| Age | Commit message (Collapse) | Author |
|
CPUs can generate traffic with a range of PARTID and PMG values,
but each MSC may also have its own maximum size for these fields.
Before MPAM can be used, the driver needs to probe each RIS on
each MSC, to find the system-wide smallest value that can be used.
The limits from requestors (e.g. CPUs) also need taking into account.
While doing this, RIS entries that firmware didn't describe are created
under MPAM_CLASS_UNKNOWN.
This adds the low level MSC write accessors.
While we're here, implement the mpam_register_requestor() call
for the arch code to register the CPU limits. Future callers of this
will tell us about the SMMU and ITS.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Ben Horgan <ben.horgan@arm.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
An MSC is a container of resources, each identified by their RIS index.
Some RIS are described by firmware to provide their position in the system.
Others are discovered when the driver probes the hardware.
To configure a resource it needs to be found by its class, e.g. 'L2'.
There are two kinds of grouping, a class is a set of components, which
are visible to user-space as there are likely to be multiple instances
of the L2 cache. (e.g. one per cluster or package)
Add support for creating and destroying structures to allow a hierarchy
of resources to be created.
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Add code to parse the arm64 specific MPAM table, looking up the cache
level from the PPTT and feeding the end result into the MPAM driver.
This happens in two stages. Platform devices are created first for the
MSC devices. Once the driver probes it calls acpi_mpam_parse_resources()
to discover the RIS entries the MSC contains.
For now the MPAM hook mpam_ris_create() is stubbed out, but will update
the MPAM driver with optional discovered data about the RIS entries.
CC: Carl Worth <carl@os.amperecomputing.com>
Link: https://developer.arm.com/documentation/den0065/3-0bet/?lang=en
Reviewed-by: Lorenzo Pieralisi <lpieralisi@kernel.org>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|