Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull ring-buffer updates from Steven Rostedt:
"Persistent buffer cleanups and simplifications.
It was mistaken that the physical memory returned from "reserve_mem"
had to be vmap()'d to get to it from a virtual address. But
reserve_mem already maps the memory to the virtual address of the
kernel so a simple phys_to_virt() can be used to get to the virtual
address from the physical memory returned by "reserve_mem". With this
new found knowledge, the code can be cleaned up and simplified.
- Enforce that the persistent memory is page aligned
As the buffers using the persistent memory are all going to be
mapped via pages, make sure that the memory given to the tracing
infrastructure is page aligned. If it is not, it will print a
warning and fail to map the buffer.
- Use phys_to_virt() to get the virtual address from reserve_mem
Instead of calling vmap() on the physical memory returned from
"reserve_mem", use phys_to_virt() instead.
As the memory returned by "memmap" or any other means where a
physical address is given to the tracing infrastructure, it still
needs to be vmap(). Since this memory can never be returned back to
the buddy allocator nor should it ever be memmory mapped to user
space, flag this buffer and up the ref count. The ref count will
keep it from ever being freed, and the flag will prevent it from
ever being memory mapped to user space.
- Use vmap_page_range() for memmap virtual address mapping
For the memmap buffer, instead of allocating an array of struct
pages, assigning them to the contiguous phsycial memory and then
passing that to vmap(), use vmap_page_range() instead
- Replace flush_dcache_folio() with flush_kernel_vmap_range()
Instead of calling virt_to_folio() and passing that to
flush_dcache_folio(), just call flush_kernel_vmap_range() directly.
This also fixes a bug where if a subbuffer was bigger than
PAGE_SIZE only the PAGE_SIZE portion would be flushed"
* tag 'trace-ringbuffer-v6.15-3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
ring-buffer: Use flush_kernel_vmap_range() over flush_dcache_folio()
tracing: Use vmap_page_range() to map memmap ring buffer
tracing: Have reserve_mem use phys_to_virt() and separate from memmap buffer
tracing: Enforce the persistent ring buffer to be page aligned
|
|
Some architectures do not have data cache coherency between user and
kernel space. For these architectures, the cache needs to be flushed on
both the kernel and user addresses so that user space can see the updates
the kernel has made.
Instead of using flush_dcache_folio() and playing with virt_to_folio()
within the call to that function, use flush_kernel_vmap_range() which
takes the virtual address and does the work for those architectures that
need it.
This also fixes a bug where the flush of the reader page only flushed one
page. If the sub-buffer order is 1 or more, where the sub-buffer size
would be greater than a page, it would miss the rest of the sub-buffer
content, as the "reader page" is not just a page, but the size of a
sub-buffer.
Link: https://lore.kernel.org/all/CAG48ez3w0my4Rwttbc5tEbNsme6tc0mrSN95thjXUFaJ3aQ6SA@mail.gmail.com/
Cc: stable@vger.kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Link: https://lore.kernel.org/20250402144953.920792197@goodmis.org
Fixes: 117c39200d9d7 ("ring-buffer: Introducing ring-buffer mapping functions");
Suggested-by: Jann Horn <jannh@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull ring-buffer updates from Steven Rostedt:
- Restructure the persistent memory to have a "scratch" area
Instead of hard coding the KASLR offset in the persistent memory by
the ring buffer, push that work up to the callers of the persistent
memory as they are the ones that need this information. The offsets
and such is not important to the ring buffer logic and it should not
be part of that.
A scratch pad is now created when the caller allocates a ring buffer
from persistent memory by stating how much memory it needs to save.
- Allow where modules are loaded to be saved in the new scratch pad
Save the addresses of modules when they are loaded into the
persistent memory scratch pad.
- A new module_for_each_mod() helper function was created
With the acknowledgement of the module maintainers a new module
helper function was created to iterate over all the currently loaded
modules. This has a callback to be called for each module. This is
needed for when tracing is started in the persistent buffer and the
currently loaded modules need to be saved in the scratch area.
- Expose the last boot information where the kernel and modules were
loaded
The last_boot_info file is updated to print out the addresses of
where the kernel "_text" location was loaded from a previous boot, as
well as where the modules are loaded. If the buffer is recording the
current boot, it only prints "# Current" so that it does not expose
the KASLR offset of the currently running kernel.
- Allow the persistent ring buffer to be released (freed)
To have this in production environments, where the kernel command
line can not be changed easily, the ring buffer needs to be freed
when it is not going to be used. The memory for the buffer will
always be allocated at boot up, but if the system isn't going to
enable tracing, the memory needs to be freed. Allow it to be freed
and added back to the kernel memory pool.
- Allow stack traces to print the function names in the persistent
buffer
Now that the modules are saved in the persistent ring buffer, if the
same modules are loaded, the printing of the function names will
examine the saved modules. If the module is found in the scratch area
and is also loaded, then it will do the offset shift and use kallsyms
to display the function name. If the address is not found, it simply
displays the address from the previous boot in hex.
* tag 'trace-ringbuffer-v6.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing: Use _text and the kernel offset in last_boot_info
tracing: Show last module text symbols in the stacktrace
ring-buffer: Remove the unused variable bmeta
tracing: Skip update_last_data() if cleared and remove active check for save_mod()
tracing: Initialize scratch_size to zero to prevent UB
tracing: Fix a compilation error without CONFIG_MODULES
tracing: Freeable reserved ring buffer
mm/memblock: Add reserved memory release function
tracing: Update modules to persistent instances when loaded
tracing: Show module names and addresses of last boot
tracing: Have persistent trace instances save module addresses
module: Add module_for_each_mod() function
tracing: Have persistent trace instances save KASLR offset
ring-buffer: Add ring_buffer_meta_scratch()
ring-buffer: Add buffer meta data for persistent ring buffer
ring-buffer: Use kaslr address instead of text delta
ring-buffer: Fix bytes_dropped calculation issue
|
|
Variable bmeta is not effectively used, so delete it.
kernel/trace/ring_buffer.c:1952:27: warning: variable ‘bmeta’ set but not used.
Link: https://lore.kernel.org/20250317015524.3902-1-jiapeng.chong@linux.alibaba.com
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=19524
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
There's no reason to save the KASLR offset for the ring buffer itself.
That is used by the tracer. Now that the tracer has a way to save data in
the persistent memory of the ring buffer, have the tracing infrastructure
take care of the saving of the KASLR offset.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20250305164608.792722274@goodmis.org
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Now that there's one meta data at the start of the persistent memory used by
the ring buffer, allow the caller to request some memory right after that
data that it can use as its own persistent memory.
Also fix some white space issues with ring_buffer_alloc().
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20250305164608.619631731@goodmis.org
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Instead of just having a meta data at the first page of each sub buffer
that has duplicate data, add a new meta page to the entire block of memory
that holds the duplicate data and remove it from the sub buffer meta data.
This will open up the extra memory in this first page to be used by the
tracer for its own persistent data.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20250305164608.446351513@goodmis.org
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Instead of saving off the text and data pointers and using them to compare
with the current boot's text and data pointers, just save off the KASLR
offset. Then that can be used to figure out how to read the previous boots
buffer.
The last_boot_info will now show this offset, but only if it is for a
previous boot:
~# cat instances/boot_mapped/last_boot_info
39000000 [kernel]
~# echo function > instances/boot_mapped/current_tracer
~# cat instances/boot_mapped/last_boot_info
# Current
If the KASLR offset saved is for the current boot, the last_boot_info will
show the value of "current".
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20250305164608.274956504@goodmis.org
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The calculation of bytes-dropped and bytes_dropped_nested is reversed.
Although it does not affect the final calculation of total_dropped,
it should still be modified.
Link: https://lore.kernel.org/20250223070106.6781-1-yangfeng59949@163.com
Fixes: 6c43e554a2a5 ("ring-buffer: Add ring buffer startup selftest")
Signed-off-by: Feng Yang <yangfeng@kylinos.cn>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Fix typo in comment about header page pointer in function
rb_get_reader_page.
Link: https://lore.kernel.org/20250118012352.3430519-1-zhouzhouyi@gmail.com
Signed-off-by: Zhouyi Zhou <zhouzhouyi@gmail.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The pages_touched field represents the number of subbuffers in the ring
buffer that have content that can be read. This is used in accounting of
"dirty_pages" and "buffer_percent" to allow the user to wait for the
buffer to be filled to a certain amount before it reads the buffer in
blocking mode.
The persistent buffer never updated this value so it was set to zero, and
this accounting would take it as it had no content. This would cause user
space to wait for content even though there's enough content in the ring
buffer that satisfies the buffer_percent.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20250214123512.0631436e@gandalf.local.home
Fixes: 5f3b6e839f3ce ("ring-buffer: Validate boot range memory events")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The meta data for a mapped ring buffer contains an array of indexes of all
the subbuffers. The first entry is the reader page, and the rest of the
entries lay out the order of the subbuffers in how the ring buffer link
list is to be created.
The validator currently makes sure that all the entries are within the
range of 0 and nr_subbufs. But it does not check if there are any
duplicates.
While working on the ring buffer, I corrupted this array, where I added
duplicates. The validator did not catch it and created the ring buffer
link list on top of it. Luckily, the corruption was only that the reader
page was also in the writer path and only presented corrupted data but did
not crash the kernel. But if there were duplicates in the writer side,
then it could corrupt the ring buffer link list and cause a crash.
Create a bitmask array with the size of the number of subbuffers. Then
clear it. When walking through the subbuf array checking to see if the
entries are within the range, test if its bit is already set in the
subbuf_mask. If it is, then there is duplicates and fail the validation.
If not, set the corresponding bit and continue.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20250214102820.7509ddea@gandalf.local.home
Fixes: c76883f18e59b ("ring-buffer: Add test if range of boot buffer is valid")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Memory mapping the tracing ring buffer will disable resizing the buffer.
But if there's an error in the memory mapping like an invalid parameter,
the function exits out without re-enabling the resizing of the ring
buffer, preventing the ring buffer from being resized after that.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20250213131957.530ec3c5@gandalf.local.home
Fixes: 117c39200d9d7 ("ring-buffer: Introducing ring-buffer mapping functions")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Some architectures can not safely do atomic64 operations in NMI context.
Since the ring buffer relies on atomic64 operations to do its time
keeping, if an event is requested in NMI context, reject it for these
architectures.
Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andreas Larsson <andreas@gaisler.com>
Link: https://lore.kernel.org/20250120235721.407068250@goodmis.org
Fixes: c84897c0ff592 ("ring-buffer: Remove 32bit timestamp logic")
Closes: https://lore.kernel.org/all/86fb4f86-a0e4-45a2-a2df-3154acc4f086@gaisler.com/
Reported-by: Ludwig Rydberg <ludwig.rydberg@gaisler.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
In the loop of __rb_map_vma(), the 's' variable is calculated from the
same logic that nr_pages is and they both come from nr_subbufs. But the
relationship is not obvious and there's a WARN_ON_ONCE() around the 's'
variable to make sure it never becomes equal to nr_subbufs within the
loop. If that happens, then the code is buggy and needs to be fixed.
The 'page' variable is calculated from cpu_buffer->subbuf_ids[s] which is
an array of 'nr_subbufs' entries. If the code becomes buggy and 's'
becomes equal to or greater than 'nr_subbufs' then this will be an out of
bounds hit before the WARN_ON() is triggered and the code exiting safely.
Make the 'page' initialization consistent with the code logic and assign
it after the out of bounds check.
Link: https://lore.kernel.org/20250110162612.13983-1-aha310510@gmail.com
Signed-off-by: Jeongjun Park <aha310510@gmail.com>
[ sdr: rewrote change log ]
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Currently there are two ways of identifying an empty ring-buffer. One
relying on the current status of the commit / reader page
(rb_per_cpu_empty()) and the other on the write and read counters
(rb_num_of_entries() used in rb_get_reader_page()).
with rb_num_of_entries(). This intends to ease later
introduction of ring-buffer writers which are out of the kernel control
and with whom, the only information available is through the meta-page
counters.
Link: https://lore.kernel.org/20250108114536.627715-2-vdonnefort@google.com
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
An overflow occurred when performing the following calculation:
nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff;
Add a check before the calculation to avoid this problem.
syzbot reported this as a slab-out-of-bounds in __rb_map_vma:
BUG: KASAN: slab-out-of-bounds in __rb_map_vma+0x9ab/0xae0 kernel/trace/ring_buffer.c:7058
Read of size 8 at addr ffff8880767dd2b8 by task syz-executor187/5836
CPU: 0 UID: 0 PID: 5836 Comm: syz-executor187 Not tainted 6.13.0-rc2-syzkaller-00159-gf932fb9b4074 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/25/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xc3/0x620 mm/kasan/report.c:489
kasan_report+0xd9/0x110 mm/kasan/report.c:602
__rb_map_vma+0x9ab/0xae0 kernel/trace/ring_buffer.c:7058
ring_buffer_map+0x56e/0x9b0 kernel/trace/ring_buffer.c:7138
tracing_buffers_mmap+0xa6/0x120 kernel/trace/trace.c:8482
call_mmap include/linux/fs.h:2183 [inline]
mmap_file mm/internal.h:124 [inline]
__mmap_new_file_vma mm/vma.c:2291 [inline]
__mmap_new_vma mm/vma.c:2355 [inline]
__mmap_region+0x1786/0x2670 mm/vma.c:2456
mmap_region+0x127/0x320 mm/mmap.c:1348
do_mmap+0xc00/0xfc0 mm/mmap.c:496
vm_mmap_pgoff+0x1ba/0x360 mm/util.c:580
ksys_mmap_pgoff+0x32c/0x5c0 mm/mmap.c:542
__do_sys_mmap arch/x86/kernel/sys_x86_64.c:89 [inline]
__se_sys_mmap arch/x86/kernel/sys_x86_64.c:82 [inline]
__x64_sys_mmap+0x125/0x190 arch/x86/kernel/sys_x86_64.c:82
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The reproducer for this bug is:
------------------------8<-------------------------
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <asm/types.h>
#include <sys/mman.h>
int main(int argc, char **argv)
{
int page_size = getpagesize();
int fd;
void *meta;
system("echo 1 > /sys/kernel/tracing/buffer_size_kb");
fd = open("/sys/kernel/tracing/per_cpu/cpu0/trace_pipe_raw", O_RDONLY);
meta = mmap(NULL, page_size, PROT_READ, MAP_SHARED, fd, page_size * 5);
}
------------------------>8-------------------------
Cc: stable@vger.kernel.org
Fixes: 117c39200d9d7 ("ring-buffer: Introducing ring-buffer mapping functions")
Link: https://lore.kernel.org/tencent_06924B6674ED771167C23CC336C097223609@qq.com
Reported-by: syzbot+345e4443a21200874b18@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=345e4443a21200874b18
Signed-off-by: Edward Adam Davis <eadavis@qq.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull trace ring-buffer updates from Steven Rostedt:
- Limit time interrupts are disabled in rb_check_pages()
rb_check_pages() is called after the ring buffer size is updated to
make sure that the ring buffer has not been corrupted. Commit
c2274b908db0 ("ring-buffer: Fix a race between readers and resize
checks") fixed a race with the check pages and simultaneous resizes
to the ring buffer by adding a raw_spin_lock_irqsave() around the
check operation. Although this was a simple fix, it would hold
interrupts disabled for non determinative amount of time. This could
harm PREEMPT_RT operations.
Instead, modify the logic by adding a counter when the buffer is
modified and to release the raw_spin_lock() at each iteration. It
checks the counter under the lock to see if a modification happened
during the loop, and if it did, it would restart the loop up to 3
times. After 3 times, it will simply exit the check, as it is
unlikely that would ever happen as buffer resizes are rare
occurrences.
- Replace some open coded str_low_high() with the helper
- Fix some documentation/comments
* tag 'trace-ring-buffer-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
ring-buffer: Correct a grammatical error in a comment
ring-buffer: Use str_low_high() helper in ring_buffer_producer()
ring-buffer: Reorganize kerneldoc parameter names
ring-buffer: Limit time with disabled interrupts in rb_check_pages()
|
|
The word "trace" begins with a consonant sound,
so "a" should be used instead of "an".
Link: https://lore.kernel.org/20241107095327.6390-1-liujing@cmss.chinamobile.com
Signed-off-by: liujing <liujing@cmss.chinamobile.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
A crash happened when testing cpu hotplug with respect to the memory
mapped ring buffers. It was assumed that the hot plug code was adding a
per CPU buffer that was already created that caused the crash. The real
problem was due to ref counting and was fixed by commit 2cf9733891a4
("ring-buffer: Fix refcount setting of boot mapped buffers").
When a per CPU buffer is created, it will not be created again even with
CPU hotplug, so the fix to not use CPU hotplug was a red herring. In fact,
it caused only the boot CPU buffer to be created, leaving the other CPU
per CPU buffers disabled.
Revert that change as it was not the culprit of the fix it was intended to
be.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241113230839.6c03640f@gandalf.local.home
Fixes: 912da2c384d5 ("ring-buffer: Do not have boot mapped buffers hook to CPU hotplug")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Reorganize kerneldoc parameter names to match the parameter
order in the function header.
Problems identified using Coccinelle.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20240930112121.95324-22-Julia.Lawall@inria.fr
Signed-off-by: Julia Lawall <Julia.Lawall@inria.fr>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The function rb_check_pages() validates the integrity of a specified
per-CPU tracing ring buffer. It does so by traversing the underlying
linked list and checking its next and prev links.
To guarantee that the list isn't modified during the check, a caller
typically needs to take cpu_buffer->reader_lock. This prevents the check
from running concurrently, for example, with a potential reader which
can make the list temporarily inconsistent when swapping its old reader
page into the buffer.
A problem with this approach is that the time when interrupts are
disabled is non-deterministic, dependent on the ring buffer size. This
particularly affects PREEMPT_RT because the reader_lock is a raw
spinlock which doesn't become sleepable on PREEMPT_RT kernels.
Modify the check so it still attempts to traverse the entire list, but
gives up the reader_lock between checking individual pages. Introduce
for this purpose a new variable ring_buffer_per_cpu.cnt which is bumped
any time the list is modified. The value is used by rb_check_pages() to
detect such a change and restart the check.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241015112810.27203-1-petr.pavlu@suse.com
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The function ring_buffer_subbuf_order_set() updates each
ring_buffer_per_cpu and installs new sub buffers that match the requested
page order. This operation may be invoked concurrently with readers that
rely on some of the modified data, such as the head bit (RB_PAGE_HEAD), or
the ring_buffer_per_cpu.pages and reader_page pointers. However, no
exclusive access is acquired by ring_buffer_subbuf_order_set(). Modifying
the mentioned data while a reader also operates on them can then result in
incorrect memory access and various crashes.
Fix the problem by taking the reader_lock when updating a specific
ring_buffer_per_cpu in ring_buffer_subbuf_order_set().
Link: https://lore.kernel.org/linux-trace-kernel/20240715145141.5528-1-petr.pavlu@suse.com/
Link: https://lore.kernel.org/linux-trace-kernel/20241010195849.2f77cc3f@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20241011112850.17212b25@gandalf.local.home/
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241015112440.26987-1-petr.pavlu@suse.com
Fixes: 8e7b58c27b3c ("ring-buffer: Just update the subbuffers when changing their allocation order")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The boot mapped ring buffer has its buffer mapped at a fixed location
found at boot up. It is not dynamic. It cannot grow or be expanded when
new CPUs come online.
Do not hook fixed memory mapped ring buffers to the CPU hotplug callback,
otherwise it can cause a crash when it tries to add the buffer to the
memory that is already fully occupied.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241008143242.25e20801@gandalf.local.home
Fixes: be68d63a139bd ("ring-buffer: Add ring_buffer_alloc_range()")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Previously, the mapped ring-buffer layout caused misalignment between
the meta-page and sub-buffers when the sub-buffer size was not a
multiple of PAGE_SIZE. This prevented hardware with larger TLB entries
from utilizing them effectively.
Add a padding with the zero-page between the meta-page and sub-buffers.
Also update the ring-buffer map_test to verify that padding.
Link: https://lore.kernel.org/20240628104611.1443542-1-vdonnefort@google.com
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Add a magic number as well as save the struct size of the ring_buffer_meta
structure in the meta data to also use as validation. Updating the magic
number could be used to force a invalidation between kernel versions, and
saving the structure size is also a good method to make sure the content
is what is expected.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20240815115032.0c197b32@rorschach.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The text and data address is saved in the meta data so that it can be used
to know the delta of the text and data addresses of the last boot compared
to the text and data addresses of the current boot. The delta is used to
convert function pointer entries in the ring buffer to something that can
be used by kallsyms (note this only works for built-in functions).
But the saved addresses get reset on boot up. If the buffer is not used
and there's another reboot, then the saved text and data addresses will be
of the last boot and not that of the boot that created the content in the
ring buffer.
To get an idea of the issue:
# trace-cmd start -B boot_mapped -p function
# reboot
# trace-cmd show -B boot_mapped | tail
<...>-1 [000] d..1. 461.983243: native_apic_msr_write <-native_kick_ap
<...>-1 [000] d..1. 461.983244: __pfx_native_apic_msr_eoi <-native_kick_ap
<...>-1 [000] d..1. 461.983244: reserve_irq_vector_locked <-native_kick_ap
<...>-1 [000] d..1. 461.983262: branch_emulate_op <-native_kick_ap
<...>-1 [000] d..1. 461.983262: __ia32_sys_ia32_pread64 <-native_kick_ap
<...>-1 [000] d..1. 461.983263: native_kick_ap <-__smpboot_create_thread
<...>-1 [000] d..1. 461.983263: store_cache_disable <-native_kick_ap
<...>-1 [000] d..1. 461.983279: acpi_power_off_prepare <-native_kick_ap
<...>-1 [000] d..1. 461.983280: __pfx_acpi_ns_delete_node <-acpi_suspend_enter
<...>-1 [000] d..1. 461.983280: __pfx_acpi_os_release_lock <-acpi_suspend_enter
# reboot
# trace-cmd show -B boot_mapped |tail
<...>-1 [000] d..1. 461.983243: 0xffffffffa9669220 <-0xffffffffa965f3db
<...>-1 [000] d..1. 461.983244: 0xffffffffa96690f0 <-0xffffffffa965f3db
<...>-1 [000] d..1. 461.983244: 0xffffffffa9663fa0 <-0xffffffffa965f3db
<...>-1 [000] d..1. 461.983262: 0xffffffffa9672e80 <-0xffffffffa965f3e0
<...>-1 [000] d..1. 461.983262: 0xffffffffa962b940 <-0xffffffffa965f3ec
<...>-1 [000] d..1. 461.983263: 0xffffffffa965f540 <-0xffffffffa96e1362
<...>-1 [000] d..1. 461.983263: 0xffffffffa963c940 <-0xffffffffa965f55b
<...>-1 [000] d..1. 461.983279: 0xffffffffa9ee30c0 <-0xffffffffa965f59b
<...>-1 [000] d..1. 461.983280: 0xffffffffa9f16c10 <-0xffffffffa9ee3157
<...>-1 [000] d..1. 461.983280: 0xffffffffa9ee02e0 <-0xffffffffa9ee3157
By not updating the saved text and data addresses in the meta data at
every boot up and only updating them when the buffer is reset, it
allows multiple boots to see the same data.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Link: https://lore.kernel.org/20240815113629.0dc90af8@rorschach.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The "reserve_mem" kernel command line parameter has been pulled into
v6.11. Merge the latest -rc3 to allow the persistent ring buffer memory to
be able to be mapped at the address specified by the "reserve_mem" command
line parameter.
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Because ring_buffer_nr_pages() is not an inline function and user accesses
buffer->buffers[cpu]->nr_pages directly, the function ring_buffer_nr_pages
is removed.
Signed-off-by: Jianhui Zhou <912460177@qq.com>
Link: https://lore.kernel.org/tencent_F4A7E9AB337F44E0F4B858D07D19EF460708@qq.com
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Use the vma_pages() helper function and fix the following
Coccinelle/coccicheck warning reported by vma_pages.cocci:
WARNING: Consider using vma_pages helper on vma
Rename the local variable vma_pages accordingly.
Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com>
Link: https://lore.kernel.org/20240709215657.322071-2-thorsten.blum@toblux.com
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
If an instance is mapped to memory on boot up, create a new file called
"last_boot_info" that will hold information that can be used to properly
parse the raw data in the ring buffer.
It will export the delta of the addresses for text and data from what it
was from the last boot. It does not expose actually addresses (unless you
knew what the actual address was from the last boot).
The output will look like:
# cat last_boot_info
text delta: -268435456
data delta: -268435456
The text and data are kept separate in case they are ever made different.
Link: https://lkml.kernel.org/r/20240612232026.658680738@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
When a ring buffer is mapped to a specific address, save the address of a
text function and some data. This will be used to determine the delta
between the last boot and the current boot for pointers to functions as
well as to data.
Link: https://lkml.kernel.org/r/20240612232026.496176678@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Make sure all the events in each of the sub-buffers that were mapped in a
memory region are valid. This moves the code that walks the buffers for
time-stamp validation out of the CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
ifdef block and is used to validate the content. Only the ring buffer
event meta data and time stamps are checked and not the data load.
This also has a second purpose. The buffer_page structure that points to
the data sub-buffers has accounting that keeps track of the number of
events that are on the sub-buffer. This updates that counter as well. That
counter is used in reading the buffer and knowing if the ring buffer is
empty or not.
Link: https://lkml.kernel.org/r/20240612232026.172503570@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Add a test against the ring buffer memory range to see if it has valid
data. The ring_buffer_meta structure is given a new field called
"first_buffer" which holds the address of the first sub-buffer. This is
used to both determine if the other fields are valid as well as finding
the offset between the old addresses of the sub-buffer from the previous
boot to the new addresses of the current boot.
Since the values for nr_subbufs and subbuf_size is to be the same, check
if the values in the meta page match the values calculated.
Take the range of the first_buffer and the total size of all the buffers
and make sure the saved head_buffer and commit_buffer fall in the range.
Iterate through all the sub-buffers to make sure that the values in the
sub-buffer "commit" field (the field that holds the amount of data on the
sub-buffer) is within the end of the sub-buffer. Also check the index
array to make sure that all the indexes are within nr_subbufs.
Link: https://lkml.kernel.org/r/20240612232026.013843655@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Add a buffer_meta per-cpu file for the trace instance that is mapped to
boot memory. This shows the current meta-data and can be used by user
space tools to record off the current mappings to help reconstruct the
ring buffer after a reboot.
It does not expose any virtual addresses, just indexes into the sub-buffer
pages.
Link: https://lkml.kernel.org/r/20240612232025.854471446@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Populate the ring_buffer_meta array. It holds the pointer to the
head_buffer (next to read), the commit_buffer (next to write) the size of
the sub-buffers, number of sub-buffers and an array that keeps track of
the order of the sub-buffers.
This information will be stored in the persistent memory to help on reboot
to reconstruct the ring buffer.
Link: https://lkml.kernel.org/r/20240612232025.530733577@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
In preparation to allowing the trace ring buffer to be allocated in a
range of memory that is persistent across reboots, add
ring_buffer_alloc_range(). It takes a contiguous range of memory and will
split it up evenly for the per CPU ring buffers.
If there's not enough memory to handle all CPUs with the minimum size, it
will fail to allocate the ring buffer.
Link: https://lkml.kernel.org/r/20240612232025.363998725@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
In preparation for having the ring buffer mapped to a dedicated location,
which will have the same restrictions as user space memory mapped buffers,
allow it to use the "mapped" field of the ring_buffer_per_cpu structure
without having the user space meta page mapping.
When this starts using the mapped field, it will need to handle adding a
user space mapping (and removing it) from a ring buffer that is using a
dedicated memory range.
Link: https://lkml.kernel.org/r/20240612232025.190908567@goodmis.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vineeth Pillai <vineeth@bitbyteword.org>
Cc: Youssef Esmat <youssefesmat@google.com>
Cc: Beau Belgrave <beaub@linux.microsoft.com>
Cc: Alexander Graf <graf@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Ross Zwisler <zwisler@google.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The reader code in rb_get_reader_page() swaps a new reader page into the
ring buffer by doing cmpxchg on old->list.prev->next to point it to the
new page. Following that, if the operation is successful,
old->list.next->prev gets updated too. This means the underlying
doubly-linked list is temporarily inconsistent, page->prev->next or
page->next->prev might not be equal back to page for some page in the
ring buffer.
The resize operation in ring_buffer_resize() can be invoked in parallel.
It calls rb_check_pages() which can detect the described inconsistency
and stop further tracing:
[ 190.271762] ------------[ cut here ]------------
[ 190.271771] WARNING: CPU: 1 PID: 6186 at kernel/trace/ring_buffer.c:1467 rb_check_pages.isra.0+0x6a/0xa0
[ 190.271789] Modules linked in: [...]
[ 190.271991] Unloaded tainted modules: intel_uncore_frequency(E):1 skx_edac(E):1
[ 190.272002] CPU: 1 PID: 6186 Comm: cmd.sh Kdump: loaded Tainted: G E 6.9.0-rc6-default #5 158d3e1e6d0b091c34c3b96bfd99a1c58306d79f
[ 190.272011] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552c-rebuilt.opensuse.org 04/01/2014
[ 190.272015] RIP: 0010:rb_check_pages.isra.0+0x6a/0xa0
[ 190.272023] Code: [...]
[ 190.272028] RSP: 0018:ffff9c37463abb70 EFLAGS: 00010206
[ 190.272034] RAX: ffff8eba04b6cb80 RBX: 0000000000000007 RCX: ffff8eba01f13d80
[ 190.272038] RDX: ffff8eba01f130c0 RSI: ffff8eba04b6cd00 RDI: ffff8eba0004c700
[ 190.272042] RBP: ffff8eba0004c700 R08: 0000000000010002 R09: 0000000000000000
[ 190.272045] R10: 00000000ffff7f52 R11: ffff8eba7f600000 R12: ffff8eba0004c720
[ 190.272049] R13: ffff8eba00223a00 R14: 0000000000000008 R15: ffff8eba067a8000
[ 190.272053] FS: 00007f1bd64752c0(0000) GS:ffff8eba7f680000(0000) knlGS:0000000000000000
[ 190.272057] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 190.272061] CR2: 00007f1bd6662590 CR3: 000000010291e001 CR4: 0000000000370ef0
[ 190.272070] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 190.272073] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 190.272077] Call Trace:
[ 190.272098] <TASK>
[ 190.272189] ring_buffer_resize+0x2ab/0x460
[ 190.272199] __tracing_resize_ring_buffer.part.0+0x23/0xa0
[ 190.272206] tracing_resize_ring_buffer+0x65/0x90
[ 190.272216] tracing_entries_write+0x74/0xc0
[ 190.272225] vfs_write+0xf5/0x420
[ 190.272248] ksys_write+0x67/0xe0
[ 190.272256] do_syscall_64+0x82/0x170
[ 190.272363] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ 190.272373] RIP: 0033:0x7f1bd657d263
[ 190.272381] Code: [...]
[ 190.272385] RSP: 002b:00007ffe72b643f8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 190.272391] RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007f1bd657d263
[ 190.272395] RDX: 0000000000000002 RSI: 0000555a6eb538e0 RDI: 0000000000000001
[ 190.272398] RBP: 0000555a6eb538e0 R08: 000000000000000a R09: 0000000000000000
[ 190.272401] R10: 0000555a6eb55190 R11: 0000000000000246 R12: 00007f1bd6662500
[ 190.272404] R13: 0000000000000002 R14: 00007f1bd6667c00 R15: 0000000000000002
[ 190.272412] </TASK>
[ 190.272414] ---[ end trace 0000000000000000 ]---
Note that ring_buffer_resize() calls rb_check_pages() only if the parent
trace_buffer has recording disabled. Recent commit d78ab792705c
("tracing: Stop current tracer when resizing buffer") causes that it is
now always the case which makes it more likely to experience this issue.
The window to hit this race is nonetheless very small. To help
reproducing it, one can add a delay loop in rb_get_reader_page():
ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
if (!ret)
goto spin;
for (unsigned i = 0; i < 1U << 26; i++) /* inserted delay loop */
__asm__ __volatile__ ("" : : : "memory");
rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
.. and then run the following commands on the target system:
echo 1 > /sys/kernel/tracing/events/sched/sched_switch/enable
while true; do
echo 16 > /sys/kernel/tracing/buffer_size_kb; sleep 0.1
echo 8 > /sys/kernel/tracing/buffer_size_kb; sleep 0.1
done &
while true; do
for i in /sys/kernel/tracing/per_cpu/*; do
timeout 0.1 cat $i/trace_pipe; sleep 0.2
done
done
To fix the problem, make sure ring_buffer_resize() doesn't invoke
rb_check_pages() concurrently with a reader operating on the same
ring_buffer_per_cpu by taking its cpu_buffer->reader_lock.
Link: https://lore.kernel.org/linux-trace-kernel/20240517134008.24529-3-petr.pavlu@suse.com
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 659f451ff213 ("ring-buffer: Add integrity check at end of iter read")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
[ Fixed whitespace ]
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Adjust the following code documentation:
* Kernel-doc comments for ring_buffer_read_prepare() and
ring_buffer_read_finish() mention that recording to the ring buffer is
disabled when the read is active. Remove mention of this restriction
because it was already lifted in commit 1039221cc278 ("ring-buffer: Do
not disable recording when there is an iterator").
* Function ring_buffer_read_finish() performs a self-check of the
ring-buffer by locking cpu_buffer->reader_lock and then calling
rb_check_pages(). The preceding comment explains that the lock is
needed because rb_check_pages() clears the HEAD flag required by
readers which might be running in parallel. Remove this explanation
because commit 8843e06f67b1 ("ring-buffer: Handle race between
rb_move_tail and rb_check_pages") simplified the function so it no
longer resets the mentioned flag. Nonetheless, the lock is still
needed because a reader swapping a page into the ring buffer can make
the underlying doubly-linked list temporarily inconsistent.
This is a non-functional change.
Link: https://lore.kernel.org/linux-trace-kernel/20240517134008.24529-2-petr.pavlu@suse.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The sub-buffer pages are held in an unsigned long array, and when it is
passed to virt_to_page() a cast is needed.
Link: https://lore.kernel.org/all/20240515124808.06279d04@canb.auug.org.au/
Link: https://lore.kernel.org/linux-trace-kernel/20240515010558.4abaefdd@rorschach.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 117c39200d9d ("ring-buffer: Introducing ring-buffer mapping functions")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
While testing libtracefs on the mmapped ring buffer, the test that checks
if missed events are accounted for failed when using the mapped buffer.
This is because the mapped page does not update the missed events that
were dropped because the writer filled up the ring buffer before the
reader could catch it.
Add the missed events to the reader page/sub-buffer when the IOCTL is done
and a new reader page is acquired.
Note that all accesses to the reader_page via rb_page_commit() had to be
switched to rb_page_size(), and rb_page_size() which was just a copy of
rb_page_commit() but now it masks out the RB_MISSED bits. This is needed
as the mapped reader page is still active in the ring buffer code and
where it reads the commit field of the bpage for the size, it now must
mask it otherwise the missed bits that are now set will corrupt the size
returned.
Link: https://lore.kernel.org/linux-trace-kernel/20240312175405.12fb6726@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
In preparation for allowing the user-space to map a ring-buffer, add
a set of mapping functions:
ring_buffer_{map,unmap}()
And controls on the ring-buffer:
ring_buffer_map_get_reader() /* swap reader and head */
Mapping the ring-buffer also involves:
A unique ID for each subbuf of the ring-buffer, currently they are
only identified through their in-kernel VA.
A meta-page, where are stored ring-buffer statistics and a
description for the current reader
The linear mapping exposes the meta-page, and each subbuf of the
ring-buffer, ordered following their unique ID, assigned during the
first mapping.
Once mapped, no subbuf can get in or out of the ring-buffer: the buffer
size will remain unmodified and the splice enabling functions will in
reality simply memcpy the data instead of swapping subbufs.
Link: https://lore.kernel.org/linux-trace-kernel/20240510140435.3550353-3-vdonnefort@google.com
CC: <linux-mm@kvack.org>
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
In preparation for the ring-buffer memory mapping, allocate compound
pages for the ring-buffer sub-buffers to enable us to map them to
user-space with vm_insert_pages().
Link: https://lore.kernel.org/linux-trace-kernel/20240510140435.3550353-2-vdonnefort@google.com
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The "buffer_percent" logic that is used by the ring buffer splice code to
only wake up the tasks when there's no data after the buffer is filled to
the percentage of the "buffer_percent" file is dependent on three
variables that determine the amount of data that is in the ring buffer:
1) pages_read - incremented whenever a new sub-buffer is consumed
2) pages_lost - incremented every time a writer overwrites a sub-buffer
3) pages_touched - incremented when a write goes to a new sub-buffer
The percentage is the calculation of:
(pages_touched - (pages_lost + pages_read)) / nr_pages
Basically, the amount of data is the total number of sub-bufs that have been
touched, minus the number of sub-bufs lost and sub-bufs consumed. This is
divided by the total count to give the buffer percentage. When the
percentage is greater than the value in the "buffer_percent" file, it
wakes up splice readers waiting for that amount.
It was observed that over time, the amount read from the splice was
constantly decreasing the longer the trace was running. That is, if one
asked for 60%, it would read over 60% when it first starts tracing, but
then it would be woken up at under 60% and would slowly decrease the
amount of data read after being woken up, where the amount becomes much
less than the buffer percent.
This was due to an accounting of the pages_touched incrementation. This
value is incremented whenever a writer transfers to a new sub-buffer. But
the place where it was incremented was incorrect. If a writer overflowed
the current sub-buffer it would go to the next one. If it gets preempted
by an interrupt at that time, and the interrupt performs a trace, it too
will end up going to the next sub-buffer. But only one should increment
the counter. Unfortunately, that was not the case.
Change the cmpxchg() that does the real switch of the tail-page into a
try_cmpxchg(), and on success, perform the increment of pages_touched. This
will only increment the counter once for when the writer moves to a new
sub-buffer, and not when there's a race and is incremented for when a
writer and its preempting writer both move to the same new sub-buffer.
Link: https://lore.kernel.org/linux-trace-kernel/20240409151309.0d0e5056@gandalf.local.home
Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 2c2b0a78b3739 ("ring-buffer: Add percentage of ring buffer full to wake up reader")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
The default behavior of ring_buffer_wait() when passed a NULL "cond"
parameter is to exit the function the first time it is woken up. The
current implementation uses a counter that starts at zero and when it is
greater than one it exits the wait_event_interruptible().
But this relies on the internal working of wait_event_interruptible() as
that code basically has:
if (cond)
return;
prepare_to_wait();
if (!cond)
schedule();
finish_wait();
That is, cond is called twice before it sleeps. The default cond of
ring_buffer_wait() needs to account for that and wait for its counter to
increment twice before exiting.
Instead, use the seq/atomic_inc logic that is used by the tracing code
that calls this function. Add an atomic_t seq to rb_irq_work and when cond
is NULL, have the default callback take a descriptor as its data that
holds the rbwork and the value of the seq when it started.
The wakeups will now increment the rbwork->seq and the cond callback will
simply check if that number is different, and no longer have to rely on
the implementation of wait_event_interruptible().
Link: https://lore.kernel.org/linux-trace-kernel/20240315063115.6cb5d205@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 7af9ded0c2ca ("ring-buffer: Use wait_event_interruptible() in ring_buffer_wait()")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
environment
In function ring_buffer_iter_empty(), cpu_buffer->commit_page is read
while other threads may change it. It may cause the time_stamp that read
in the next line come from a different page. Use READ_ONCE() to avoid
having to reason about compiler optimizations now and in future.
Link: https://lore.kernel.org/linux-trace-kernel/tencent_DFF7D3561A0686B5E8FC079150A02505180A@qq.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: linke li <lilinke99@qq.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
In preparation for the ring-buffer memory mapping where each subbuf will
be accessible to user-space, zero all the page allocations.
Link: https://lore.kernel.org/linux-trace-kernel/20240220202310.2489614-2-vdonnefort@google.com
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing updates from Steven Rostedt:
- Do not update shortest_full in rb_watermark_hit() if the watermark is
hit. The shortest_full field was being updated regardless if the task
was going to wait or not. If the watermark is hit, then the task is
not going to wait, so do not update the shortest_full field (used by
the waker).
- Update shortest_full field before setting the full_waiters_pending
flag
In the poll logic, the full_waiters_pending flag was being set before
the shortest_full field was set. If the full_waiters_pending flag is
set, writers will check the shortest_full field which has the least
percentage of data that the ring buffer needs to be filled before
waking up. The writer will check shortest_full if
full_waiters_pending is set, and if the ring buffer percentage filled
is greater than shortest full, then it will call the irq_work to wake
up the waiters.
The problem was that the poll logic set the full_waiters_pending flag
before updating shortest_full, which when zero will always trigger
the writer to call the irq_work to wake up the waiters. The irq_work
will reset the shortest_full field back to zero as the woken waiters
is suppose to reset it.
- There's some optimized logic in the rb_watermark_hit() that is used
in ring_buffer_wait(). Use that helper function in the poll logic as
well.
- Restructure ring_buffer_wait() to use wait_event_interruptible()
The logic to wake up pending readers when the file descriptor is
closed is racy. Restructure ring_buffer_wait() to allow callers to
pass in conditions besides the ring buffer having enough data in it
by using wait_event_interruptible().
- Update the tracing_wait_on_pipe() to call ring_buffer_wait() with its
own conditions to exit the wait loop.
* tag 'trace-ring-buffer-v6.8-rc7-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing/ring-buffer: Fix wait_on_pipe() race
ring-buffer: Use wait_event_interruptible() in ring_buffer_wait()
ring-buffer: Reuse rb_watermark_hit() for the poll logic
ring-buffer: Fix full_waiters_pending in poll
ring-buffer: Do not set shortest_full when full target is hit
|
|
When the trace_pipe_raw file is closed, there should be no new readers on
the file descriptor. This is mostly handled with the waking and wait_index
fields of the iterator. But there's still a slight race.
CPU 0 CPU 1
----- -----
wait_index++;
index = wait_index;
ring_buffer_wake_waiters();
wait_on_pipe()
ring_buffer_wait();
The ring_buffer_wait() will miss the wakeup from CPU 1. The problem is
that the ring_buffer_wait() needs the logic of:
prepare_to_wait();
if (!condition)
schedule();
Where the missing condition check is the iter->wait_index update.
Have the ring_buffer_wait() take a conditional callback function and a
data parameter that can be used within the wait_event_interruptible() of
the ring_buffer_wait() function.
In wait_on_pipe(), pass a condition function that will check if the
wait_index has been updated, if it has, it will return true to break out
of the wait_event_interruptible() loop.
Create a new field "closed" in the trace_iterator and set it in the
.flush() callback before calling ring_buffer_wake_waiters().
This will keep any new readers from waiting on a closed file descriptor.
Have the wait_on_pipe() condition callback also check the closed field.
Change the wait_index field of the trace_iterator to atomic_t. There's no
reason it needs to be 'long' and making it atomic and using
atomic_read_acquire() and atomic_fetch_inc_release() will provide the
necessary memory barriers.
Add a "woken" flag to tracing_buffers_splice_read() to exit the loop after
one more try to fetch data. That is, if it waited for data and something
woke it up, it should try to collect any new data and then exit back to
user space.
Link: https://lore.kernel.org/linux-trace-kernel/CAHk-=wgsNgewHFxZAJiAQznwPMqEtQmi1waeS2O1v6L4c_Um5A@mail.gmail.com/
Link: https://lore.kernel.org/linux-trace-kernel/20240312121703.557950713@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linke li <lilinke99@qq.com>
Cc: Rabin Vincent <rabin@rab.in>
Fixes: f3ddb74ad0790 ("tracing: Wake up ring buffer waiters on closing of the file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|