlemoal@kernel.org> Cc: "Darrick J. Wong" <djwong@kernel.org> Cc: Dick Kennedy <dick.kennedy@broadcom.com> Cc: Dongsheng Yang <dongsheng.yang@easystack.cn> Cc: Fabio Estevam <festevam@gmail.com> Cc: Frank Li <frank.li@nxp.com> Cc: Hans de Goede <hdegoede@redhat.com> Cc: Henrique de Moraes Holschuh <hmh@hmh.eng.br> Cc: Ilpo Jarvinen <ilpo.jarvinen@linux.intel.com> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: James Bottomley <james.bottomley@HansenPartnership.com> Cc: James Smart <james.smart@broadcom.com> Cc: Jaroslav Kysela <perex@perex.cz> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Jens Axboe <axboe@kernel.dk> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Julia Lawall <julia.lawall@inria.fr> Cc: Kalesh Anakkur Purayil <kalesh-anakkur.purayil@broadcom.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Leon Romanovsky <leon@kernel.org> Cc: Marc Kleine-Budde <mkl@pengutronix.de> Cc: Mark Brown <broonie@kernel.org> Cc: "Martin K. Petersen" <martin.petersen@oracle.com> Cc: Nicolas Palix <nicolas.palix@imag.fr> Cc: Niklas Cassel <cassel@kernel.org> Cc: Oded Gabbay <ogabbay@kernel.org> Cc: Sagi Grimberg <sagi@grimberg.me> Cc: Sascha Hauer <s.hauer@pengutronix.de> Cc: Sebastian Reichel <sre@kernel.org> Cc: Selvin Thyparampil Xavier <selvin.xavier@broadcom.com> Cc: Shawn Guo <shawnguo@kernel.org> Cc: Shyam-sundar S-k <Shyam-sundar.S-k@amd.com> Cc: Takashi Iwai <tiwai@suse.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Xiubo Li <xiubli@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-13btrfs: split waiting from read_extent_buffer_pages(), drop parameter waitDavid Sterba
There are only 2 WAIT_* values left for wait parameter, we can encode this to the function name if the waiting functionality is split. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-01-13btrfs: add tracking of read blocks for read policyAnand Jain
Track number of read blocks in the whole filesystem. The counter is initialized when devices are opened. The counter is increased at btrfs_submit_dev_bio() if the stats tracking is enabled (depends on the read policy). Stats tracking is disabled by default and is enabled through fs_devices::collect_fs_stats when required. The code is not under the EXPERIMENTAL define, as stats can be expanded to include write counts and other performance counters, with the user interface independent of its internal use. This is an in-memory-only feature, not related to the dev error stats. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-01-13btrfs: initialize fs_devices->fs_info earlier in btrfs_init_devices_late()Anand Jain
Currently, fs_devices->fs_info is initialized in btrfs_init_devices_late(), but this occurs too late for find_live_mirror(), which is invoked by load_super_root() much earlier than btrfs_init_devices_late(). Fix this by moving the initialization to open_ctree(), before load_super_root(). Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-01-13btrfs: validate system chunk array at btrfs_validate_super()Qu Wenruo
Currently btrfs_validate_super() only does a very basic check on the array chunk size (not too large than the available space, but not too small to contain no chunk). The more comprehensive checks (the regular chunk checks and size check inside the system chunk array) are all done inside btrfs_read_sys_array(). It's not a big deal, but it also means we do not do any validation on the system chunk array at super block writeback time either. Do the following modification to centralize the system chunk array checks into btrfs_validate_super(): - Make chunk_err() helper accept stack chunk pointer If @leaf parameter is NULL, then the @chunk pointer will be a pointer to the chunk item, other than the offset inside the leaf. And since @leaf can be NULL, add a new @fs_info parameter for that case. - Make btrfs_check_chunk_valid() handle stack chunk pointer The same as chunk_err(), a new @fs_info parameter, and if @leaf is NULL, then @chunk will be a pointer to a stack chunk. If @chunk is NULL, then all needed btrfs_chunk members will be read using the stack helper instead of the leaf helper. This means we need to read out all the needed member at the beginning of the function. Furthermore, at super block read time, fs_info->sectorsize is not yet initialized, we need one extra @sectorsize parameter to grab the correct sectorsize. - Introduce a helper validate_sys_chunk_array() * Validate the disk key. * Validate the size before we access the full chunk items. * Do the full chunk item validation. - Call validate_sys_chunk_array() at btrfs_validate_super() - Simplify the checks inside btrfs_read_sys_array() Now the checks will be converted to an ASSERT(). - Simplify the checks inside read_one_chunk() Now that all chunk items inside system chunk array and chunk tree are verified, there is no need to verify them again inside read_one_chunk(). This change has the following advantages: - More comprehensive checks at write time And unlike the sys_chunk_array read routine, this time we do not need to allocate a dummy extent buffer to do the check. All the checks done here require no new memory allocation. - Slightly improved readability when iterating the system chunk array Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-12-06btrfs: flush delalloc workers queue before stopping cleaner kthread during ↵Filipe Manana
unmount During the unmount path, at close_ctree(), we first stop the cleaner kthread, using kthread_stop() which frees the associated task_struct, and then stop and destroy all the work queues. However after we stopped the cleaner we may still have a worker from the delalloc_workers queue running inode.c:submit_compressed_extents(), which calls btrfs_add_delayed_iput(), which in turn tries to wake up the cleaner kthread - which was already destroyed before, resulting in a use-after-free on the task_struct. Syzbot reported this with the following stack traces: BUG: KASAN: slab-use-after-free in __lock_acquire+0x78/0x2100 kernel/locking/lockdep.c:5089 Read of size 8 at addr ffff8880259d2818 by task kworker/u8:3/52 CPU: 1 UID: 0 PID: 52 Comm: kworker/u8:3 Not tainted 6.13.0-rc1-syzkaller-00002-gcdd30ebb1b9f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: btrfs-delalloc btrfs_work_helper Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 __lock_acquire+0x78/0x2100 kernel/locking/lockdep.c:5089 lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline] _raw_spin_lock_irqsave+0xd5/0x120 kernel/locking/spinlock.c:162 class_raw_spinlock_irqsave_constructor include/linux/spinlock.h:551 [inline] try_to_wake_up+0xc2/0x1470 kernel/sched/core.c:4205 submit_compressed_extents+0xdf/0x16e0 fs/btrfs/inode.c:1615 run_ordered_work fs/btrfs/async-thread.c:288 [inline] btrfs_work_helper+0x96f/0xc40 fs/btrfs/async-thread.c:324 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310 worker_thread+0x870/0xd30 kernel/workqueue.c:3391 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> Allocated by task 2: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 unpoison_slab_object mm/kasan/common.c:319 [inline] __kasan_slab_alloc+0x66/0x80 mm/kasan/common.c:345 kasan_slab_alloc include/linux/kasan.h:250 [inline] slab_post_alloc_hook mm/slub.c:4104 [inline] slab_alloc_node mm/slub.c:4153 [inline] kmem_cache_alloc_node_noprof+0x1d9/0x380 mm/slub.c:4205 alloc_task_struct_node kernel/fork.c:180 [inline] dup_task_struct+0x57/0x8c0 kernel/fork.c:1113 copy_process+0x5d1/0x3d50 kernel/fork.c:2225 kernel_clone+0x223/0x870 kernel/fork.c:2807 kernel_thread+0x1bc/0x240 kernel/fork.c:2869 create_kthread kernel/kthread.c:412 [inline] kthreadd+0x60d/0x810 kernel/kthread.c:767 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Freed by task 24: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x59/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2338 [inline] slab_free mm/slub.c:4598 [inline] kmem_cache_free+0x195/0x410 mm/slub.c:4700 put_task_struct include/linux/sched/task.h:144 [inline] delayed_put_task_struct+0x125/0x300 kernel/exit.c:227 rcu_do_batch kernel/rcu/tree.c:2567 [inline] rcu_core+0xaaa/0x17a0 kernel/rcu/tree.c:2823 handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:554 run_ksoftirqd+0xca/0x130 kernel/softirq.c:943 smpboot_thread_fn+0x544/0xa30 kernel/smpboot.c:164 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Last potentially related work creation: kasan_save_stack+0x3f/0x60 mm/kasan/common.c:47 __kasan_record_aux_stack+0xac/0xc0 mm/kasan/generic.c:544 __call_rcu_common kernel/rcu/tree.c:3086 [inline] call_rcu+0x167/0xa70 kernel/rcu/tree.c:3190 context_switch kernel/sched/core.c:5372 [inline] __schedule+0x1803/0x4be0 kernel/sched/core.c:6756 __schedule_loop kernel/sched/core.c:6833 [inline] schedule+0x14b/0x320 kernel/sched/core.c:6848 schedule_timeout+0xb0/0x290 kernel/time/sleep_timeout.c:75 do_wait_for_common kernel/sched/completion.c:95 [inline] __wait_for_common kernel/sched/completion.c:116 [inline] wait_for_common kernel/sched/completion.c:127 [inline] wait_for_completion+0x355/0x620 kernel/sched/completion.c:148 kthread_stop+0x19e/0x640 kernel/kthread.c:712 close_ctree+0x524/0xd60 fs/btrfs/disk-io.c:4328 generic_shutdown_super+0x139/0x2d0 fs/super.c:642 kill_anon_super+0x3b/0x70 fs/super.c:1237 btrfs_kill_super+0x41/0x50 fs/btrfs/super.c:2112 deactivate_locked_super+0xc4/0x130 fs/super.c:473 cleanup_mnt+0x41f/0x4b0 fs/namespace.c:1373 task_work_run+0x24f/0x310 kernel/task_work.c:239 ptrace_notify+0x2d2/0x380 kernel/signal.c:2503 ptrace_report_syscall include/linux/ptrace.h:415 [inline] ptrace_report_syscall_exit include/linux/ptrace.h:477 [inline] syscall_exit_work+0xc7/0x1d0 kernel/entry/common.c:173 syscall_exit_to_user_mode_prepare kernel/entry/common.c:200 [inline] __syscall_exit_to_user_mode_work kernel/entry/common.c:205 [inline] syscall_exit_to_user_mode+0x24a/0x340 kernel/entry/common.c:218 do_syscall_64+0x100/0x230 arch/x86/entry/common.c:89 entry_SYSCALL_64_after_hwframe+0x77/0x7f The buggy address belongs to the object at ffff8880259d1e00 which belongs to the cache task_struct of size 7424 The buggy address is located 2584 bytes inside of freed 7424-byte region [ffff8880259d1e00, ffff8880259d3b00) The buggy address belongs to the physical page: page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x259d0 head: order:3 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0 memcg:ffff88802f4b56c1 flags: 0xfff00000000040(head|node=0|zone=1|lastcpupid=0x7ff) page_type: f5(slab) raw: 00fff00000000040 ffff88801bafe500 dead000000000100 dead000000000122 raw: 0000000000000000 0000000000040004 00000001f5000000 ffff88802f4b56c1 head: 00fff00000000040 ffff88801bafe500 dead000000000100 dead000000000122 head: 0000000000000000 0000000000040004 00000001f5000000 ffff88802f4b56c1 head: 00fff00000000003 ffffea0000967401 ffffffffffffffff 0000000000000000 head: 0000000000000008 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as allocated page last allocated via order 3, migratetype Unmovable, gfp_mask 0xd20c0(__GFP_IO|__GFP_FS|__GFP_NOWARN|__GFP_NORETRY|__GFP_COMP|__GFP_NOMEMALLOC), pid 12, tgid 12 (kworker/u8:1), ts 7328037942, free_ts 0 set_page_owner include/linux/page_owner.h:32 [inline] post_alloc_hook+0x1f3/0x230 mm/page_alloc.c:1556 prep_new_page mm/page_alloc.c:1564 [inline] get_page_from_freelist+0x3651/0x37a0 mm/page_alloc.c:3474 __alloc_pages_noprof+0x292/0x710 mm/page_alloc.c:4751 alloc_pages_mpol_noprof+0x3e8/0x680 mm/mempolicy.c:2265 alloc_slab_page+0x6a/0x140 mm/slub.c:2408 allocate_slab+0x5a/0x2f0 mm/slub.c:2574 new_slab mm/slub.c:2627 [inline] ___slab_alloc+0xcd1/0x14b0 mm/slub.c:3815 __slab_alloc+0x58/0xa0 mm/slub.c:3905 __slab_alloc_node mm/slub.c:3980 [inline] slab_alloc_node mm/slub.c:4141 [inline] kmem_cache_alloc_node_noprof+0x269/0x380 mm/slub.c:4205 alloc_task_struct_node kernel/fork.c:180 [inline] dup_task_struct+0x57/0x8c0 kernel/fork.c:1113 copy_process+0x5d1/0x3d50 kernel/fork.c:2225 kernel_clone+0x223/0x870 kernel/fork.c:2807 user_mode_thread+0x132/0x1a0 kernel/fork.c:2885 call_usermodehelper_exec_work+0x5c/0x230 kernel/umh.c:171 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310 worker_thread+0x870/0xd30 kernel/workqueue.c:3391 page_owner free stack trace missing Memory state around the buggy address: ffff8880259d2700: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880259d2780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff8880259d2800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8880259d2880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880259d2900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== Fix this by flushing the delalloc workers queue before stopping the cleaner kthread. Reported-by: syzbot+b7cf50a0c173770dcb14@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/674ed7e8.050a0220.48a03.0031.GAE@google.com/ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11btrfs: remove fs_info parameter from btrfs_cleanup_one_transaction()Filipe Manana
The fs_info parameter is redundant because it can be extracted from the transaction given as another parameter. So remove it and use the fs_info accessible from the transaction. Reviewed-by: Boris Burkov <boris@bur.io> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11btrfs: remove fs_info parameter from btrfs_destroy_delayed_refs()Filipe Manana
The fs_info parameter is redundant because it can be extracted from the transaction given as another parameter. So remove it and use the fs_info accessible from the transaction. Reviewed-by: Boris Burkov <boris@bur.io> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11btrfs: move btrfs_destroy_delayed_refs() to delayed-ref.cFilipe Manana
It's better suited at delayed-ref.c since it's about delayed refs and contains logic to iterate over them (using the red black tree, doing all the locking, freeing, etc), so move it from disk-io.c, which is pretty big, into delayed-ref.c, hiding implementation details of how delayed refs are tracked and managed. This also facilitates the next patches in the series. This change moves the code between files but also does the following simple cleanups: 1) Rename the 'cache' variable to 'bg', since it's a block group (the 'cache' logic comes from old days where the block group structure was named 'btrfs_block_group_cache'); 2) Move the 'ref' variable declaration to the scope of the inner while loop, since it's not used outside that loop. Reviewed-by: Boris Burkov <boris@bur.io> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11btrfs: remove BUG_ON() at btrfs_destroy_delayed_refs()Filipe Manana
At btrfs_destroy_delayed_refs() it's unexpected to not find the block group to which a delayed reference's extent belongs to, so we have this BUG_ON(), not just because it's highly unexpected but also because we don't know what to do there. Since we are in the transaction abort path, there's nothing we can do other than proceed and cleanup all used resources we can. So remove the BUG_ON() and deal with a missing block group by logging an error message and continuing to cleanup all we can related to the current delayed ref head and moving to other delayed refs. Reviewed-by: Boris Burkov <boris@bur.io> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11btrfs: rename extent map shrinker members from struct btrfs_fs_infoFilipe Manana
The names for the members of struct btrfs_fs_info related to the extent map shrinker are a bit too long, so rename them to be shorter by replacing the "extent_map_" prefix with the "em_" prefix. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11btrfs: simplify tracking progress for the extent map shrinkerFilipe Manana
Now that the extent map shrinker can only be run by a single task (as a work queue item) there is no need to keep the progress of the shrinker protected by a spinlock and passing the progress to trace events as parameters. So remove the lock and simplify the arguments for the trace events. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11btrfs: make the extent map shrinker run asynchronously as a work queue jobFilipe Manana
Currently the extent map shrinker is run synchronously for kswapd tasks that end up calling the fs shrinker (fs/super.c:super_cache_scan()). This has some disadvantages and for some heavy workloads with memory pressure it can cause some delays and stalls that make a machine unresponsive for some periods. This happens because: 1) We can have several kswapd tasks on machines with multiple NUMA zones, and running the extent map shrinker concurrently can cause high contention on some spin locks, namely the spin locks that protect the radix tree that tracks roots, the per root xarray that tracks open inodes and the list of delayed iputs. This not only delays the shrinker but also causes high CPU consumption and makes the task running the shrinker monopolize a core, resulting in the symptoms of an unresponsive system. This was noted in previous commits such as commit ae1e766f623f ("btrfs: only run the extent map shrinker from kswapd tasks"); 2) The extent map shrinker's iteration over inodes can often be slow, even after changing the data structure that tracks open inodes for a root from a red black tree (up to kernel 6.10) to an xarray (kernel 6.10+). The transition to the xarray while it made things a bit faster, it's still somewhat slow - for example in a test scenario with 10000 inodes that have no extent maps loaded, the extent map shrinker took between 5ms to 8ms, using a release, non-debug kernel. Iterating over the extent maps of an inode can also be slow if have an inode with many thousands of extent maps, since we use a red black tree to track and search extent maps. So having the extent map shrinker run synchronously adds extra delay for other things a kswapd task does. So make the extent map shrinker run asynchronously as a job for the system unbounded workqueue, just like what we do for data and metadata space reclaim jobs. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11btrfs: drop unused parameter transaction from alloc_log_tree()David Sterba
The function got split in commit 6ab6ebb76042d3 ("btrfs: split alloc_log_tree()") and since then transaction parameter has been unused. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11btrfs: drop unused parameter options from open_ctree()David Sterba
Since the new mount option parser in commit ad21f15b0f79 ("btrfs: switch to the new mount API") we don't pass the options like that anymore. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-10-24Merge tag 'for-6.12-rc4-tag' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - mount option fixes: - fix handling of compression mount options on remount - reject rw remount in case there are options that don't work in read-write mode (like rescue options) - fix zone accounting of unusable space - fix in-memory corruption when merging extent maps - fix delalloc range locking for sector < page - use more convenient default value of drop subtree threshold, clean more subvolumes without the fallback to marking quotas inconsistent - fix smatch warning about incorrect value passed to ERR_PTR * tag 'for-6.12-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix passing 0 to ERR_PTR in btrfs_search_dir_index_item() btrfs: reject ro->rw reconfiguration if there are hard ro requirements btrfs: fix read corruption due to race with extent map merging btrfs: fix the delalloc range locking if sector size < page size btrfs: qgroup: set a more sane default value for subtree drop threshold btrfs: clear force-compress on remount when compress mount option is given btrfs: zoned: fix zone unusable accounting for freed reserved extent
2024-10-22btrfs: qgroup: set a more sane default value for subtree drop thresholdQu Wenruo
Since commit 011b46c30476 ("btrfs: skip subtree scan if it's too high to avoid low stall in btrfs_commit_transaction()"), btrfs qgroup can automatically skip large subtree scan at the cost of marking qgroup inconsistent. It's designed to address the final performance problem of snapshot drop with qgroup enabled, but to be safe the default value is BTRFS_MAX_LEVEL, requiring a user space daemon to set a different value to make it work. I'd say it's not a good idea to rely on user space tool to set this default value, especially when some operations (snapshot dropping) can be triggered immediately after mount, leaving a very small window to that that sysfs interface. So instead of disabling this new feature by default, enable it with a low threshold (3), so that large subvolume tree drop at mount time won't cause huge qgroup workload. CC: stable@vger.kernel.org # 6.1 Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-10-04Merge tag 'for-6.12-rc1-tag' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - in incremental send, fix invalid clone operation for file that got its size decreased - fix __counted_by() annotation of send path cache entries, we do not store the terminating NUL - fix a longstanding bug in relocation (and quite hard to hit by chance), drop back reference cache that can get out of sync after transaction commit - wait for fixup worker kthread before finishing umount - add missing raid-stripe-tree extent for NOCOW files, zoned mode cannot have NOCOW files but RST is meant to be a standalone feature - handle transaction start error during relocation, avoid potential NULL pointer dereference of relocation control structure (reported by syzbot) - disable module-wide rate limiting of debug level messages - minor fix to tracepoint definition (reported by checkpatch.pl) * tag 'for-6.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: disable rate limiting when debug enabled btrfs: wait for fixup workers before stopping cleaner kthread during umount btrfs: fix a NULL pointer dereference when failed to start a new trasacntion btrfs: send: fix invalid clone operation for file that got its size decreased btrfs: tracepoints: end assignment with semicolon at btrfs_qgroup_extent event class btrfs: drop the backref cache during relocation if we commit btrfs: also add stripe entries for NOCOW writes btrfs: send: fix buffer overflow detection when copying path to cache entry
2024-10-02move asm/unaligned.h to linux/unaligned.hAl Viro
asm/unaligned.h is always an include of asm-generic/unaligned.h; might as well move that thing to linux/unaligned.h and include that - there's nothing arch-specific in that header. auto-generated by the following: for i in `git grep -l -w asm/unaligned.h`; do sed -i -e "s/asm\/unaligned.h/linux\/unaligned.h/" $i done for i in `git grep -l -w asm-generic/unaligned.h`; do sed -i -e "s/asm-generic\/unaligned.h/linux\/unaligned.h/" $i done git mv include/asm-generic/unaligned.h include/linux/unaligned.h git mv tools/include/asm-generic/unaligned.h tools/include/linux/unaligned.h sed -i -e "/unaligned.h/d" include/asm-generic/Kbuild sed -i -e "s/__ASM_GENERIC/__LINUX/" include/linux/unaligned.h tools/include/linux/unaligned.h
2024-10-01btrfs: wait for fixup workers before stopping cleaner kthread during umountFilipe Manana
During unmount, at close_ctree(), we have the following steps in this order: 1) Park the cleaner kthread - this doesn't destroy the kthread, it basically halts its execution (wake ups against it work but do nothing); 2) We stop the cleaner kthread - this results in freeing the respective struct task_struct; 3) We call btrfs_stop_all_workers() which waits for any jobs running in all the work queues and then free the work queues. Syzbot reported a case where a fixup worker resulted in a crash when doing a delayed iput on its inode while attempting to wake up the cleaner at btrfs_add_delayed_iput(), because the task_struct of the cleaner kthread was already freed. This can happen during unmount because we don't wait for any fixup workers still running before we call kthread_stop() against the cleaner kthread, which stops and free all its resources. Fix this by waiting for any fixup workers at close_ctree() before we call kthread_stop() against the cleaner and run pending delayed iputs. The stack traces reported by syzbot were the following: BUG: KASAN: slab-use-after-free in __lock_acquire+0x77/0x2050 kernel/locking/lockdep.c:5065 Read of size 8 at addr ffff8880272a8a18 by task kworker/u8:3/52 CPU: 1 UID: 0 PID: 52 Comm: kworker/u8:3 Not tainted 6.12.0-rc1-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: btrfs-fixup btrfs_work_helper Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 __lock_acquire+0x77/0x2050 kernel/locking/lockdep.c:5065 lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5825 __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline] _raw_spin_lock_irqsave+0xd5/0x120 kernel/locking/spinlock.c:162 class_raw_spinlock_irqsave_constructor include/linux/spinlock.h:551 [inline] try_to_wake_up+0xb0/0x1480 kernel/sched/core.c:4154 btrfs_writepage_fixup_worker+0xc16/0xdf0 fs/btrfs/inode.c:2842 btrfs_work_helper+0x390/0xc50 fs/btrfs/async-thread.c:314 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa63/0x1850 kernel/workqueue.c:3310 worker_thread+0x870/0xd30 kernel/workqueue.c:3391 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> Allocated by task 2: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 unpoison_slab_object mm/kasan/common.c:319 [inline] __kasan_slab_alloc+0x66/0x80 mm/kasan/common.c:345 kasan_slab_alloc include/linux/kasan.h:247 [inline] slab_post_alloc_hook mm/slub.c:4086 [inline] slab_alloc_node mm/slub.c:4135 [inline] kmem_cache_alloc_node_noprof+0x16b/0x320 mm/slub.c:4187 alloc_task_struct_node kernel/fork.c:180 [inline] dup_task_struct+0x57/0x8c0 kernel/fork.c:1107 copy_process+0x5d1/0x3d50 kernel/fork.c:2206 kernel_clone+0x223/0x880 kernel/fork.c:2787 kernel_thread+0x1bc/0x240 kernel/fork.c:2849 create_kthread kernel/kthread.c:412 [inline] kthreadd+0x60d/0x810 kernel/kthread.c:765 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Freed by task 61: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:579 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x59/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:230 [inline] slab_free_hook mm/slub.c:2343 [inline] slab_free mm/slub.c:4580 [inline] kmem_cache_free+0x1a2/0x420 mm/slub.c:4682 put_task_struct include/linux/sched/task.h:144 [inline] delayed_put_task_struct+0x125/0x300 kernel/exit.c:228 rcu_do_batch kernel/rcu/tree.c:2567 [inline] rcu_core+0xaaa/0x17a0 kernel/rcu/tree.c:2823 handle_softirqs+0x2c5/0x980 kernel/softirq.c:554 __do_softirq kernel/softirq.c:588 [inline] invoke_softirq kernel/softirq.c:428 [inline] __irq_exit_rcu+0xf4/0x1c0 kernel/softirq.c:637 irq_exit_rcu+0x9/0x30 kernel/softirq.c:649 instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1037 [inline] sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1037 asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:702 Last potentially related work creation: kasan_save_stack+0x3f/0x60 mm/kasan/common.c:47 __kasan_record_aux_stack+0xac/0xc0 mm/kasan/generic.c:541 __call_rcu_common kernel/rcu/tree.c:3086 [inline] call_rcu+0x167/0xa70 kernel/rcu/tree.c:3190 context_switch kernel/sched/core.c:5318 [inline] __schedule+0x184b/0x4ae0 kernel/sched/core.c:6675 schedule_idle+0x56/0x90 kernel/sched/core.c:6793 do_idle+0x56a/0x5d0 kernel/sched/idle.c:354 cpu_startup_entry+0x42/0x60 kernel/sched/idle.c:424 start_secondary+0x102/0x110 arch/x86/kernel/smpboot.c:314 common_startup_64+0x13e/0x147 The buggy address belongs to the object at ffff8880272a8000 which belongs to the cache task_struct of size 7424 The buggy address is located 2584 bytes inside of freed 7424-byte region [ffff8880272a8000, ffff8880272a9d00) The buggy address belongs to the physical page: page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x272a8 head: order:3 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0 flags: 0xfff00000000040(head|node=0|zone=1|lastcpupid=0x7ff) page_type: f5(slab) raw: 00fff00000000040 ffff88801bafa500 dead000000000122 0000000000000000 raw: 0000000000000000 0000000080040004 00000001f5000000 0000000000000000 head: 00fff00000000040 ffff88801bafa500 dead000000000122 0000000000000000 head: 0000000000000000 0000000080040004 00000001f5000000 0000000000000000 head: 00fff00000000003 ffffea00009caa01 ffffffffffffffff 0000000000000000 head: 0000000000000008 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as allocated page last allocated via order 3, migratetype Unmovable, gfp_mask 0xd20c0(__GFP_IO|__GFP_FS|__GFP_NOWARN|__GFP_NORETRY|__GFP_COMP|__GFP_NOMEMALLOC), pid 2, tgid 2 (kthreadd), ts 71247381401, free_ts 71214998153 set_page_owner include/linux/page_owner.h:32 [inline] post_alloc_hook+0x1f3/0x230 mm/page_alloc.c:1537 prep_new_page mm/page_alloc.c:1545 [inline] get_page_from_freelist+0x3039/0x3180 mm/page_alloc.c:3457 __alloc_pages_noprof+0x256/0x6c0 mm/page_alloc.c:4733 alloc_pages_mpol_noprof+0x3e8/0x680 mm/mempolicy.c:2265 alloc_slab_page+0x6a/0x120 mm/slub.c:2413 allocate_slab+0x5a/0x2f0 mm/slub.c:2579 new_slab mm/slub.c:2632 [inline] ___slab_alloc+0xcd1/0x14b0 mm/slub.c:3819 __slab_alloc+0x58/0xa0 mm/slub.c:3909 __slab_alloc_node mm/slub.c:3962 [inline] slab_alloc_node mm/slub.c:4123 [inline] kmem_cache_alloc_node_noprof+0x1fe/0x320 mm/slub.c:4187 alloc_task_struct_node kernel/fork.c:180 [inline] dup_task_struct+0x57/0x8c0 kernel/fork.c:1107 copy_process+0x5d1/0x3d50 kernel/fork.c:2206 kernel_clone+0x223/0x880 kernel/fork.c:2787 kernel_thread+0x1bc/0x240 kernel/fork.c:2849 create_kthread kernel/kthread.c:412 [inline] kthreadd+0x60d/0x810 kernel/kthread.c:765 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 page last free pid 5230 tgid 5230 stack trace: reset_page_owner include/linux/page_owner.h:25 [inline] free_pages_prepare mm/page_alloc.c:1108 [inline] free_unref_page+0xcd0/0xf00 mm/page_alloc.c:2638 discard_slab mm/slub.c:2678 [inline] __put_partials+0xeb/0x130 mm/slub.c:3146 put_cpu_partial+0x17c/0x250 mm/slub.c:3221 __slab_free+0x2ea/0x3d0 mm/slub.c:4450 qlink_free mm/kasan/quarantine.c:163 [inline] qlist_free_all+0x9a/0x140 mm/kasan/quarantine.c:179 kasan_quarantine_reduce+0x14f/0x170 mm/kasan/quarantine.c:286 __kasan_slab_alloc+0x23/0x80 mm/kasan/common.c:329 kasan_slab_alloc include/linux/kasan.h:247 [inline] slab_post_alloc_hook mm/slub.c:4086 [inline] slab_alloc_node mm/slub.c:4135 [inline] kmem_cache_alloc_noprof+0x135/0x2a0 mm/slub.c:4142 getname_flags+0xb7/0x540 fs/namei.c:139 do_sys_openat2+0xd2/0x1d0 fs/open.c:1409 do_sys_open fs/open.c:1430 [inline] __do_sys_openat fs/open.c:1446 [inline] __se_sys_openat fs/open.c:1441 [inline] __x64_sys_openat+0x247/0x2a0 fs/open.c:1441 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Memory state around the buggy address: ffff8880272a8900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880272a8980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff8880272a8a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8880272a8a80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880272a8b00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== Reported-by: syzbot+8aaf2df2ef0164ffe1fb@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/66fb36b1.050a0220.aab67.003b.GAE@google.com/ CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert try_release_extent_buffer() to take a folioLi Zetao
The old page API is being gradually replaced and converted to use folio to improve code readability and avoid repeated conversion between page and folio. Signed-off-by: Li Zetao <lizetao1@huawei.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: subpage: remove btrfs_fs_info::subpage_info memberQu Wenruo
The member btrfs_fs_info::subpage_info stores the cached bitmap start position inside the merged bitmap. However in reality there is only one thing depending on the sectorsize, bitmap_nr_bits, which records the number of sectors that fit inside a page. The sequence of sub-bitmaps have fixed order, thus it's just a quick multiplication to calculate the start position of each sub-bitmaps. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-17Merge tag 'for-6.11-tag' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "The highlights are new logic behind background block group reclaim, automatic removal of qgroup after removing a subvolume and new 'rescue=' mount options. The rest is optimizations, cleanups and refactoring. User visible features: - dynamic block group reclaim: - tunable framework to avoid situations where eager data allocations prevent creating new metadata chunks due to lack of unallocated space - reuse sysfs knob bg_reclaim_threshold (otherwise used only in zoned mode) for a fixed value threshold - new on/off sysfs knob "dynamic_reclaim" calculating the value based on heuristics, aiming to keep spare working space for relocating chunks but not to needlessly relocate partially utilized block groups or reclaim newly allocated ones - stats are exported in sysfs per block group type, files "reclaim_*" - this may increase IO load at unexpected times but the corner case of no allocatable block groups is known to be worse - automatically remove qgroup of deleted subvolumes: - adjust qgroup removal conditions, make sure all related subvolume data are already removed, or return EBUSY, also take into account setting of sysfs drop_subtree_threshold - also works in squota mode - mount option updates: new modes of 'rescue=' that allow to mount images (read-only) that could have been partially converted by user space tools - ignoremetacsums - invalid metadata checksums are ignored - ignoresuperflags - super block flags that track conversion in progress (like UUID or checksums) Core: - size of struct btrfs_inode is now below 1024 (on a release config), improved memory packing and other secondary effects - switch tracking of open inodes from rb-tree to xarray, minor performance improvement - reduce number of empty transaction commits when there are no dirty data/metadata - memory allocation optimizations (reduced numbers, reordering out of critical sections) - extent map structure optimizations and refactoring, more sanity checks - more subpage in zoned mode preparations or fixes - general snapshot code cleanups, improvements and documentation - tree-checker updates: more file extent ram_bytes fixes, continued - raid-stripe-tree update (not backward compatible): - remove extent encoding field from the structure, can be inferred from other information - requires btrfs-progs 6.9.1 or newer - cleanups and refactoring - error message updates - error handling improvements - return type and parameter cleanups and improvements" * tag 'for-6.11-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (152 commits) btrfs: fix extent map use-after-free when adding pages to compressed bio btrfs: fix bitmap leak when loading free space cache on duplicate entry btrfs: remove the BUG_ON() inside extent_range_clear_dirty_for_io() btrfs: move extent_range_clear_dirty_for_io() into inode.c btrfs: enhance compression error messages btrfs: fix data race when accessing the last_trans field of a root btrfs: rename the extra_gfp parameter of btrfs_alloc_page_array() btrfs: remove the extra_gfp parameter from btrfs_alloc_folio_array() btrfs: introduce new "rescue=ignoresuperflags" mount option btrfs: introduce new "rescue=ignoremetacsums" mount option btrfs: output the unrecognized super block flags as hex btrfs: remove unused Opt enums btrfs: tree-checker: add extra ram_bytes and disk_num_bytes check btrfs: fix the ram_bytes assignment for truncated ordered extents btrfs: make validate_extent_map() catch ram_bytes mismatch btrfs: ignore incorrect btrfs_file_extent_item::ram_bytes btrfs: cleanup the bytenr usage inside btrfs_extent_item_to_extent_map() btrfs: fix typo in error message in btrfs_validate_super() btrfs: move the direct IO code into its own file btrfs: pass a btrfs_inode to btrfs_set_prop() ...
2024-07-12Merge tag 'for-6.10-rc7-tag' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "Fix a regression in extent map shrinker behaviour. In the past weeks we got reports from users that there are huge latency spikes or freezes. This was bisected to newly added shrinker of extent maps (it was added to fix a build up of the structures in memory). I'm assuming that the freezes would happen to many users after release so I'd like to get it merged now so it's in 6.10. Although the diff size is not small the changes are relatively straightforward, the reporters verified the fixes and we did testing on our side. The fixes: - adjust behaviour under memory pressure and check lock or scheduling conditions, bail out if needed - synchronize tracking of the scanning progress so inode ranges are not skipped or work duplicated - do a delayed iput when scanning a root so evicting an inode does not slow things down in case of lots of dirty data, also fix lockdep warning, a deadlock could happen when writing the dirty data would need to start a transaction" * tag 'for-6.10-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: avoid races when tracking progress for extent map shrinking btrfs: stop extent map shrinker if reschedule is needed btrfs: use delayed iput during extent map shrinking
2024-07-11btrfs: avoid races when tracking progress for extent map shrinkingFilipe Manana
We store the progress (root and inode numbers) of the extent map shrinker in fs_info without any synchronization but we can have multiple tasks calling into the shrinker during memory allocations when there's enough memory pressure for example. This can result in a task A reading fs_info->extent_map_shrinker_last_ino after another task B updates it, and task A reading fs_info->extent_map_shrinker_last_root before task B updates it, making task A see an odd state that isn't necessarily harmful but may make it skip certain inode ranges or do more work than necessary by going over the same inodes again. These unprotected accesses would also trigger warnings from tools like KCSAN. So add a lock to protect access to these progress fields. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: fix data race when accessing the last_trans field of a rootFilipe Manana
KCSAN complains about a data race when accessing the last_trans field of a root: [ 199.553628] BUG: KCSAN: data-race in btrfs_record_root_in_trans [btrfs] / record_root_in_trans [btrfs] [ 199.555186] read to 0x000000008801e308 of 8 bytes by task 2812 on cpu 1: [ 199.555210] btrfs_record_root_in_trans+0x9a/0x128 [btrfs] [ 199.555999] start_transaction+0x154/0xcd8 [btrfs] [ 199.556780] btrfs_join_transaction+0x44/0x60 [btrfs] [ 199.557559] btrfs_dirty_inode+0x9c/0x140 [btrfs] [ 199.558339] btrfs_update_time+0x8c/0xb0 [btrfs] [ 199.559123] touch_atime+0x16c/0x1e0 [ 199.559151] pipe_read+0x6a8/0x7d0 [ 199.559179] vfs_read+0x466/0x498 [ 199.559204] ksys_read+0x108/0x150 [ 199.559230] __s390x_sys_read+0x68/0x88 [ 199.559257] do_syscall+0x1c6/0x210 [ 199.559286] __do_syscall+0xc8/0xf0 [ 199.559318] system_call+0x70/0x98 [ 199.559431] write to 0x000000008801e308 of 8 bytes by task 2808 on cpu 0: [ 199.559464] record_root_in_trans+0x196/0x228 [btrfs] [ 199.560236] btrfs_record_root_in_trans+0xfe/0x128 [btrfs] [ 199.561097] start_transaction+0x154/0xcd8 [btrfs] [ 199.561927] btrfs_join_transaction+0x44/0x60 [btrfs] [ 199.562700] btrfs_dirty_inode+0x9c/0x140 [btrfs] [ 199.563493] btrfs_update_time+0x8c/0xb0 [btrfs] [ 199.564277] file_update_time+0xb8/0xf0 [ 199.564301] pipe_write+0x8ac/0xab8 [ 199.564326] vfs_write+0x33c/0x588 [ 199.564349] ksys_write+0x108/0x150 [ 199.564372] __s390x_sys_write+0x68/0x88 [ 199.564397] do_syscall+0x1c6/0x210 [ 199.564424] __do_syscall+0xc8/0xf0 [ 199.564452] system_call+0x70/0x98 This is because we update and read last_trans concurrently without any type of synchronization. This should be generally harmless and in the worst case it can make us do extra locking (btrfs_record_root_in_trans()) trigger some warnings at ctree.c or do extra work during relocation - this would probably only happen in case of load or store tearing. So fix this by always reading and updating the field using READ_ONCE() and WRITE_ONCE(), this silences KCSAN and prevents load and store tearing. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: introduce new "rescue=ignoresuperflags" mount optionQu Wenruo
This new mount option allows the kernel to skip the super flags check, it's mostly to allow the kernel to do a rescue mount of an interrupted checksum conversion. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: introduce new "rescue=ignoremetacsums" mount optionQu Wenruo
Introduce "rescue=ignoremetacsums" to ignore metadata csums, all the other metadata sanity checks are still kept as is. This new mount option is mostly to allow the kernel to mount an interrupted checksum conversion (at the metadata csum overwrite stage). And since the main part of metadata sanity checks is inside tree-checker, we shouldn't lose much safety, and the new mount option is rescue mount option it requires full read-only mount. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: output the unrecognized super block flags as hexQu Wenruo
Most of the extra super block flags are beyond 32bits (from CHANGING_FSID_V2 to CHANGING_*_CSUMS), thus using %llu is not only too long and pretty hard to read. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: fix typo in error message in btrfs_validate_super()Mark Harmstone
There's a typo in an error message when checking the block group tree feature, it mentions fres-space-tree instead of free-space-tree. Fix that. Signed-off-by: Mark Harmstone <maharmstone@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: remove all extra btrfs_check_eb_owner() callsJosef Bacik
Currently we have a handful of btrfs_check_eb_owner() calls in various places and helpers that read extent buffers. However we call this in the endio handler for every metadata block, so these extra checks are unnecessary, simply remove them from everywhere except the endio handler. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: constify pointer parameters where applicableDavid Sterba
We can add const to many parameters, this is for clarity and minor addition to safety. There are some minor effects, in the assembly code and .ko measured on release config. This patch does not cover all possible conversions. Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: rename err to ret in btrfs_cleanup_fs_roots()Anand Jain
Since err represents the function return value, rename it as ret, and rename the original ret, which serves as a helper return value, to found. Also, optimize the code to continue call btrfs_put_root() for the rest of the root if even after btrfs_orphan_cleanup() returns error. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: add and use helper to commit the current transactionFilipe Manana
We have several places that attach to the current transaction with btrfs_attach_transaction_barrier() and then commit the transaction if there is one. Add a helper and use it to deduplicate this pattern. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>