Age | Commit message (Collapse) | Author |
|
Pull xfs updates from Carlos Maiolino:
- XFS zoned allocator: Enables XFS to support zoned devices using its
real-time allocator
- Use folios/vmalloc for buffer cache backing memory
- Some code cleanups and bug fixes
* tag 'xfs-6.15-merge' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (70 commits)
xfs: remove the flags argument to xfs_buf_get_uncached
xfs: remove the flags argument to xfs_buf_read_uncached
xfs: remove xfs_buf_free_maps
xfs: remove xfs_buf_get_maps
xfs: call xfs_buf_alloc_backing_mem from _xfs_buf_alloc
xfs: remove unnecessary NULL check before kvfree()
xfs: don't wake zone space waiters without m_zone_info
xfs: don't increment m_generation for all errors in xfs_growfs_data
xfs: fix a missing unlock in xfs_growfs_data
xfs: Remove duplicate xfs_rtbitmap.h header
xfs: trigger zone GC when out of available rt blocks
xfs: trace what memory backs a buffer
xfs: cleanup mapping tmpfs folios into the buffer cache
xfs: use vmalloc instead of vm_map_area for buffer backing memory
xfs: buffer items don't straddle pages anymore
xfs: kill XBF_UNMAPPED
xfs: convert buffer cache to use high order folios
xfs: remove the kmalloc to page allocator fallback
xfs: refactor backing memory allocations for buffers
xfs: remove xfs_buf_is_vmapped
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs iomap updates from Christian Brauner:
- Allow the filesystem to submit the writeback bios.
- Allow the filsystem to track completions on a per-bio bases
instead of the entire I/O.
- Change writeback_ops so that ->submit_bio can be done by the
filesystem.
- A new ANON_WRITE flag for writes that don't have a block number
assigned to them at the iomap level leaving the filesystem to do
that work in the submission handler.
- Incremental iterator advance
The folio_batch support for zero range where the filesystem provides
a batch of folios to process that might not be logically continguous
requires more flexibility than the current offset based iteration
currently offers.
Update all iomap operations to advance the iterator within the
operation and thus remove the need to advance from the core iomap
iterator.
- Make buffered writes work with RWF_DONTCACHE
If RWF_DONTCACHE is set for a write, mark the folios being written as
uncached. On writeback completion the pages will be dropped.
- Introduce infrastructure for large atomic writes
This will eventually be used by xfs and ext4.
* tag 'vfs-6.15-rc1.iomap' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (42 commits)
iomap: rework IOMAP atomic flags
iomap: comment on atomic write checks in iomap_dio_bio_iter()
iomap: inline iomap_dio_bio_opflags()
iomap: fix inline data on buffered read
iomap: Lift blocksize restriction on atomic writes
iomap: Support SW-based atomic writes
iomap: Rename IOMAP_ATOMIC -> IOMAP_ATOMIC_HW
xfs: flag as supporting FOP_DONTCACHE
iomap: make buffered writes work with RWF_DONTCACHE
iomap: introduce a full map advance helper
iomap: rename iomap_iter processed field to status
iomap: remove unnecessary advance from iomap_iter()
dax: advance the iomap_iter on pte and pmd faults
dax: advance the iomap_iter on dedupe range
dax: advance the iomap_iter on unshare range
dax: advance the iomap_iter on zero range
dax: push advance down into dax_iomap_iter() for read and write
dax: advance the iomap_iter in the read/write path
iomap: convert misc simple ops to incremental advance
iomap: advance the iter on direct I/O
...
|
|
Flag IOMAP_ATOMIC_SW is not really required. The idea of having this flag
is that the FS ->iomap_begin callback could check if this flag is set to
decide whether to do a SW (FS-based) atomic write. But the FS can set
which ->iomap_begin callback it wants when deciding to do a FS-based
atomic write.
Furthermore, it was thought that IOMAP_ATOMIC_HW is not a proper name, as
the block driver can use SW-methods to emulate an atomic write. So change
back to IOMAP_ATOMIC.
The ->iomap_begin callback needs though to indicate to iomap core that
REQ_ATOMIC needs to be set, so add IOMAP_F_ATOMIC_BIO for that.
These changes were suggested by Christoph Hellwig and Dave Chinner.
Signed-off-by: John Garry <john.g.garry@oracle.com>
Link: https://lore.kernel.org/r/20250320120250.4087011-4-john.g.garry@oracle.com
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Direct writes to zoned RT devices are extremely simple. After taking the
block reservation before acquiring the iolock, the iomap direct I/O calls
into ->iomap_begin which will return a "fake" iomap for the entire
requested range. The actual block allocation is then done from the
submit_io handler using code shared with the buffered I/O path.
The iomap_dio_ops set the bio_set to the (iomap) ioend one and initialize
the embedded ioend, which allows reusing the existing ioend based buffered
I/O completion path.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
Implement buffered writes including page faults and block zeroing for
zoned RT devices. Buffered writes to zoned RT devices are split into
three phases:
1) a reservation for the worst case data block usage is taken before
acquiring the iolock. When there are enough free blocks but not
enough available one, garbage collection is kicked off to free the
space before continuing with the write. If there isn't enough
freeable space, the block reservation is reduced and a short write
will happen as expected by normal Linux write semantics.
2) with the iolock held, the generic iomap buffered write code is
called, which through the iomap_begin operation usually just inserts
delalloc extents for the range in a single iteration. Only for
overwrites of existing data that are not block aligned, or zeroing
operations the existing extent mapping is read to fill out the srcmap
and to figure out if zeroing is required.
3) the ->map_blocks callback to the generic iomap writeback code
calls into the zoned space allocator to actually allocate on-disk
space for the range before kicking of the writeback.
Note that because all writes are out of place, truncate or hole punches
that are not aligned to block size boundaries need to allocate space.
For block zeroing from truncate, ->setattr is called with the iolock
(aka i_rwsem) already held, so a hacky deviation from the above
scheme is needed. In this case the space reservations is called with
the iolock held, but is required not to block and can dip into the
reserved block pool. This can lead to -ENOSPC when truncating a
file, which is unfortunate. But fixing the calling conventions in
the VFS is probably much easier with code requiring it already in
mainline.
Similarly because all writes are out place, the zoned allocator can't
support unwritten extents and thus the FALLOC_FL_ALLOCATE_RANGE range
mode of fallocate. Other fallocate modes that would reserved space
but don't need to to provide proper semantics do work but do not
reserve space.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
Zone file systems reuse the basic RT group enabled XFS file system
structure to support a mode where each RT group is always written from
start to end and then reset for reuse (after moving out any remaining
data). There are few minor but important changes, which are indicated
by a new incompat flag:
1) there are no bitmap and summary inodes, thus the
/rtgroups/{rgno}.{bitmap,summary} metadir files do not exist and the
sb_rbmblocks superblock field must be cleared to zero.
2) there is a new superblock field that specifies the start of an
internal RT section. This allows supporting SMR HDDs that have random
writable space at the beginning which is used for the XFS data device
(which really is the metadata device for this configuration), directly
followed by a RT device on the same block device. While something
similar could be achieved using dm-linear just having a single device
directly consumed by XFS makes handling the file systems a lot easier.
3) Another superblock field that tracks the amount of reserved space (or
overprovisioning) that is never used for user capacity, but allows GC
to run more smoothly.
4) an overlay of the cowextsize field for the rtrmap inode so that we
can persistently track the total amount of rtblocks currently used in
a RT group. There is no data structure other than the rmap that
tracks used space in an RT group, and this counter is used to decide
when a RT group has been entirely emptied, and to select one that
is relatively empty if garbage collection needs to be performed.
While this counter could be tracked entirely in memory and rebuilt
from the rmap at mount time, that would lead to very long mount times
with the large number of RT groups implied by the number of hardware
zones especially on SMR hard drives with 256MB zone sizes.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
Delalloc reservations are not supported in userspace, and thus it doesn't
make sense to share this helper with xfsprogs.c. Move it to xfs_iomap.c
toward the two callers.
Note that there rest of the delalloc handling should probably eventually
also move out of xfs_bmap.c, but that will require a bit more surgery.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
xfs_{add,dec}_freecounter already handles the block and RT extent
percpu counters, but it currently hardcodes the passed in counter.
Add a freecounter abstraction that uses an enum to designate the counter
and add wrappers that hide the actual percpu_counters. This will allow
expanding the reserved block handling to the RT extent counter in the
next step, and also prepares for adding yet another such counter that
can share the code. Both these additions will be needed for the zoned
allocator.
Also switch the flooring of the frextents counter to 0 in statfs for the
rthinherit case to a manual min_t call to match the handling of the
fdblocks counter for normal file systems.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs into xfs-6.15-merge
|
|
Allow the file system to pass private data which can be used by the
iomap_begin and iomap_end methods through the private pointer in the
iomap_iter structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20250206064035.2323428-12-hch@lst.de
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Allow the file system to pass private data which can be used by the
iomap_begin and iomap_end methods through the private pointer in the
iomap_iter structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20250206064035.2323428-11-hch@lst.de
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
xfs_dax_write_iomap_end
In xfs_dax_write_iomap_end(), directly return the result of
xfs_reflink_cancel_cow_range() when !written, ensuring proper
error propagation and improving code robustness.
Fixes: ea6c49b784f0 ("xfs: support CoW in fsdax mode")
Cc: stable@vger.kernel.org # v6.0
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Wentao Liang <vulab@iscas.ac.cn>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge
xfs: enable quota for realtime volumes [v5.5 08/10]
At some point, I realized that I've refactored enough of the quota code
in XFS that I should evaluate whether or not quota actually works on
realtime volumes. It turns out that it nearly works: the only broken
pieces are chown and delayed allocation, and reporting of project
quotas in the statvfs output for projinherit+rtinherit directories.
Fix these things and we can have realtime quotas again after 20 years.
With a bit of luck, this should all go splendidly.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge
xfs: shard the realtime section [v5.5 06/10]
Right now, the realtime section uses a single pair of metadata inodes to
store the free space information. This presents a scalability problem
since every thread trying to allocate or free rt extents have to lock
these files. Solve this problem by sharding the realtime section into
separate realtime allocation groups.
While we're at it, define a superblock to be stamped into the start of
the rt section. This enables utilities such as blkid to identify block
devices containing realtime sections, and avoids the situation where
anything written into block 0 of the realtime extent can be
misinterpreted as file data.
The best advantage for rtgroups will become evident later when we get to
adding rmap and reflink to the realtime volume, since the geometry
constraints are the same for rt groups and AGs. Hence we can reuse all
that code directly.
This is a very large patchset, but it catches us up with 20 years of
technical debt that have accumulated.
With a bit of luck, this should all go splendidly.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into staging-merge
xfs: create incore rt allocation groups [v5.5 04/10]
Add in-memory data structures for sharding the realtime volume into
independent allocation groups. For existing filesystems, the entire rt
volume is modelled as having a single large group, with (potentially) a
number of rt extents exceeding 2^32 blocks, though these are not likely
to exist because the codebase has been a bit broken for decades. The
next series fills in the ondisk format and other supporting structures.
With a bit of luck, this should all go splendidly.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Refactor the quota preallocation watermarking code so that it'll work
for realtime quota too. Convert the do_div calls into div_u64 for
compactness.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Unlike AGs, RTGs don't always have metadata in their first blocks, and
thus we don't get automatic protection from merging I/O completions
across RTG boundaries. Add code to set the IOMAP_F_BOUNDARY flag for
ioends that start at the first block of a RTG so that they never get
merged into the previous ioend.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
To prepare for adding per-rtgroup bitmap files, make the xfs_rtxnum_t
type encode the RT extent number relative to the rtgroup. The biggest
part of this to clearly distinguish between the relative extent number
that gets masked when converting from a global block number and length
values that just have a factor applied to them when converting from
file system blocks.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Shared the regular buffered write iomap_ops with the page fault path
and just check for the IOMAP_FAULT flag to skip delalloc punching.
This keeps the delalloc punching checks in one place, and will make it
easier to convert iomap to an iter model where the begin and end
handlers are merged into a single callback.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs
Pull iomap fixes from Christian Brauner:
"Fixes for iomap to prevent data corruption bugs in the fallocate
unshare range implementation of fsdax and a small cleanup to turn
iomap_want_unshare_iter() into an inline function"
* tag 'vfs-6.12-rc6.iomap' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs:
iomap: turn iomap_want_unshare_iter into an inline function
fsdax: dax_unshare_iter needs to copy entire blocks
fsdax: remove zeroing code from dax_unshare_iter
iomap: share iomap_unshare_iter predicate code with fsdax
xfs: don't allocate COW extents when unsharing a hole
|
|
When ->iomap_end is called on a short write to the COW fork it needs to
punch stale delalloc data from the COW fork and not the data fork.
Ensure that IOMAP_F_NEW is set for new COW fork allocations in
xfs_buffered_write_iomap_begin, and then use the IOMAP_F_SHARED flag
in xfs_buffered_write_delalloc_punch to decide which fork to punch.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
Change to always set xfs_buffered_write_iomap_begin for COW fork
allocations even if they don't overlap existing data fork extents,
which will allow the iomap_end callback to detect if it has to punch
stale delalloc blocks from the COW fork instead of the data fork. It
also means we sample the sequence counter for both the data and the COW
fork when writing to the COW fork, which ensures we properly revalidate
when only COW fork changes happens.
This is essentially a revert of commit 72a048c1056a ("xfs: only set
IOMAP_F_SHARED when providing a srcmap to a write"). This is fine because
the problem that the commit fixed has now been dealt with in iomap by
only looking at the actual srcmap and not the fallback to the write
iomap.
Note that the direct I/O path was never changed and has always set
IOMAP_F_SHARED for all COW fork allocations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
Introduce a local iomap_flags variable so that the code allocating new
delalloc blocks in the data fork can fall through to the found_imap
label and reuse the code to unlock and fill the iomap.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
xfs_buffered_write_iomap_begin can also create delallocate reservations
that need cleaning up, prepare for that by adding support for the COW
fork in xfs_bmap_punch_delalloc_range.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
All XFS callers of iomap_zero_range and iomap_file_unshare already hold
invalidate_lock, so we can't take it again in
iomap_file_buffered_write_punch_delalloc.
Use the passed in flags argument to detect if we're called from a zero
or unshare operation and don't take the lock again in this case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
xfs_file_write_zero_eof is the only caller of xfs_zero_range that does
not take XFS_MMAPLOCK_EXCL (aka the invalidate lock). Currently that
is actually the right thing, as an error in the iomap zeroing code will
also take the invalidate_lock to clean up, but to fix that deadlock we
need a consistent locking pattern first.
The only extra thing that XFS_MMAPLOCK_EXCL will lock out are read
pagefaults, which isn't really needed here, but also not actively
harmful.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
XFS (which currently is the only user of iomap_write_delalloc_release)
already holds invalidate_lock for most zeroing operations. To be able
to avoid a deadlock it needs to stop taking the lock, but doing so
in iomap would leak XFS locking details into iomap.
To avoid this require the caller to hold invalidate_lock when calling
iomap_write_delalloc_release instead of taking it there.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
Currently iomap_file_buffered_write_punch_delalloc can be called from
XFS either with the invalidate lock held or not. To fix this while
keeping the locking in the file system and not the iomap library
code we'll need to life the locking up into the file system.
To prepare for that, open code iomap_file_buffered_write_punch_delalloc
in the only caller, and instead export iomap_write_delalloc_release.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Carlos Maiolino <cem@kernel.org>
|
|
It doesn't make sense to allocate a COW extent when unsharing a hole
because holes cannot be shared.
Fixes: 1f1397b7218d7 ("xfs: don't allocate into the data fork for an unshare request")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Link: https://lore.kernel.org/r/172796813277.1131942.5486112889531210260.stgit@frogsfrogsfrogs
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
iomap_file_buffered_write_punch_delalloc can only return errors if either
the ->punch callback returned an error, or if someone changed the API of
mapping_seek_hole_data to return a negative error code that is not
-ENXIO.
As the only instance of ->punch never returns an error, an such an error
would be fatal anyway remove the entire error propagation and don't
return an error code from iomap_file_buffered_write_punch_delalloc.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20240910043949.3481298-6-hch@lst.de
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
XFS will need to look at the flags in the iomap structure, so pass it
down all the way to the callback.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20240910043949.3481298-5-hch@lst.de
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
To fix short write error handling, We'll need to figure out what operation
iomap_file_buffered_write_punch_delalloc is called for. Pass the flags
argument on to it, and reorder the argument list to match that of
->iomap_end so that the compiler only has to add the new punch argument
to the end of it instead of reshuffling the registers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20240910043949.3481298-4-hch@lst.de
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
About half of xfs_ilock_for_iomap deals with a special case for direct
I/O writes to COW files that need to take the ilock exclusively. Move
this code into the one callers that cares and simplify
xfs_ilock_for_iomap.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
|
|
xfs/205 produces the following failure when always_cow is enabled:
--- a/tests/xfs/205.out 2024-02-28 16:20:24.437887970 -0800
+++ b/tests/xfs/205.out.bad 2024-06-03 21:13:40.584000000 -0700
@@ -1,4 +1,5 @@
QA output created by 205
*** one file
+ !!! disk full (expected)
*** one file, a few bytes at a time
*** done
This is the result of overly aggressive attempts to align cow fork
delalloc reservations to the CoW extent size hint. Looking at the trace
data, we're trying to append a single fsblock to the "fred" file.
Trying to create a speculative post-eof reservation fails because
there's not enough space.
We then set @prealloc_blocks to zero and try again, but the cowextsz
alignment code triggers, which expands our request for a 1-fsblock
reservation into a 39-block reservation. There's not enough space for
that, so the whole write fails with ENOSPC even though there's
sufficient space in the filesystem to allocate the single block that we
need to land the write.
There are two things wrong here -- first, we shouldn't be attempting
speculative preallocations beyond what was requested when we're low on
space. Second, if we've already computed a posteof preallocation, we
shouldn't bother trying to align that to the cowextsize hint.
Fix both of these problems by adding a flag that only enables the
expansion of the delalloc reservation to the cowextsize if we're doing a
non-extending write, and only if we're not doing an ENOSPC retry. This
requires us to move the ENOSPC retry logic to xfs_bmapi_reserve_delalloc.
I probably should have caught this six years ago when 6ca30729c206d was
being reviewed, but oh well. Update the comments to reflect what the
code does now.
Fixes: 6ca30729c206d ("xfs: bmap code cleanup")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
|
|
Currently the calls to xfs_iext_count_may_overflow and
xfs_iext_count_upgrade are always paired. Merge them into a single
function to simplify the callers and the actual check and upgrade
logic itself.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
|
|
Unreserving quotas can't fail due to quota limits, and we'll notice a
shut down file system a bit later in all the callers anyway. Return
void and remove the error checking and propagation in the callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
|
|
xfs_bmapi_write can return 0 without actually returning a mapping in
mval in two different cases:
1) when there is absolutely no space available to do an allocation
2) when converting delalloc space, and the allocation is so small
that it only covers parts of the delalloc extent before the
range requested by the caller
Callers at best can handle one of these cases, but in many cases can't
cope with either one. Switch xfs_bmapi_write to always return a
mapping or return an error code instead. For case 1) above ENOSPC is
the obvious choice which is very much what the callers expect anyway.
For case 2) there is no really good error code, so pick a funky one
from the SysV streams portfolio.
This fixes the reproducer here:
https://lore.kernel.org/linux-xfs/CAEJPjCvT3Uag-pMTYuigEjWZHn1sGMZ0GCjVVCv29tNHK76Cgg@mail.gmail.com0/
which uses reserved blocks to create file systems that are gravely
out of space and thus cause at least xfs_file_alloc_space to hang
and trigger the lack of ENOSPC handling in xfs_dquot_disk_alloc.
Note that this patch does not actually make any caller but
xfs_alloc_file_space deal intelligently with case 2) above.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-by: 刘通 <lyutoon@gmail.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
|
|
Current clone operation could be non-atomic if the destination of a file
is beyond EOF, user could get a file with corrupted (zeroed) data on
crash.
The problem is about preallocations. If you write some data into a file:
[A...B)
and XFS decides to preallocate some post-eof blocks, then it can create
a delayed allocation reservation:
[A.........D)
The writeback path tries to convert delayed extents to real ones by
allocating blocks. If there aren't enough contiguous free space, we can
end up with two extents, the first real and the second still delalloc:
[A....C)[C.D)
After that, both the in-memory and the on-disk file sizes are still B.
If we clone into the range [E...F) from another file:
[A....C)[C.D) [E...F)
then xfs_reflink_zero_posteof() calls iomap_zero_range() to zero out the
range [B, E) beyond EOF and flush it. Since [C, D) is still a delalloc
extent, its pagecache will be zeroed and both the in-memory and on-disk
size will be updated to D after flushing but before cloning. This is
wrong, because the user can see the size change and read the zeroes
while the clone operation is ongoing.
We need to keep the in-memory and on-disk size before the clone
operation starts, so instead of writing zeroes through the page cache
for delayed ranges beyond EOF, we convert these ranges to unwritten and
invalidate any cached data over that range beyond EOF.
Suggested-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Zhang Yi <yi.zhang@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
|
|
Commit 1aa91d9c9933 ("xfs: Add async buffered write support") replace
xfs_ilock(XFS_ILOCK_EXCL) with xfs_ilock_for_iomap() when locking the
writing inode, and a new variable lockmode is used to indicate the lock
mode. Although the lockmode should always be XFS_ILOCK_EXCL, it's still
better to use this variable instead of useing XFS_ILOCK_EXCL directly
when unlocking the inode.
Fixes: 1aa91d9c9933 ("xfs: Add async buffered write support")
Signed-off-by: Zhang Yi <yi.zhang@huawei.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
|
|
Commit aff3a9edb708 ("xfs: Use preallocation for inodes with extsz
hints") disabled delayed allocation for all inodes with extent size
hints due a data exposure problem. It turns out we fixed this data
exposure problem since by always creating unwritten extents for
delalloc conversions due to more data exposure problems, but the
writeback path doesn't actually support extent size hints when
converting delalloc these days, which probably isn't a problem given
that people using the hints know what they get.
However due to the way how xfs_get_extsz_hint is implemented, it
always claims an extent size hint for RT inodes even if the RT
extent size is a single FSB. Due to that the above commit effectively
disabled delalloc support for RT inodes.
Switch xfs_get_extsz_hint to return 0 for this case and work around
that in a few places to reinstate delalloc support for RT inodes on
file systems with an sb_rextsize of 1.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
|
|
Add a check for files on the RT subvolume and use m_frextents instead
of m_fdblocks to adjust the preallocation size.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
|
|
Whenever we encounter a corrupt block mapping, we should report that to
the health monitoring system for later reporting.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
A data corruption problem was reported by CoreOS image builders
when using reflink based disk image copies and then converting
them to qcow2 images. The converted images failed the conversion
verification step, and it was isolated down to the fact that
qemu-img uses SEEK_HOLE/SEEK_DATA to find the data it is supposed to
copy.
The reproducer allowed me to isolate the issue down to a region of
the file that had overlapping data and COW fork extents, and the
problem was that the COW fork extent was being reported in it's
entirity by xfs_seek_iomap_begin() and so skipping over the real
data fork extents in that range.
This was somewhat hidden by the fact that 'xfs_bmap -vvp' reported
all the extents correctly, and reading the file completely (i.e. not
using seek to skip holes) would map the file correctly and all the
correct data extents are read. Hence the problem is isolated to just
the xfs_seek_iomap_begin() implementation.
Instrumentation with trace_printk made the problem obvious: we are
passing the wrong length to xfs_trim_extent() in
xfs_seek_iomap_begin(). We are passing the end_fsb, not the
maximum length of the extent we want to trim the map too. Hence the
COW extent map never gets trimmed to the start of the next data fork
extent, and so the seek code treats the entire COW fork extent as
unwritten and skips entirely over the data fork extents in that
range.
Link: https://github.com/coreos/coreos-assembler/issues/3728
Fixes: 60271ab79d40 ("xfs: fix SEEK_DATA for speculative COW fork preallocation")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
|
|
For an unshare request, we only have to take action if the data fork has
a shared mapping. We don't care if someone else set up a cow operation.
If we find nothing in the data fork, return a hole to avoid allocating
space.
Note that fallocate will replace the delalloc reservation with an
unwritten extent anyway, so this has no user-visible effects outside of
avoiding unnecessary updates.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
In xfs_buffered_write_iomap_begin, @icur is the iext cursor for the data
fork and @ccur is the cursor for the cow fork. Pass in whichever cursor
corresponds to allocfork, because otherwise the xfs_iext_prev_extent
call can use the data fork cursor to walk off the end of the cow fork
structure. Best case it returns the wrong results, worst case it does
this:
stack segment: 0000 [#1] PREEMPT SMP
CPU: 2 PID: 3141909 Comm: fsstress Tainted: G W 6.3.0-rc2-xfsx #6.3.0-rc2 7bf5cc2e98997627cae5c930d890aba3aeec65dd
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20171121_152543-x86-ol7-builder-01.us.oracle.com-4.el7.1 04/01/2014
RIP: 0010:xfs_iext_prev+0x71/0x150 [xfs]
RSP: 0018:ffffc90002233aa8 EFLAGS: 00010297
RAX: 000000000000000f RBX: 000000000000000e RCX: 000000000000000c
RDX: 0000000000000002 RSI: 000000000000000e RDI: ffff8883d0019ba0
RBP: 989642409af8a7a7 R08: ffffea0000000001 R09: 0000000000000002
R10: 0000000000000000 R11: 000000000000000c R12: ffffc90002233b00
R13: ffff8883d0019ba0 R14: 989642409af8a6bf R15: 000ffffffffe0000
FS: 00007fdf8115f740(0000) GS:ffff88843fd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fdf8115e000 CR3: 0000000357256000 CR4: 00000000003506e0
Call Trace:
<TASK>
xfs_iomap_prealloc_size.constprop.0.isra.0+0x1a6/0x410 [xfs 619a268fb2406d68bd34e007a816b27e70abc22c]
xfs_buffered_write_iomap_begin+0xa87/0xc60 [xfs 619a268fb2406d68bd34e007a816b27e70abc22c]
iomap_iter+0x132/0x2f0
iomap_file_buffered_write+0x92/0x330
xfs_file_buffered_write+0xb1/0x330 [xfs 619a268fb2406d68bd34e007a816b27e70abc22c]
vfs_write+0x2eb/0x410
ksys_write+0x65/0xe0
do_syscall_64+0x2b/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Found by xfs/538 in alwayscow mode, but this doesn't seem particular to
that test.
Fixes: 590b16516ef3 ("xfs: refactor xfs_iomap_prealloc_size")
Actually-Fixes: 66ae56a53f0e ("xfs: introduce an always_cow mode")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
The operations in struct page_ops all operate on folios, so rename
struct page_ops to struct folio_ops.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[djwong: port around not removing iomap_valid]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Shut up the sparse warnings about this variable that isn't referenced
anywhere else.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
Pull XFS updates from Darrick Wong:
"The highlight of this is a batch of fixes for the online metadata
checking code as we start the loooong march towards merging online
repair. I aim to merge that in time for the 2023 LTS.
There are also a large number of data corruption and race condition
fixes in this patchset. Most notably fixed are write() calls to
unwritten extents racing with writeback, which required some late(r
than I prefer) code changes to iomap to support the necessary
revalidations. I don't really like iomap changes going in past -rc4,
but Dave and I have been working on it long enough that I chose to
push it for 6.2 anyway.
There are also a number of other subtle problems fixed, including the
log racing with inode writeback to write inodes with incorrect link
count to disk; file data mapping corruptions as a result of incorrect
lock cycling when attaching dquots; refcount metadata corruption if
one actually manages to share a block 2^32 times; and the log
clobbering cow staging extents if they were formerly metadata blocks.
Summary:
- Fix a race condition w.r.t. percpu inode free counters
- Fix a broken error return in xfs_remove
- Print FS UUID at mount/unmount time
- Numerous fixes to the online fsck code
- Fix inode locking inconsistency problems when dealing with realtime
metadata files
- Actually merge pull requests so that we capture the cover letter
contents
- Fix a race between rebuilding VFS inode state and the AIL flushing
inodes that could cause corrupt inodes to be written to the
filesystem
- Fix a data corruption problem resulting from a write() to an
unwritten extent racing with writeback started on behalf of memory
reclaim changing the extent state
- Add debugging knobs so that we can test iomap invalidation
- Fix the blockdev pagecache contents being stale after unmounting
the filesystem, leading to spurious xfs_db errors and corrupt
metadumps
- Fix a file mapping corruption bug due to ilock cycling when
attaching dquots to a file during delalloc reservation
- Fix a refcount btree corruption problem due to the refcount
adjustment code not handling MAXREFCOUNT correctly, resulting in
unnecessary record splits
- Fix COW staging extent alloctions not being classified as USERDATA,
which results in filestreams being ignored and possible data
corruption if the allocation was filled from the AGFL and the block
buffer is still being tracked in the AIL
- Fix new duplicated includes
- Fix a race between the dquot shrinker and dquot freeing that could
cause a UAF"
* tag 'xfs-6.2-merge-8' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (50 commits)
xfs: dquot shrinker doesn't check for XFS_DQFLAG_FREEING
xfs: Remove duplicated include in xfs_iomap.c
xfs: invalidate xfs_bufs when allocating cow extents
xfs: get rid of assert from xfs_btree_islastblock
xfs: estimate post-merge refcounts correctly
xfs: hoist refcount record merge predicates
xfs: fix super block buf log item UAF during force shutdown
xfs: wait iclog complete before tearing down AIL
xfs: attach dquots to inode before reading data/cow fork mappings
xfs: shut up -Wuninitialized in xfsaild_push
xfs: use memcpy, not strncpy, to format the attr prefix during listxattr
xfs: invalidate block device page cache during unmount
xfs: add debug knob to slow down write for fun
xfs: add debug knob to slow down writeback for fun
xfs: drop write error injection is unfixable, remove it
xfs: use iomap_valid method to detect stale cached iomaps
iomap: write iomap validity checks
xfs: xfs_bmap_punch_delalloc_range() should take a byte range
iomap: buffered write failure should not truncate the page cache
xfs,iomap: move delalloc punching to iomap
...
|
|
Zero and truncate on a dax file may execute CoW. So use dax ops which
contains end work for CoW.
Link: https://lkml.kernel.org/r/1669908730-131-1-git-send-email-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If a dax page is shared, mapread at different offsets can also trigger
page fault on same dax page. So, change the flag from "cow" to "shared".
And get the shared flag from filesystem when read.
Link: https://lkml.kernel.org/r/1669908538-55-5-git-send-email-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|