Age | Commit message (Collapse) | Author |
|
No callers passes flags to xfs_buf_get_uncached, which makes sense
given that the flags apply to behavior not used for uncached buffers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
Merge buffer cache conversion to folios and vmalloc
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
Merge Zoned allocator for XFS.
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
We have a central definition for this function since 2023, used by
a number of different parts of the kernel.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
./fs/xfs/libxfs/xfs_sb.c: xfs_rtbitmap.h is included more than once.
Fixes: 2167eaabe2fa ("xfs: define the zoned on-disk format")
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=19446
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
Unmapped buffer access is a pain, so kill it. The switch to large
folios means we rarely pay a vmap penalty for large buffers,
so this functionality is largely unnecessary now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
XFS code for 6.15 to be merged into linux-next
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
We have a central definition for this function since 2023, used by
a number of different parts of the kernel.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
Zoned devices can have gaps beyond the usable capacity of a zone and the
end in the LBA/daddr address space. In other words, the hardware
equivalent to the RT groups already takes care of the power of 2
alignment for us. In this case the sparse FSB/RTB address space maps 1:1
to the device address space.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
Enable the zoned RT device directory feature. With this feature, RT
groups are written sequentially and always emptied before rewriting
the blocks. This perfectly maps to zoned devices, but can also be
used on conventional block devices.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
File system with internal RT devices are a bit odd in that we need
to report AGs and RGs. To make this happen use separate synthetic
fmr_device values for the different sections instead of the dev_t
mapping used by other XFS configurations.
The data device is reported as file system metadata before the
start of the RGs for the synthetic RT fmr_device.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
RT groups on a zoned file system need to be completely empty before their
space can be reused. This means that partially empty groups need to be
emptied entirely to free up space if no entirely free groups are
available.
Add a garbage collection thread that moves all data out of the least used
zone when not enough free zones are available, and which resets all zones
that have been emptied. To find empty zone a simple set of 10 buckets
based on the amount of space used in the zone is used. To empty zones,
the rmap is walked to find the owners and the data is read and then
written to the new place.
To automatically defragment files the rmap records are sorted by inode
and logical offset. This means defragmentation of parallel writes into
a single zone happens automatically when performing garbage collection.
Because holding the iolock over the entire GC cycle would inject very
noticeable latency for other accesses to the inodes, the iolock is not
taken while performing I/O. Instead the I/O completion handler checks
that the mapping hasn't changed over the one recorded at the start of
the GC cycle and doesn't update the mapping if it change.
Co-developed-by: Hans Holmberg <hans.holmberg@wdc.com>
Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
For zoned file systems garbage collection (GC) has to take the iolock
and mmaplock after moving data to a new place to synchronize with
readers. This means waiting for garbage collection with the iolock can
deadlock.
To avoid this, the worst case required blocks have to be reserved before
taking the iolock, which is done using a new RTAVAILABLE counter that
tracks blocks that are free to write into and don't require garbage
collection. The new helpers try to take these available blocks, and
if there aren't enough available it wakes and waits for GC. This is
done using a list of on-stack reservations to ensure fairness.
Co-developed-by: Hans Holmberg <hans.holmberg@wdc.com>
Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
For zoned RT devices space is always allocated at the write pointer, that
is right after the last written block and only recorded on I/O completion.
Because the actual allocation algorithm is very simple and just involves
picking a good zone - preferably the one used for the last write to the
inode. As the number of zones that can written at the same time is
usually limited by the hardware, selecting a zone is done as late as
possible from the iomap dio and buffered writeback bio submissions
helpers just before submitting the bio.
Given that the writers already took a reservation before acquiring the
iolock, space will always be readily available if an open zone slot is
available. A new structure is used to track these open zones, and
pointed to by the xfs_rtgroup. Because zoned file systems don't have
a rsum cache the space for that pointer can be reused.
Allocations are only recorded at I/O completion time. The scheme used
for that is very similar to the reflink COW end I/O path.
Co-developed-by: Hans Holmberg <hans.holmberg@wdc.com>
Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
Add support to validate and parse reported hardware zone state.
Co-developed-by: Hans Holmberg <hans.holmberg@wdc.com>
Signed-off-by: Hans Holmberg <hans.holmberg@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
Zoned file systems not only don't use the global frextents counter, but
for them the in-memory percpu counter also includes reservations taken
before even allocating delalloc extent records, so it will never match
the per-zone used information. Disable all updates and verification of
the sb counter for zoned file systems as it isn't useful for them.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
Export the zoned geometry information so that userspace can query it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
Allow creating an RT subvolume on the same device as the main data
device. This is mostly used for SMR HDDs where the conventional zones
are used for the data device and the sequential write required zones
for the zoned RT section.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
Zone file systems reuse the basic RT group enabled XFS file system
structure to support a mode where each RT group is always written from
start to end and then reset for reuse (after moving out any remaining
data). There are few minor but important changes, which are indicated
by a new incompat flag:
1) there are no bitmap and summary inodes, thus the
/rtgroups/{rgno}.{bitmap,summary} metadir files do not exist and the
sb_rbmblocks superblock field must be cleared to zero.
2) there is a new superblock field that specifies the start of an
internal RT section. This allows supporting SMR HDDs that have random
writable space at the beginning which is used for the XFS data device
(which really is the metadata device for this configuration), directly
followed by a RT device on the same block device. While something
similar could be achieved using dm-linear just having a single device
directly consumed by XFS makes handling the file systems a lot easier.
3) Another superblock field that tracks the amount of reserved space (or
overprovisioning) that is never used for user capacity, but allows GC
to run more smoothly.
4) an overlay of the cowextsize field for the rtrmap inode so that we
can persistently track the total amount of rtblocks currently used in
a RT group. There is no data structure other than the rmap that
tracks used space in an RT group, and this counter is used to decide
when a RT group has been entirely emptied, and to select one that
is relatively empty if garbage collection needs to be performed.
While this counter could be tracked entirely in memory and rebuilt
from the rmap at mount time, that would lead to very long mount times
with the large number of RT groups implied by the number of hardware
zones especially on SMR hard drives with 256MB zone sizes.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
Add a helper to find the last offset mapped in the rtrmap. This will be
used by the zoned code to find out where to start writing again on
conventional devices without hardware zone support.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
The zone allocator wants to be able to remove a delalloc mapping in the
COW fork while keeping the block reservation. To support that pass the
flags argument down to xfs_bmap_del_extent_delay and support the
XFS_BMAPI_REMAP flag to keep the reservation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
Delalloc reservations are not supported in userspace, and thus it doesn't
make sense to share this helper with xfsprogs.c. Move it to xfs_iomap.c
toward the two callers.
Note that there rest of the delalloc handling should probably eventually
also move out of xfs_bmap.c, but that will require a bit more surgery.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
Shortcut dereferencing the xg_block_count field in the generic group
structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
There is no point in reserving more space than actually available
on the data device for the worst case scenario that is unlikely to
happen. Reserve at most 1/4th of the data device blocks, which is
still a heuristic.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
Currently each metabtree inode has it's own space reservation to ensure
it can be expanded to the maximum size, mirroring what is done for the
AG-based btrees. But unlike the AG-based btrees the metabtree inodes
aren't restricted to allocate from a single AG but can use free space
form the entire file system. And unlike AG-based btrees where the
required reservation shrinks with the available free space due to this,
the metabtree reservations for the rtrmap and rtfreflink trees are not
bound in any way by the data device free space as they track RT extent
allocations. This is not very efficient as it requires a large number
of blocks to be set aside that can't be used at all by other btrees.
Switch to a model that uses a global pool instead in preparation for
reducing the amount of reserved space, which now also removes the
overloading of the i_nblocks field for metabtree inodes, which would
create problems if metabtree inodes ever had a big enough xattr fork
to require xattr blocks outside the inode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
xfs_{add,dec}_freecounter already handles the block and RT extent
percpu counters, but it currently hardcodes the passed in counter.
Add a freecounter abstraction that uses an enum to designate the counter
and add wrappers that hide the actual percpu_counters. This will allow
expanding the reserved block handling to the RT extent counter in the
next step, and also prepares for adding yet another such counter that
can share the code. Both these additions will be needed for the zoned
allocator.
Also switch the flooring of the frextents counter to 0 in statfs for the
rthinherit case to a manual min_t call to match the handling of the
fdblocks counter for normal file systems.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
When we call create(), lseek() and write() sequentially, offset != 0
cannot be used as a judgment condition for whether the file already
has extents.
Furthermore, when xfs_bmap_adjacent() has not given a better blkno,
it is not necessary to use exact EOF block allocation.
Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Jinliang Zheng <alexjlzheng@tencent.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
The source static analysis tool gave the following advice:
./fs/xfs/libxfs/xfs_dir2.c:382:15-22: WARNING opportunity for kmemdup
→ 382 args->value = kmalloc(len,
383 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_RETRY_MAYFAIL);
384 if (!args->value)
385 return -ENOMEM;
386
→ 387 memcpy(args->value, name, len);
388 args->valuelen = len;
389 return -EEXIST;
Replacing kmalloc() + memcpy() with kmemdump() doesn't change semantics.
Original code works without fault, so this is not a bug fix but proposed improvement.
Link: https://lwn.net/Articles/198928/
Fixes: 94a69db2367ef ("xfs: use __GFP_NOLOCKDEP instead of GFP_NOFS")
Fixes: 384f3ced07efd ("[XFS] Return case-insensitive match for dentry cache")
Fixes: 2451337dd0439 ("xfs: global error sign conversion")
Cc: Carlos Maiolino <cem@kernel.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Chandan Babu R <chandanbabu@kernel.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: linux-xfs@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Mirsad Todorovac <mtodorovac69@gmail.com>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
They will eventually be needed to be const for zoned growfs, but even
now having such simpler helpers as const as possible is a good thing.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
XFS_ILOG_NONCORE is not used in the kernel code or xfsprogs, remove it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
And return bool instead of a boolean condition as int.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into for-next
xfs: reflink on the realtime device [v6.2 05/14]
This patchset enables use of the file data block sharing feature (i.e.
reflink) on the realtime device. It follows the same basic sequence as
the realtime rmap series -- first a few cleanups; then introduction of
the new btree format and inode fork format. Next comes enabling CoW and
remapping for the rt device; new scrub, repair, and health reporting
code; and at the end we implement some code to lengthen write requests
so that rt extents are always CoWed fully.
This has been running on the djcloud for months with no problems. Enjoy!
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into for-next
xfs: realtime reverse-mapping support [v6.2 04/14]
This is the latest revision of a patchset that adds to XFS kernel
support for reverse mapping for the realtime device. This time around
I've fixed some of the bitrot that I've noticed over the past few
months, and most notably have converted rtrmapbt to use the metadata
inode directory feature instead of burning more space in the superblock.
At the beginning of the set are patches to implement storing B+tree
leaves in an inode root, since the realtime rmapbt is rooted in an
inode, unlike the regular rmapbt which is rooted in an AG block.
Prior to this, the only btree that could be rooted in the inode fork
was the block mapping btree; if all the extent records fit in the
inode, format would be switched from 'btree' to 'extents'.
The next few patches enhance the reverse mapping routines to handle
the parts that are specific to rtgroups -- adding the new btree type,
adding a new log intent item type, and wiring up the metadata directory
tree entries.
Finally, implement GETFSMAP with the rtrmapbt and scrub functionality
for the rtrmapbt and rtbitmap and online fsck functionality.
This has been running on the djcloud for months with no problems. Enjoy!
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into for-next
xfs: enable in-core block reservation for rt metadata [v6.2 03/14]
In preparation for adding reverse mapping and refcounting to the
realtime device, enhance the metadir code to reserve free space for
btree shape changes as delayed allocation blocks.
This enables us to pre-allocate space for the rmap and refcount btrees
in the same manner as we do for the data device counterparts, which is
how we avoid ENOSPC failures when space is low but we've already
committed to a COW operation.
This has been running on the djcloud for months with no problems. Enjoy!
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into for-next
xfs: refactor btrees to support records in inode root [v6.2 02/14]
Amend the btree code to support storing btree rcords in the inode root,
because the current bmbt code does not support this.
This has been running on the djcloud for months with no problems. Enjoy!
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
Non-rtg file systems have a fake RT group even if they do not have a RT
device, and thus an rgcount of 1. Ensure xfs_update_last_rtgroup_size
doesn't fail when called for !XFS_RT to handle this case.
Fixes: 87fe4c34a383 ("xfs: create incore realtime group structures")
Reported-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
Add a new XFS_SCRUB_METAPATH subtype so that we can scrub the metadata
directory tree path to the refcount btree file for each rt group.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Add code to scrub realtime refcount btrees. Similar to the refcount
btree checking code for the data device, we walk the rmap btree for each
refcount record to confirm that the reference counts are correct.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Whenever we encounter corrupt realtime refcount btree blocks, we should
report that to the health monitoring system for later reporting.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Wire up the copy-on-write extent size hint for realtime files, and
connect it to the rt allocator so that we avoid fragmentation on rt
filesystems.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
The copy-on-write extent size hint is subject to the same alignment
constraints as the regular extent size hint. Since we're in the process
of adding reflink (and therefore CoW) to the realtime device, we must
apply the same scattered rextsize alignment validation strategies to
both hints to deal with the possibility of rextsize changing.
Therefore, fix the inode validator to perform rextsize alignment checks
on regular realtime files, and to remove misaligned directory hints.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Currently, we (ab)use xfs_get_extsz_hint so that it always returns a
nonzero value for realtime files. This apparently was done to disable
delayed allocation for realtime files.
However, once we enable realtime reflink, we can also turn on the
alwayscow flag to force CoW writes to realtime files. In this case, the
logic will incorrectly send the write through the delalloc write path.
Fix this by adjusting the logic slightly.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Scan the realtime refcount tree at mount time to get rid of leftover
CoW staging extents.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Now that we can share blocks between realtime files, allow this
combination.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Compute the maximum possible height of the realtime rmap btree when
reflink is enabled.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Don't error out on CoW staging extent records when realtime reflink is
enabled.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Create a library routine to allocate and initialize an empty realtime
refcountbt inode. We'll use this for growfs, mkfs, and repair.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Wire up realtime refcount btree cursors wherever they're needed
throughout the code base.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Plumb in the pieces we need to embed the root of the realtime refcount
btree in an inode's data fork, complete with metafile type and on-disk
interpretation functions.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Reserve some free blocks so that we will always have enough free blocks
in the data volume to handle expansion of the realtime refcount btree.
Signed-off-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|