Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer cleanups from Thomas Gleixner:
"A treewide hrtimer timer cleanup
hrtimers are initialized with hrtimer_init() and a subsequent store to
the callback pointer. This turned out to be suboptimal for the
upcoming Rust integration and is obviously a silly implementation to
begin with.
This cleanup replaces the hrtimer_init(T); T->function = cb; sequence
with hrtimer_setup(T, cb);
The conversion was done with Coccinelle and a few manual fixups.
Once the conversion has completely landed in mainline, hrtimer_init()
will be removed and the hrtimer::function becomes a private member"
* tag 'timers-cleanups-2025-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (100 commits)
wifi: rt2x00: Switch to use hrtimer_update_function()
io_uring: Use helper function hrtimer_update_function()
serial: xilinx_uartps: Use helper function hrtimer_update_function()
ASoC: fsl: imx-pcm-fiq: Switch to use hrtimer_setup()
RDMA: Switch to use hrtimer_setup()
virtio: mem: Switch to use hrtimer_setup()
drm/vmwgfx: Switch to use hrtimer_setup()
drm/xe/oa: Switch to use hrtimer_setup()
drm/vkms: Switch to use hrtimer_setup()
drm/msm: Switch to use hrtimer_setup()
drm/i915/request: Switch to use hrtimer_setup()
drm/i915/uncore: Switch to use hrtimer_setup()
drm/i915/pmu: Switch to use hrtimer_setup()
drm/i915/perf: Switch to use hrtimer_setup()
drm/i915/gvt: Switch to use hrtimer_setup()
drm/i915/huc: Switch to use hrtimer_setup()
drm/amdgpu: Switch to use hrtimer_setup()
stm class: heartbeat: Switch to use hrtimer_setup()
i2c: Switch to use hrtimer_setup()
iio: Switch to use hrtimer_setup()
...
|
|
Initially in commit 6891c4509c79 memset() was required to clear a variable
allocated on stack. Commit 2482097c6c0f removed the on stack variable and
retained the memset() despite the fact that the memory is allocated via
kmem_cache_zalloc() and therefore zereoed already.
Drop the redundant memset().
Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/Z9ctVxwaYOV4A2g4@grain
|
|
Checkpoint/Restore in Userspace (CRIU) requires to reconstruct posix timers
with the same timer ID on restore. It uses sys_timer_create() and relies on
the monotonic increasing timer ID provided by this syscall. It creates and
deletes timers until the desired ID is reached. This is can loop for a long
time, when the checkpointed process had a very sparse timer ID range.
It has been debated to implement a new syscall to allow the creation of
timers with a given timer ID, but that's tideous due to the 32/64bit compat
issues of sigevent_t and of dubious value.
The restore mechanism of CRIU creates the timers in a state where all
threads of the restored process are held on a barrier and cannot issue
syscalls. That means the restorer task has exclusive control.
This allows to address this issue with a prctl() so that the restorer
thread can do:
if (prctl(PR_TIMER_CREATE_RESTORE_IDS, PR_TIMER_CREATE_RESTORE_IDS_ON))
goto linear_mode;
create_timers_with_explicit_ids();
prctl(PR_TIMER_CREATE_RESTORE_IDS, PR_TIMER_CREATE_RESTORE_IDS_OFF);
This is backwards compatible because the prctl() fails on older kernels and
CRIU can fall back to the linear timer ID mechanism. CRIU versions which do
not know about the prctl() just work as before.
Implement the prctl() and modify timer_create() so that it copies the
requested timer ID from userspace by utilizing the existing timer_t
pointer, which is used to copy out the allocated timer ID on success.
If the prctl() is disabled, which it is by default, timer_create() works as
before and does not try to read from the userspace pointer.
There is no problem when a broken or rogue user space application enables
the prctl(). If the user space pointer does not contain a valid ID, then
timer_create() fails. If the data is not initialized, but constains a
random valid ID, timer_create() will create that random timer ID or fail if
the ID is already given out.
As CRIU must use the raw syscall to avoid manipulating the internal state
of the restored process, this has no library dependencies and can be
adopted by CRIU right away.
Recreating two timers with IDs 1000000 and 2000000 takes 1.5 seconds with
the create/delete method. With the prctl() it takes 3 microseconds.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Cyrill Gorcunov <gorcunov@gmail.com>
Tested-by: Cyrill Gorcunov <gorcunov@gmail.com>
Link: https://lore.kernel.org/all/87jz8vz0en.ffs@tglx
|
|
Preparatory change to remove the sighand locking from the /proc/$PID/timers
iterator.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20250308155624.403223080@linutronix.de
|
|
struct k_itimer has the hlist_node, which is used for lookup in the hash
bucket, and the timer lock in the same cache line.
That's obviously bad, if one CPU fiddles with a timer and the other is
walking the hash bucket on which that timer is queued.
Avoid this by restructuring struct k_itimer, so that the read mostly (only
modified during setup and teardown) fields are in the first cache line and
the lock and the rest of the fields which get written to are in cacheline
2-N.
Reduces cacheline contention in a test case of 64 processes creating and
accessing 20000 timers each by almost 30% according to perf.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20250308155624.341108067@linutronix.de
|
|
The hash distribution of hash_32() is suboptimal. jhash32() provides a way
better distribution, which evens out the length of the hash bucket lists,
which in turn avoids large outliers in list walk times.
Due to the sparse ID space (thanks CRIU) there is no guarantee that the
timers will be fully evenly distributed over the hash buckets, but the
behaviour is way better than with hash_32() even for randomly sparse ID
spaces.
For a pathological test case with 64 processes creating and accessing
20000 timers each, this results in a runtime reduction of ~10% and a
significantly reduced runtime variation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20250308155624.279080328@linutronix.de
|
|
Eric and Ben reported a significant performance bottleneck on the global
hash, which is used to store posix timers for lookup.
Eric tried to do a lockless validation of a new timer ID before trying to
insert the timer, but that does not solve the problem.
For the non-contended case this is a pointless exercise and for the
contended case this extra lookup just creates enough interleaving that all
tasks can make progress.
There are actually two real solutions to the problem:
1) Provide a per process (signal struct) xarray storage
2) Implement a smarter hash like the one in the futex code
#1 works perfectly fine for most cases, but the fact that CRIU enforced a
linear increasing timer ID to restore timers makes this problematic.
It's easy enough to create a sparse timer ID space, which amounts very
fast to a large junk of memory consumed for the xarray. 2048 timers with
a ID offset of 512 consume more than one megabyte of memory for the
xarray storage.
#2 The main advantage of the futex hash is that it uses per hash bucket
locks instead of a global hash lock. Aside of that it is scaled
according to the number of CPUs at boot time.
Experiments with artifical benchmarks have shown that a scaled hash with
per bucket locks comes pretty close to the xarray performance and in some
scenarios it performes better.
Test 1:
A single process creates 20000 timers and afterwards invokes
timer_getoverrun(2) on each of them:
mainline Eric newhash xarray
create 23 ms 23 ms 9 ms 8 ms
getoverrun 14 ms 14 ms 5 ms 4 ms
Test 2:
A single process creates 50000 timers and afterwards invokes
timer_getoverrun(2) on each of them:
mainline Eric newhash xarray
create 98 ms 219 ms 20 ms 18 ms
getoverrun 62 ms 62 ms 10 ms 9 ms
Test 3:
A single process creates 100000 timers and afterwards invokes
timer_getoverrun(2) on each of them:
mainline Eric newhash xarray
create 313 ms 750 ms 48 ms 33 ms
getoverrun 261 ms 260 ms 20 ms 14 ms
Erics changes create quite some overhead in the create() path due to the
double list walk, as the main issue according to perf is the list walk
itself. With 100k timers each hash bucket contains ~200 timers, which in
the worst case need to be all inspected. The same problem applies for
getoverrun() where the lookup has to walk through the hash buckets to find
the timer it is looking for.
The scaled hash obviously reduces hash collisions and lock contention
significantly. This becomes more prominent with concurrency.
Test 4:
A process creates 63 threads and all threads wait on a barrier before
each instance creates 20000 timers and afterwards invokes
timer_getoverrun(2) on each of them. The threads are pinned on
seperate CPUs to achive maximum concurrency. The numbers are the
average times per thread:
mainline Eric newhash xarray
create 180239 ms 38599 ms 579 ms 813 ms
getoverrun 2645 ms 2642 ms 32 ms 7 ms
Test 5:
A process forks 63 times and all forks wait on a barrier before each
instance creates 20000 timers and afterwards invokes
timer_getoverrun(2) on each of them. The processes are pinned on
seperate CPUs to achive maximum concurrency. The numbers are the
average times per process:
mainline eric newhash xarray
create 157253 ms 40008 ms 83 ms 60 ms
getoverrun 2611 ms 2614 ms 40 ms 4 ms
So clearly the reduction of lock contention with Eric's changes makes a
significant difference for the create() loop, but it does not mitigate the
problem of long list walks, which is clearly visible on the getoverrun()
side because that is purely dominated by the lookup itself. Once the timer
is found, the syscall just reads from the timer structure with no other
locks or code paths involved and returns.
The reason for the difference between the thread and the fork case for the
new hash and the xarray is that both suffer from contention on
sighand::siglock and the xarray suffers additionally from contention on the
xarray lock on insertion.
The only case where the reworked hash slighly outperforms the xarray is a
tight loop which creates and deletes timers.
Test 4:
A process creates 63 threads and all threads wait on a barrier before
each instance runs a loop which creates and deletes a timer 100000
times in a row. The threads are pinned on seperate CPUs to achive
maximum concurrency. The numbers are the average times per thread:
mainline Eric newhash xarray
loop 5917 ms 5897 ms 5473 ms 7846 ms
Test 5:
A process forks 63 times and all forks wait on a barrier before each
each instance runs a loop which creates and deletes a timer 100000
times in a row. The processes are pinned on seperate CPUs to achive
maximum concurrency. The numbers are the average times per process:
mainline Eric newhash xarray
loop 5137 ms 7828 ms 891 ms 872 ms
In both test there is not much contention on the hash, but the ucount
accounting for the signal and in the thread case the sighand::siglock
contention (plus the xarray locking) contribute dominantly to the overhead.
As the memory consumption of the xarray in the sparse ID case is
significant, the scaled hash with per bucket locks seems to be the better
overall option. While the xarray has faster lookup times for a large number
of timers, the actual syscall usage, which requires the lookup is not an
extreme hotpath. Most applications utilize signal delivery and all syscalls
except timer_getoverrun(2) are all but cheap.
So implement a scaled hash with per bucket locks, which offers the best
tradeoff between performance and memory consumption.
Reported-by: Eric Dumazet <edumazet@google.com>
Reported-by: Benjamin Segall <bsegall@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20250308155624.216091571@linutronix.de
|
|
The global hash_lock protecting the posix timer hash table can be heavily
contended especially when there is an extensive linear search for a timer
ID.
Timer IDs are handed out by monotonically increasing next_posix_timer_id
and then validating that there is no timer with the same ID in the hash
table. Both operations happen with the global hash lock held.
To reduce the hash lock contention the hash will be reworked to a scaled
hash with per bucket locks, which requires to handle the ID counter
lockless.
Prepare for this by making next_posix_timer_id an atomic_t, which can be
used lockless with atomic_inc_return().
[ tglx: Adopted from Eric's series, massaged change log and simplified it ]
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20250219125522.2535263-2-edumazet@google.com
Link: https://lore.kernel.org/all/20250308155624.151545978@linutronix.de
|
|
The lookup and locking of posix timers requires the same repeating pattern
at all usage sites:
tmr = lock_timer(tiner_id);
if (!tmr)
return -EINVAL;
....
unlock_timer(tmr);
Solve this with a guard implementation, which works in most places out of
the box except for those, which need to unlock the timer inside the guard
scope.
Though the only places where this matters are timer_delete() and
timer_settime(). In both cases the timer pointer needs to be preserved
across the end of the scope, which is solved by storing the pointer in a
variable outside of the scope.
timer_settime() also has to protect the timer with RCU before unlocking,
which obviously can't use guard(rcu) before leaving the guard scope as that
guard is cleaned up before the unlock. Solve this by providing the RCU
protection open coded.
[ tglx: Made it work and added change log ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20250224162103.GD11590@noisy.programming.kicks-ass.net
Link: https://lore.kernel.org/all/20250308155624.087465658@linutronix.de
|
|
sys_timer_delete() and the do_exit() cleanup function itimer_delete() are
doing the same thing, but have needlessly different implementations instead
of sharing the code.
The other oddity of timer deletion is the fact that the timer is not
invalidated before the actual deletion happens, which allows concurrent
lookups to succeed.
That's wrong because a timer which is in the process of being deleted
should not be visible and any actions like signal queueing, delivery and
rearming should not happen once the task, which invoked timer_delete(), has
the timer locked.
Rework the code so that:
1) The signal queueing and delivery code ignore timers which are marked
invalid
2) The deletion implementation between sys_timer_delete() and
itimer_delete() is shared
3) The timer is invalidated and removed from the linked lists before
the deletion callback of the relevant clock is invoked.
That requires to rework timer_wait_running() as it does a lookup of
the timer when relocking it at the end. In case of deletion this
lookup would fail due to the preceding invalidation and the wait loop
would terminate prematurely.
But due to the preceding invalidation the timer cannot be accessed by
other tasks anymore, so there is no way that the timer has been freed
after the timer lock has been dropped.
Move the re-validation out of timer_wait_running() and handle it at
the only other usage site, timer_settime().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/87zfht1exf.ffs@tglx
|
|
Since the integration of sigqueue into the timer struct, lock_timer() is
only used in task context. So taking the lock with irqsave() is not longer
required.
Convert it to use spin_[un]lock_irq().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20250308155623.959825668@linutronix.de
|
|
Switch locking and RCU to guards where applicable.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20250308155623.892762130@linutronix.de
|
|
There is no need to panic when the posix-timer kmem_cache can't be
created. timer_create() will fail with -ENOMEM and that's it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20250308155623.829215801@linutronix.de
|
|
Warnings about a non-initialized timer or non-existing callbacks are just
useful for implementing new posix clocks, but there a NULL pointer
dereference is expected anyway. :)
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20250308155623.765462334@linutronix.de
|
|
Remove pointless includes and sort the remaining ones alphabetically.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20250308155623.701301552@linutronix.de
|
|
With a large number of POSIX timers the search for a valid ID might cause a
soft lockup on PREEMPT_NONE/VOLUNTARY kernels.
Add cond_resched() to the loop to prevent that.
[ tglx: Split out from Eric's series ]
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20250214135911.2037402-2-edumazet@google.com
Link: https://lore.kernel.org/all/20250308155623.635612865@linutronix.de
|
|
A timer is only valid in the hashtable when both timer::it_signal and
timer::it_id are set to their final values, but timers are added without
those values being set.
The timer ID is allocated when the timer is added to the hash in invalid
state. The ID is taken from a monotonically increasing per process counter
which wraps around after reaching INT_MAX. The hash insertion validates
that there is no timer with the allocated ID in the hash table which
belongs to the same process. That opens a mostly theoretical race condition:
If other threads of the same process manage to create/delete timers in
rapid succession before the newly created timer is fully initialized and
wrap around to the timer ID which was handed out, then a duplicate timer ID
will be inserted into the hash table.
Prevent this by:
1) Setting timer::it_id before inserting the timer into the hashtable.
2) Storing the signal pointer in timer::it_signal with bit 0 set before
inserting it into the hashtable.
Bit 0 acts as a invalid bit, which means that the regular lookup for
sys_timer_*() will fail the comparison with the signal pointer.
But the lookup on insertion masks out bit 0 and can therefore detect a
timer which is not yet valid, but allocated in the hash table. Bit 0
in the pointer is cleared once the initialization of the timer
completed.
[ tglx: Fold ID and signal iniitializaion into one patch and massage change
log and comments. ]
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20250219125522.2535263-3-edumazet@google.com
Link: https://lore.kernel.org/all/20250308155623.572035178@linutronix.de
|
|
Frederic pointed out that the memory operations to initialize the timer are
not guaranteed to be visible, when __lock_timer() observes timer::it_signal
valid under timer::it_lock:
T0 T1
--------- -----------
do_timer_create()
// A
new_timer->.... = ....
spin_lock(current->sighand)
// B
WRITE_ONCE(new_timer->it_signal, current->signal)
spin_unlock(current->sighand)
sys_timer_*()
t = __lock_timer()
spin_lock(&timr->it_lock)
// observes B
if (timr->it_signal == current->signal)
return timr;
if (!t)
return;
// Is not guaranteed to observe A
Protect the write of timer::it_signal, which makes the timer valid, with
timer::it_lock as well. This guarantees that T1 must observe the
initialization A completely, when it observes the valid signal pointer
under timer::it_lock. sighand::siglock must still be taken to protect the
signal::posix_timers list.
Reported-by: Frederic Weisbecker <frederic@kernel.org>
Suggested-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20250308155623.507944489@linutronix.de
|
|
hrtimer_setup() takes the callback function pointer as argument and
initializes the timer completely.
Replace hrtimer_init() and the open coded initialization of
hrtimer::function with the new setup mechanism.
Signed-off-by: Nam Cao <namcao@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/170bb691a0d59917c8268a98c80b607128fc9f7f.1738746821.git.namcao@linutronix.de
|
|
exit_itimers() loops through every timer in the process to delete it. This
requires taking the system-wide hash_lock for each of these timers, and
contends with other processes trying to create or delete timers.
When a process creates hundreds of thousands of timers, and then exits
while other processes contend with it, this can trigger softlockups on
CONFIG_PREEMPT=n.
Add a cond_resched() invocation into the loop to allow the system to make
progress.
Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/xm2634gg2n23.fsf@google.com
|
|
The word 'accross' is wrong, so fix it.
Signed-off-by: Zhu Jun <zhujun2@cmss.chinamobile.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20241204080907.11989-1-zhujun2@cmss.chinamobile.com
|
|
Now that ignored posix timer signals are requeued and the timers are
rearmed on signal delivery the workaround to keep such timers alive and
self rearm them is not longer required.
Remove the relevant hacks and the not longer required return values from
the related functions. The alarm timer workarounds will be cleaned up in a
separate step.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064214.187239060@linutronix.de
|
|
Queue posixtimers which have their signal ignored on the ignored list:
1) When the timer fires and the signal has SIG_IGN set
2) When SIG_IGN is installed via sigaction() and a timer signal
is already queued
This only happens when the signal is for a valid timer, which delivered the
signal in periodic mode. One-shot timer signals are correctly dropped.
Due to the lock order constraints (sighand::siglock nests inside
timer::lock) the signal code cannot access any of the timer fields which
are relevant to make this decision, e.g. timer::it_status.
This is addressed by establishing a protection scheme which requires to
lock both locks on the timer side for modifying decision fields in the
timer struct and therefore makes it possible for the signal delivery to
evaluate with only sighand:siglock being held:
1) Move the NULLification of timer->it_signal into the sighand::siglock
protected section of timer_delete() and check timer::it_signal in the
code path which determines whether the signal is dropped or queued on
the ignore list.
This ensures that a deleted timer cannot be moved onto the ignore
list, which would prevent it from being freed on exit() as it is not
longer in the process' posix timer list.
If the timer got moved to the ignored list before deletion then it is
removed from the ignored list under sighand lock in timer_delete().
2) Provide a new timer::it_sig_periodic flag, which gets set in the
signal queue path with both timer and sighand locks held if the timer
is actually in periodic mode at expiry time.
The ignore list code checks this flag under sighand::siglock and drops
the signal when it is not set.
If it is set, then the signal is moved to the ignored list independent
of the actual state of the timer.
When the signal is un-ignored later then the signal is moved back to
the signal queue. On signal delivery the posix timer side decides
about dropping the signal if the timer was re-armed, dis-armed or
deleted based on the signal sequence counter check.
If the thread/process exits then not yet delivered signals are
discarded which means the reference of the timer containing the
sigqueue is dropped and frees the timer.
This is way cheaper than requiring all code paths to lock
sighand::siglock of the target thread/process on any modification of
timer::it_status or going all the way and removing pending signals
from the signal queues on every rearm, disarm or delete operation.
So the protection scheme here is that on the timer side both timer::lock
and sighand::siglock have to be held for modifying
timer::it_signal
timer::it_sig_periodic
which means that on the signal side holding sighand::siglock is enough to
evaluate these fields.
In posixtimer_deliver_signal() holding timer::lock is sufficient to do the
sequence validation against timer::it_signal_seq because a concurrent
expiry is waiting on timer::lock to be released.
This completes the SIG_IGN handling and such timers are not longer self
rearmed which avoids pointless wakeups.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064214.120756416@linutronix.de
|
|
To handle posix timer signals on sigaction(SIG_IGN) properly, the timers
will be queued on a separate ignored list.
Add the necessary cleanup code for timer_delete() and exit_itimers().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.987530588@linutronix.de
|
|
The posix timer signal handling uses siginfo::si_sys_private for handling
the sequence counter check. That indirection is not longer required and the
sequence count value at signal queueing time can be stored in struct
k_itimer itself.
This removes the requirement of treating siginfo::si_sys_private special as
it's now always zero as the kernel does not touch it anymore.
Suggested-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://lore.kernel.org/all/20241105064213.852619866@linutronix.de
|
|
To cure the SIG_IGN handling for posix interval timers, the preallocated
sigqueue needs to be embedded into struct k_itimer to prevent life time
races of all sorts.
Now that the prerequisites are in place, embed the sigqueue into struct
k_itimer and fixup the relevant usage sites.
Aside of preparing for proper SIG_IGN handling, this spares an extra
allocation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.719695194@linutronix.de
|
|
In preparation for handling ignored posix timer signals correctly and
embedding the sigqueue struct into struct k_itimer, hand down a pointer to
the sigqueue struct into posix_timer_deliver_signal() instead of just
having a boolean flag.
No functional change.
Suggested-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://lore.kernel.org/all/20241105064213.652658158@linutronix.de
|
|
To handle posix timers which have their signal ignored via SIG_IGN properly
it is required to requeue a ignored signal for delivery when SIG_IGN is
lifted so the timer gets rearmed.
Split the required code out of send_sigqueue() so it can be reused in
context of sigaction().
While at it rename send_sigqueue() to posixtimer_send_sigqueue() so its
clear what this is about.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.586453412@linutronix.de
|
|
instead of re-evaluating the signal delivery mode everywhere.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.519086500@linutronix.de
|
|
To cure the SIG_IGN handling for posix interval timers, the preallocated
sigqueue needs to be embedded into struct k_itimer to prevent life time
races of all sorts.
To make that work correctly it needs reference counting so that timer
deletion does not free the timer prematuraly when there is a signal queued
or delivered concurrently.
Add a rcuref to the posix timer part.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.304756440@linutronix.de
|
|
The handling of the timer overrun in the signal code is inconsistent as it
takes previous overruns into account. This is just wrong as after the
reprogramming of a timer the overrun count starts over from a clean state,
i.e. 0.
Don't touch info::si_overrun in send_sigqueue() and only store the overrun
value at signal delivery time, which is computed from the timer itself
relative to the expiry time.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241105064213.106738193@linutronix.de
|
|
Signals of timers which are reprogammed, disarmed or deleted can deliver
signals related to the past. The POSIX spec is blury about this:
- "The effect of disarming or resetting a timer with pending expiration
notifications is unspecified."
- "The disposition of pending signals for the deleted timer is
unspecified."
In both cases it is reasonable to expect that pending signals are
discarded. Especially in the reprogramming case it does not make sense to
account for previous overruns or to deliver a signal for a timer which has
been disarmed. This makes the behaviour consistent and understandable.
Remove the si_sys_private check from the signal delivery code and invoke
posix_timer_deliver_signal() unconditionally for posix timer related
signals.
Change posix_timer_deliver_signal() so it controls the actual signal
delivery via the return value. It now instructs the signal code to drop the
signal when:
1) The timer does not longer exist in the hash table
2) The timer signal_seq value is not the same as the si_sys_private value
which was set when the signal was queued.
This is also a preparatory change to embed the sigqueue into the k_itimer
structure, which in turn allows to remove the si_sys_private magic.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20241105064213.040348644@linutronix.de
|
|
Right now the state tracking is done by two struct members:
- it_active:
A boolean which tracks armed/disarmed state
- it_signal_seq:
A sequence counter which is used to invalidate settings
and prevent rearming
Replace it_active with it_status and keep properly track about the states
in one place.
This allows to reuse it_signal_seq to track reprogramming, disarm and
delete operations in order to drop signals which are related to the state
previous of those operations.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.670337048@linutronix.de
|
|
Prepare for using this struct member to do a proper reprogramming and
deletion accounting so that stale signals can be dropped.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.611997737@linutronix.de
|
|
No point in delivering a signal from the past. POSIX does not specify the
behaviour here:
- "The effect of disarming or resetting a timer with pending expiration
notifications is unspecified."
- "The disposition of pending signals for the deleted timer is unspecified."
In both cases it is reasonable to expect that pending signals are
discarded. Especially in the reprogramming case it does not make sense to
account for previous overruns or to deliver a signal for a timer which has
been disarmed.
Drop the signal as that is conistent and understandable behaviour.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.553646280@linutronix.de
|
|
In case that a timer was reprogrammed or deleted an already pending signal
is obsolete. Right now such signals are kept around and eventually
delivered. While POSIX is blury about this:
- "The effect of disarming or resetting a timer with pending expiration
notifications is unspecified."
- "The disposition of pending signals for the deleted timer is
unspecified."
it is reasonable in both cases to expect that pending signals are discarded
as they have no meaning anymore.
Prepare the signal code to allow dropping posix timer signals.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.494416923@linutronix.de
|
|
The si_sys_private member of the siginfo which is embedded in the
preallocated sigqueue is used by the posix timer code to decide whether a
timer must be reprogrammed on signal delivery.
The handling of this is racy as a long standing comment in that code
documents. It is modified with the timer lock held, but without sighand
lock being held. The actual signal delivery code checks for it under
sighand lock without holding the timer lock.
Hand the new value to send_sigqueue() as argument and store it with sighand
lock held. This is an intermediate change to address this issue.
The arguments to this function will be cleanup in subsequent changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.434338954@linutronix.de
|
|
Move the itimer rearming out of the signal code and consolidate all posix
timer related functions in the signal code under one ifdef.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/20241001083835.314100569@linutronix.de
|
|
callback
Since SLOB was removed and since commit 6c6c47b063b5 ("mm, slab: call
kvfree_rcu_barrier() from kmem_cache_destroy()"), it is not longer
necessary to use call_rcu() when the callback only performs
kmem_cache_free(). Use kfree_rcu() directly.
The changes were made using Coccinelle.
Signed-off-by: Julia Lawall <Julia.Lawall@inria.fr>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Link: https://lore.kernel.org/all/20241013201704.49576-12-Julia.Lawall@inria.fr
|
|
There are several comments all over the place, which uses a wrong singular
form of jiffies.
Replace 'jiffie' by 'jiffy'. No functional change.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> # m68k
Link: https://lore.kernel.org/all/20240904-devel-anna-maria-b4-timers-flseep-v1-3-e98760256370@linutronix.de
|
|
Rename posix_timer_event() to posix_timer_queue_signal() as this is what
the function is about.
Consolidate the requeue pending and deactivation updates into that function
as there is no point in doing this in all incarnations of posix timers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
hrtimer based and CPU timers have their own way to install the new interval
and to reset overrun and signal handling related data.
Create a helper function and do the same operation for all variants.
This also makes the handling of the interval consistent. It's only stored
when the timer is actually armed, i.e. timer->it_value != 0. Before that it
was stored unconditionally for posix CPU timers and conditionally for the
other posix timers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
No requirement for a real list. Spare a few bytes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
Keeping the overrun count of the previous setup around is just wrong. The
new setting has nothing to do with the previous one and has to start from a
clean slate.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
No point in doing this all over the place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
|
Commit c78f261e5dcb ("posix-timers: Clarify posix_timer_fn() comments")
turns an ifdef CONFIG_HIGH_RES_TIMERS into an conditional on
"IS_ENABLED(CONFIG_HIGHRES_TIMERS)"; note that the new conditional refers
to "HIGHRES_TIMERS" not "HIGH_RES_TIMERS" as before.
Fix this typo introduced in that refactoring.
Fixes: c78f261e5dcb ("posix-timers: Clarify posix_timer_fn() comments")
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230609094643.26253-1-lukas.bulwahn@gmail.com
|
|
Make it consistent with the TIP tree documentation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.888493625@linutronix.de
|
|
Documenting the obvious is just consuming space for no value.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.832240451@linutronix.de
|
|
Make the issues vs. SIG_IGN understandable and remove the 15 years old
promise that a proper solution is already on the horizon.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/874jnrdmrq.ffs@tglx
|
|
Yet another incomprehensible piece of art.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.724863461@linutronix.de
|