Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- The series "Enable strict percpu address space checks" from Uros
Bizjak uses x86 named address space qualifiers to provide
compile-time checking of percpu area accesses.
This has caused a small amount of fallout - two or three issues were
reported. In all cases the calling code was found to be incorrect.
- The series "Some cleanup for memcg" from Chen Ridong implements some
relatively monir cleanups for the memcontrol code.
- The series "mm: fixes for device-exclusive entries (hmm)" from David
Hildenbrand fixes a boatload of issues which David found then using
device-exclusive PTE entries when THP is enabled. More work is
needed, but this makes thins better - our own HMM selftests now
succeed.
- The series "mm: zswap: remove z3fold and zbud" from Yosry Ahmed
remove the z3fold and zbud implementations. They have been deprecated
for half a year and nobody has complained.
- The series "mm: further simplify VMA merge operation" from Lorenzo
Stoakes implements numerous simplifications in this area. No runtime
effects are anticipated.
- The series "mm/madvise: remove redundant mmap_lock operations from
process_madvise()" from SeongJae Park rationalizes the locking in the
madvise() implementation. Performance gains of 20-25% were observed
in one MADV_DONTNEED microbenchmark.
- The series "Tiny cleanup and improvements about SWAP code" from
Baoquan He contains a number of touchups to issues which Baoquan
noticed when working on the swap code.
- The series "mm: kmemleak: Usability improvements" from Catalin
Marinas implements a couple of improvements to the kmemleak
user-visible output.
- The series "mm/damon/paddr: fix large folios access and schemes
handling" from Usama Arif provides a couple of fixes for DAMON's
handling of large folios.
- The series "mm/damon/core: fix wrong and/or useless damos_walk()
behaviors" from SeongJae Park fixes a few issues with the accuracy of
kdamond's walking of DAMON regions.
- The series "expose mapping wrprotect, fix fb_defio use" from Lorenzo
Stoakes changes the interaction between framebuffer deferred-io and
core MM. No functional changes are anticipated - this is preparatory
work for the future removal of page structure fields.
- The series "mm/damon: add support for hugepage_size DAMOS filter"
from Usama Arif adds a DAMOS filter which permits the filtering by
huge page sizes.
- The series "mm: permit guard regions for file-backed/shmem mappings"
from Lorenzo Stoakes extends the guard region feature from its
present "anon mappings only" state. The feature now covers shmem and
file-backed mappings.
- The series "mm: batched unmap lazyfree large folios during
reclamation" from Barry Song cleans up and speeds up the unmapping
for pte-mapped large folios.
- The series "reimplement per-vma lock as a refcount" from Suren
Baghdasaryan puts the vm_lock back into the vma. Our reasons for
pulling it out were largely bogus and that change made the code more
messy. This patchset provides small (0-10%) improvements on one
microbenchmark.
- The series "Docs/mm/damon: misc DAMOS filters documentation fixes and
improves" from SeongJae Park does some maintenance work on the DAMON
docs.
- The series "hugetlb/CMA improvements for large systems" from Frank
van der Linden addresses a pile of issues which have been observed
when using CMA on large machines.
- The series "mm/damon: introduce DAMOS filter type for unmapped pages"
from SeongJae Park enables users of DMAON/DAMOS to filter my the
page's mapped/unmapped status.
- The series "zsmalloc/zram: there be preemption" from Sergey
Senozhatsky teaches zram to run its compression and decompression
operations preemptibly.
- The series "selftests/mm: Some cleanups from trying to run them" from
Brendan Jackman fixes a pile of unrelated issues which Brendan
encountered while runnimg our selftests.
- The series "fs/proc/task_mmu: add guard region bit to pagemap" from
Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to
determine whether a particular page is a guard page.
- The series "mm, swap: remove swap slot cache" from Kairui Song
removes the swap slot cache from the allocation path - it simply
wasn't being effective.
- The series "mm: cleanups for device-exclusive entries (hmm)" from
David Hildenbrand implements a number of unrelated cleanups in this
code.
- The series "mm: Rework generic PTDUMP configs" from Anshuman Khandual
implements a number of preparatoty cleanups to the GENERIC_PTDUMP
Kconfig logic.
- The series "mm/damon: auto-tune aggregation interval" from SeongJae
Park implements a feedback-driven automatic tuning feature for
DAMON's aggregation interval tuning.
- The series "Fix lazy mmu mode" from Ryan Roberts fixes some issues in
powerpc, sparc and x86 lazy MMU implementations. Ryan did this in
preparation for implementing lazy mmu mode for arm64 to optimize
vmalloc.
- The series "mm/page_alloc: Some clarifications for migratetype
fallback" from Brendan Jackman reworks some commentary to make the
code easier to follow.
- The series "page_counter cleanup and size reduction" from Shakeel
Butt cleans up the page_counter code and fixes a size increase which
we accidentally added late last year.
- The series "Add a command line option that enables control of how
many threads should be used to allocate huge pages" from Thomas
Prescher does that. It allows the careful operator to significantly
reduce boot time by tuning the parallalization of huge page
initialization.
- The series "Fix calculations in trace_balance_dirty_pages() for cgwb"
from Tang Yizhou fixes the tracing output from the dirty page
balancing code.
- The series "mm/damon: make allow filters after reject filters useful
and intuitive" from SeongJae Park improves the handling of allow and
reject filters. Behaviour is made more consistent and the documention
is updated accordingly.
- The series "Switch zswap to object read/write APIs" from Yosry Ahmed
updates zswap to the new object read/write APIs and thus permits the
removal of some legacy code from zpool and zsmalloc.
- The series "Some trivial cleanups for shmem" from Baolin Wang does as
it claims.
- The series "fs/dax: Fix ZONE_DEVICE page reference counts" from
Alistair Popple regularizes the weird ZONE_DEVICE page refcount
handling in DAX, permittig the removal of a number of special-case
checks.
- The series "refactor mremap and fix bug" from Lorenzo Stoakes is a
preparatoty refactoring and cleanup of the mremap() code.
- The series "mm: MM owner tracking for large folios (!hugetlb) +
CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in
which we determine whether a large folio is known to be mapped
exclusively into a single MM.
- The series "mm/damon: add sysfs dirs for managing DAMOS filters based
on handling layers" from SeongJae Park adds a couple of new sysfs
directories to ease the management of DAMON/DAMOS filters.
- The series "arch, mm: reduce code duplication in mem_init()" from
Mike Rapoport consolidates many per-arch implementations of
mem_init() into code generic code, where that is practical.
- The series "mm/damon/sysfs: commit parameters online via
damon_call()" from SeongJae Park continues the cleaning up of sysfs
access to DAMON internal data.
- The series "mm: page_ext: Introduce new iteration API" from Luiz
Capitulino reworks the page_ext initialization to fix a boot-time
crash which was observed with an unusual combination of compile and
cmdline options.
- The series "Buddy allocator like (or non-uniform) folio split" from
Zi Yan reworks the code to split a folio into smaller folios. The
main benefit is lessened memory consumption: fewer post-split folios
are generated.
- The series "Minimize xa_node allocation during xarry split" from Zi
Yan reduces the number of xarray xa_nodes which are generated during
an xarray split.
- The series "drivers/base/memory: Two cleanups" from Gavin Shan
performs some maintenance work on the drivers/base/memory code.
- The series "Add tracepoints for lowmem reserves, watermarks and
totalreserve_pages" from Martin Liu adds some more tracepoints to the
page allocator code.
- The series "mm/madvise: cleanup requests validations and
classifications" from SeongJae Park cleans up some warts which
SeongJae observed during his earlier madvise work.
- The series "mm/hwpoison: Fix regressions in memory failure handling"
from Shuai Xue addresses two quite serious regressions which Shuai
has observed in the memory-failure implementation.
- The series "mm: reliable huge page allocator" from Johannes Weiner
makes huge page allocations cheaper and more reliable by reducing
fragmentation.
- The series "Minor memcg cleanups & prep for memdescs" from Matthew
Wilcox is preparatory work for the future implementation of memdescs.
- The series "track memory used by balloon drivers" from Nico Pache
introduces a way to track memory used by our various balloon drivers.
- The series "mm/damon: introduce DAMOS filter type for active pages"
from Nhat Pham permits users to filter for active/inactive pages,
separately for file and anon pages.
- The series "Adding Proactive Memory Reclaim Statistics" from Hao Jia
separates the proactive reclaim statistics from the direct reclaim
statistics.
- The series "mm/vmscan: don't try to reclaim hwpoison folio" from
Jinjiang Tu fixes our handling of hwpoisoned pages within the reclaim
code.
* tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (431 commits)
mm/page_alloc: remove unnecessary __maybe_unused in order_to_pindex()
x86/mm: restore early initialization of high_memory for 32-bits
mm/vmscan: don't try to reclaim hwpoison folio
mm/hwpoison: introduce folio_contain_hwpoisoned_page() helper
cgroup: docs: add pswpin and pswpout items in cgroup v2 doc
mm: vmscan: split proactive reclaim statistics from direct reclaim statistics
selftests/mm: speed up split_huge_page_test
selftests/mm: uffd-unit-tests support for hugepages > 2M
docs/mm/damon/design: document active DAMOS filter type
mm/damon: implement a new DAMOS filter type for active pages
fs/dax: don't disassociate zero page entries
MM documentation: add "Unaccepted" meminfo entry
selftests/mm: add commentary about 9pfs bugs
fork: use __vmalloc_node() for stack allocation
docs/mm: Physical Memory: Populate the "Zones" section
xen: balloon: update the NR_BALLOON_PAGES state
hv_balloon: update the NR_BALLOON_PAGES state
balloon_compaction: update the NR_BALLOON_PAGES state
meminfo: add a per node counter for balloon drivers
mm: remove references to folio in __memcg_kmem_uncharge_page()
...
|
|
Let's free up some space on 32bit in page[1] by moving the _pincount to
page[2].
For order-1 folios (never anon folios!) on 32bit, we will now also use the
GUP_PIN_COUNTING_BIAS approach. A fully-mapped order-1 folio requires 2
references. With GUP_PIN_COUNTING_BIAS being 1024, we'd detect such
folios as "maybe pinned" with 512 full mappings, instead of 1024 for
order-0. As anon folios are out of the picture (which are the most
relevant users of checking for pinnings on *mapped* pages) and we are
talking about 32bit, this is not expected to cause any trouble.
In __dump_page(), copy one additional folio page if we detect a folio with
an order > 1, so we can dump the pincount on order > 1 folios reliably.
Note that THPs on 32bit are not particularly common (and we don't care too
much about performance), but we want to keep it working reliably, because
likely we want to use large folios there as well in the future,
independent of PMD leaf support.
Once we dynamically allocate "struct folio", fortunately the 32bit
specifics will likely go away again; even small folios could then have a
pincount and folio_has_pincount() would essentially always return "true".
Link: https://lkml.kernel.org/r/20250303163014.1128035-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: tejun heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently fs dax pages are considered free when the refcount drops to one
and their refcounts are not increased when mapped via PTEs or decreased
when unmapped. This requires special logic in mm paths to detect that
these pages should not be properly refcounted, and to detect when the
refcount drops to one instead of zero.
On the other hand get_user_pages(), etc. will properly refcount fs dax
pages by taking a reference and dropping it when the page is unpinned.
Tracking this special behaviour requires extra PTE bits (eg. pte_devmap)
and introduces rules that are potentially confusing and specific to FS DAX
pages. To fix this, and to possibly allow removal of the special PTE bits
in future, convert the fs dax page refcounts to be zero based and instead
take a reference on the page each time it is mapped as is currently the
case for normal pages.
This may also allow a future clean-up to remove the pgmap refcounting that
is currently done in mm/gup.c.
Link: https://lkml.kernel.org/r/c7d886ad7468a20452ef6e0ddab6cfe220874e7c.1740713401.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Asahi Lina <lina@asahilina.net>
Cc: Balbir Singh <balbirs@nvidia.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
PCI P2PDMA pages are not mapped with pXX_devmap PTEs therefore the check
in __gup_device_huge() is redundant. Remove it
Link: https://lkml.kernel.org/r/260e3dcfaf05ff1c734a49698ed4332b5dae04c2.1740713401.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Dan Wiliams <dan.j.williams@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Alison Schofield <alison.schofield@intel.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Asahi Lina <lina@asahilina.net>
Cc: Balbir Singh <balbirs@nvidia.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chunyan Zhang <zhang.lyra@gmail.com>
Cc: "Darrick J. Wong" <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: linmiaohe <linmiaohe@huawei.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Historiaclly the code relied on access_ok() to validate the address range.
Commit 26f4c328079d7 added an explicit wrap check before access_ok().
Commit c28b1fc70390d then changed the wrap test to use check_add_overflow().
Commit 6014bc27561f2 relaxed the checks in x86-64's access_ok() and added
an explicit check for TASK_SIZE here to make up for it.
That left a pointless access_ok() call with its associated 'lfence' that
can never actually fail.
So just delete the test.
Link: https://lkml.kernel.org/r/20250209174711.60889-1-david.laight.linux@gmail.com
Signed-off-by: David Laight <david.laight.linux@gmail.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirks^H^Hski <luto@kernel.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: fixes for device-exclusive entries (hmm)", v2.
Discussing the PageTail() call in make_device_exclusive_range() with
Willy, I recently discovered [1] that device-exclusive handling does not
properly work with THP, making the hmm-tests selftests fail if THPs are
enabled on the system.
Looking into more details, I found that hugetlb is not properly fenced,
and I realized that something that was bugging me for longer -- how
device-exclusive entries interact with mapcounts -- completely breaks
migration/swapout/split/hwpoison handling of these folios while they have
device-exclusive PTEs.
The program below can be used to allocate 1 GiB worth of pages and making
them device-exclusive on a kernel with CONFIG_TEST_HMM.
Once they are device-exclusive, these folios cannot get swapped out
(proc$pid/smaps_rollup will always indicate 1 GiB RSS no matter how much
one forces memory reclaim), and when having a memory block onlined to
ZONE_MOVABLE, trying to offline it will loop forever and complain about
failed migration of a page that should be movable.
# echo offline > /sys/devices/system/memory/memory136/state
# echo online_movable > /sys/devices/system/memory/memory136/state
# ./hmm-swap &
... wait until everything is device-exclusive
# echo offline > /sys/devices/system/memory/memory136/state
[ 285.193431][T14882] page: refcount:2 mapcount:0 mapping:0000000000000000
index:0x7f20671f7 pfn:0x442b6a
[ 285.196618][T14882] memcg:ffff888179298000
[ 285.198085][T14882] anon flags: 0x5fff0000002091c(referenced|uptodate|
dirty|active|owner_2|swapbacked|node=1|zone=3|lastcpupid=0x7ff)
[ 285.201734][T14882] raw: ...
[ 285.204464][T14882] raw: ...
[ 285.207196][T14882] page dumped because: migration failure
[ 285.209072][T14882] page_owner tracks the page as allocated
[ 285.210915][T14882] page last allocated via order 0, migratetype
Movable, gfp_mask 0x140dca(GFP_HIGHUSER_MOVABLE|__GFP_COMP|__GFP_ZERO),
id 14926, tgid 14926 (hmm-swap), ts 254506295376, free_ts 227402023774
[ 285.216765][T14882] post_alloc_hook+0x197/0x1b0
[ 285.218874][T14882] get_page_from_freelist+0x76e/0x3280
[ 285.220864][T14882] __alloc_frozen_pages_noprof+0x38e/0x2740
[ 285.223302][T14882] alloc_pages_mpol+0x1fc/0x540
[ 285.225130][T14882] folio_alloc_mpol_noprof+0x36/0x340
[ 285.227222][T14882] vma_alloc_folio_noprof+0xee/0x1a0
[ 285.229074][T14882] __handle_mm_fault+0x2b38/0x56a0
[ 285.230822][T14882] handle_mm_fault+0x368/0x9f0
...
This series fixes all issues I found so far. There is no easy way to fix
without a bigger rework/cleanup. I have a bunch of cleanups on top (some
previous sent, some the result of the discussion in v1) that I will send
out separately once this landed and I get to it.
I wish we could just use some special present PROT_NONE PTEs instead of
these (non-present, non-none) fake-swap entries; but that just results in
the same problem we keep having (lack of spare PTE bits), and staring at
other similar fake-swap entries, that ship has sailed.
With this series, make_device_exclusive() doesn't actually belong into
mm/rmap.c anymore, but I'll leave moving that for another day.
I only tested this series with the hmm-tests selftests due to lack of HW,
so I'd appreciate some testing, especially if the interaction between two
GPUs wanting a device-exclusive entry works as expected.
<program>
#include <stdio.h>
#include <fcntl.h>
#include <stdint.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/ioctl.h>
#define HMM_DMIRROR_EXCLUSIVE _IOWR('H', 0x05, struct hmm_dmirror_cmd)
struct hmm_dmirror_cmd {
__u64 addr;
__u64 ptr;
__u64 npages;
__u64 cpages;
__u64 faults;
};
const size_t size = 1 * 1024 * 1024 * 1024ul;
const size_t chunk_size = 2 * 1024 * 1024ul;
int main(void)
{
struct hmm_dmirror_cmd cmd;
size_t cur_size;
int fd, ret;
char *addr, *mirror;
fd = open("/dev/hmm_dmirror1", O_RDWR, 0);
if (fd < 0) {
perror("open failed\n");
exit(1);
}
addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (addr == MAP_FAILED) {
perror("mmap failed\n");
exit(1);
}
madvise(addr, size, MADV_NOHUGEPAGE);
memset(addr, 1, size);
mirror = malloc(chunk_size);
for (cur_size = 0; cur_size < size; cur_size += chunk_size) {
cmd.addr = (uintptr_t)addr + cur_size;
cmd.ptr = (uintptr_t)mirror;
cmd.npages = chunk_size / getpagesize();
ret = ioctl(fd, HMM_DMIRROR_EXCLUSIVE, &cmd);
if (ret) {
perror("ioctl failed\n");
exit(1);
}
}
pause();
return 0;
}
</program>
[1] https://lkml.kernel.org/r/25e02685-4f1d-47fa-be5b-01ff85bb0ce2@redhat.com
This patch (of 17):
We only have two FOLL_SPLIT_PMD users. While uprobe refuses hugetlb
early, make_device_exclusive_range() can end up getting called on hugetlb
VMAs.
Right now, this means that with a PMD-sized hugetlb page, we can end up
calling split_huge_pmd(), because pmd_trans_huge() also succeeds with
hugetlb PMDs.
For example, using a modified hmm-test selftest one can trigger:
[ 207.017134][T14945] ------------[ cut here ]------------
[ 207.018614][T14945] kernel BUG at mm/page_table_check.c:87!
[ 207.019716][T14945] Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
[ 207.021072][T14945] CPU: 3 UID: 0 PID: ...
[ 207.023036][T14945] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014
[ 207.024834][T14945] RIP: 0010:page_table_check_clear.part.0+0x488/0x510
[ 207.026128][T14945] Code: ...
[ 207.029965][T14945] RSP: 0018:ffffc9000cb8f348 EFLAGS: 00010293
[ 207.031139][T14945] RAX: 0000000000000000 RBX: 00000000ffffffff RCX: ffffffff8249a0cd
[ 207.032649][T14945] RDX: ffff88811e883c80 RSI: ffffffff8249a357 RDI: ffff88811e883c80
[ 207.034183][T14945] RBP: ffff888105c0a050 R08: 0000000000000005 R09: 0000000000000000
[ 207.035688][T14945] R10: 00000000ffffffff R11: 0000000000000003 R12: 0000000000000001
[ 207.037203][T14945] R13: 0000000000000200 R14: 0000000000000001 R15: dffffc0000000000
[ 207.038711][T14945] FS: 00007f2783275740(0000) GS:ffff8881f4980000(0000) knlGS:0000000000000000
[ 207.040407][T14945] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 207.041660][T14945] CR2: 00007f2782c00000 CR3: 0000000132356000 CR4: 0000000000750ef0
[ 207.043196][T14945] PKRU: 55555554
[ 207.043880][T14945] Call Trace:
[ 207.044506][T14945] <TASK>
[ 207.045086][T14945] ? __die+0x51/0x92
[ 207.045864][T14945] ? die+0x29/0x50
[ 207.046596][T14945] ? do_trap+0x250/0x320
[ 207.047430][T14945] ? do_error_trap+0xe7/0x220
[ 207.048346][T14945] ? page_table_check_clear.part.0+0x488/0x510
[ 207.049535][T14945] ? handle_invalid_op+0x34/0x40
[ 207.050494][T14945] ? page_table_check_clear.part.0+0x488/0x510
[ 207.051681][T14945] ? exc_invalid_op+0x2e/0x50
[ 207.052589][T14945] ? asm_exc_invalid_op+0x1a/0x20
[ 207.053596][T14945] ? page_table_check_clear.part.0+0x1fd/0x510
[ 207.054790][T14945] ? page_table_check_clear.part.0+0x487/0x510
[ 207.055993][T14945] ? page_table_check_clear.part.0+0x488/0x510
[ 207.057195][T14945] ? page_table_check_clear.part.0+0x487/0x510
[ 207.058384][T14945] __page_table_check_pmd_clear+0x34b/0x5a0
[ 207.059524][T14945] ? __pfx___page_table_check_pmd_clear+0x10/0x10
[ 207.060775][T14945] ? __pfx___mutex_unlock_slowpath+0x10/0x10
[ 207.061940][T14945] ? __pfx___lock_acquire+0x10/0x10
[ 207.062967][T14945] pmdp_huge_clear_flush+0x279/0x360
[ 207.064024][T14945] split_huge_pmd_locked+0x82b/0x3750
...
Before commit 9cb28da54643 ("mm/gup: handle hugetlb in the generic
follow_page_mask code"), we would have ignored the flag; instead, let's
simply refuse the combination completely in check_vma_flags(): the caller
is likely not prepared to handle any hugetlb folios.
We'll teach make_device_exclusive_range() separately to ignore any hugetlb
folios as a future-proof safety net.
Link: https://lkml.kernel.org/r/20250210193801.781278-1-david@redhat.com
Link: https://lkml.kernel.org/r/20250210193801.781278-2-david@redhat.com
Fixes: 9cb28da54643 ("mm/gup: handle hugetlb in the generic follow_page_mask code")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Danilo Krummrich <dakr@kernel.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Karol Herbst <kherbst@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Lyude <lyude@redhat.com>
Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yanteng Si <si.yanteng@linux.dev>
Cc: Simona Vetter <simona.vetter@ffwll.ch>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Dumping processes with large allocated and mostly not-faulted areas is
very slow.
Borrowing a test case from Tavian Barnes:
int main(void) {
char *mem = mmap(NULL, 1ULL << 40, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_NORESERVE | MAP_PRIVATE, -1, 0);
printf("%p %m\n", mem);
if (mem != MAP_FAILED) {
mem[0] = 1;
}
abort();
}
That's 1TB of almost completely not-populated area.
On my test box it takes 13-14 seconds to dump.
The profile shows:
- 99.89% 0.00% a.out
entry_SYSCALL_64_after_hwframe
do_syscall_64
syscall_exit_to_user_mode
arch_do_signal_or_restart
- get_signal
- 99.89% do_coredump
- 99.88% elf_core_dump
- dump_user_range
- 98.12% get_dump_page
- 64.19% __get_user_pages
- 40.92% gup_vma_lookup
- find_vma
- mt_find
4.21% __rcu_read_lock
1.33% __rcu_read_unlock
- 3.14% check_vma_flags
0.68% vma_is_secretmem
0.61% __cond_resched
0.60% vma_pgtable_walk_end
0.59% vma_pgtable_walk_begin
0.58% no_page_table
- 15.13% down_read_killable
0.69% __cond_resched
13.84% up_read
0.58% __cond_resched
Almost 29% of the time is spent relocking the mmap semaphore between
calls to get_dump_page() which find nothing.
Whacking that results in times of 10 seconds (down from 13-14).
While here make the thing killable.
The real problem is the page-sized iteration and the real fix would
patch it up instead. It is left as an exercise for the mm-familiar
reader.
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Link: https://lore.kernel.org/r/20250119103205.2172432-1-mjguzik@gmail.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
We can run into an infinite loop in __get_longterm_locked() when
collect_longterm_unpinnable_folios() finds only folios that are isolated
from the LRU or were never added to the LRU. This can happen when all
folios to be pinned are never added to the LRU, for example when
vm_ops->fault allocated pages using cma_alloc() and never added them to
the LRU.
Fix it by simply taking a look at the list in the single caller, to see if
anything was added.
[zhaoyang.huang@unisoc.com: move definition of local]
Link: https://lkml.kernel.org/r/20250122012604.3654667-1-zhaoyang.huang@unisoc.com
Link: https://lkml.kernel.org/r/20250121020159.3636477-1-zhaoyang.huang@unisoc.com
Fixes: 67e139b02d99 ("mm/gup.c: refactor check_and_migrate_movable_pages()")
Signed-off-by: Zhaoyang Huang <zhaoyang.huang@unisoc.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Aijun Sun <aijun.sun@unisoc.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"The various patchsets are summarized below. Plus of course many
indivudual patches which are described in their changelogs.
- "Allocate and free frozen pages" from Matthew Wilcox reorganizes
the page allocator so we end up with the ability to allocate and
free zero-refcount pages. So that callers (ie, slab) can avoid a
refcount inc & dec
- "Support large folios for tmpfs" from Baolin Wang teaches tmpfs to
use large folios other than PMD-sized ones
- "Fix mm/rodata_test" from Petr Tesarik performs some maintenance
and fixes for this small built-in kernel selftest
- "mas_anode_descend() related cleanup" from Wei Yang tidies up part
of the mapletree code
- "mm: fix format issues and param types" from Keren Sun implements a
few minor code cleanups
- "simplify split calculation" from Wei Yang provides a few fixes and
a test for the mapletree code
- "mm/vma: make more mmap logic userland testable" from Lorenzo
Stoakes continues the work of moving vma-related code into the
(relatively) new mm/vma.c
- "mm/page_alloc: gfp flags cleanups for alloc_contig_*()" from David
Hildenbrand cleans up and rationalizes handling of gfp flags in the
page allocator
- "readahead: Reintroduce fix for improper RA window sizing" from Jan
Kara is a second attempt at fixing a readahead window sizing issue.
It should reduce the amount of unnecessary reading
- "synchronously scan and reclaim empty user PTE pages" from Qi Zheng
addresses an issue where "huge" amounts of pte pagetables are
accumulated:
https://lore.kernel.org/lkml/cover.1718267194.git.zhengqi.arch@bytedance.com/
Qi's series addresses this windup by synchronously freeing PTE
memory within the context of madvise(MADV_DONTNEED)
- "selftest/mm: Remove warnings found by adding compiler flags" from
Muhammad Usama Anjum fixes some build warnings in the selftests
code when optional compiler warnings are enabled
- "mm: don't use __GFP_HARDWALL when migrating remote pages" from
David Hildenbrand tightens the allocator's observance of
__GFP_HARDWALL
- "pkeys kselftests improvements" from Kevin Brodsky implements
various fixes and cleanups in the MM selftests code, mainly
pertaining to the pkeys tests
- "mm/damon: add sample modules" from SeongJae Park enhances DAMON to
estimate application working set size
- "memcg/hugetlb: Rework memcg hugetlb charging" from Joshua Hahn
provides some cleanups to memcg's hugetlb charging logic
- "mm/swap_cgroup: remove global swap cgroup lock" from Kairui Song
removes the global swap cgroup lock. A speedup of 10% for a
tmpfs-based kernel build was demonstrated
- "zram: split page type read/write handling" from Sergey Senozhatsky
has several fixes and cleaups for zram in the area of
zram_write_page(). A watchdog softlockup warning was eliminated
- "move pagetable_*_dtor() to __tlb_remove_table()" from Kevin
Brodsky cleans up the pagetable destructor implementations. A rare
use-after-free race is fixed
- "mm/debug: introduce and use VM_WARN_ON_VMG()" from Lorenzo Stoakes
simplifies and cleans up the debugging code in the VMA merging
logic
- "Account page tables at all levels" from Kevin Brodsky cleans up
and regularizes the pagetable ctor/dtor handling. This results in
improvements in accounting accuracy
- "mm/damon: replace most damon_callback usages in sysfs with new
core functions" from SeongJae Park cleans up and generalizes
DAMON's sysfs file interface logic
- "mm/damon: enable page level properties based monitoring" from
SeongJae Park increases the amount of information which is
presented in response to DAMOS actions
- "mm/damon: remove DAMON debugfs interface" from SeongJae Park
removes DAMON's long-deprecated debugfs interfaces. Thus the
migration to sysfs is completed
- "mm/hugetlb: Refactor hugetlb allocation resv accounting" from
Peter Xu cleans up and generalizes the hugetlb reservation
accounting
- "mm: alloc_pages_bulk: small API refactor" from Luiz Capitulino
removes a never-used feature of the alloc_pages_bulk() interface
- "mm/damon: extend DAMOS filters for inclusion" from SeongJae Park
extends DAMOS filters to support not only exclusion (rejecting),
but also inclusion (allowing) behavior
- "Add zpdesc memory descriptor for zswap.zpool" from Alex Shi
introduces a new memory descriptor for zswap.zpool that currently
overlaps with struct page for now. This is part of the effort to
reduce the size of struct page and to enable dynamic allocation of
memory descriptors
- "mm, swap: rework of swap allocator locks" from Kairui Song redoes
and simplifies the swap allocator locking. A speedup of 400% was
demonstrated for one workload. As was a 35% reduction for kernel
build time with swap-on-zram
- "mm: update mips to use do_mmap(), make mmap_region() internal"
from Lorenzo Stoakes reworks MIPS's use of mmap_region() so that
mmap_region() can be made MM-internal
- "mm/mglru: performance optimizations" from Yu Zhao fixes a few
MGLRU regressions and otherwise improves MGLRU performance
- "Docs/mm/damon: add tuning guide and misc updates" from SeongJae
Park updates DAMON documentation
- "Cleanup for memfd_create()" from Isaac Manjarres does that thing
- "mm: hugetlb+THP folio and migration cleanups" from David
Hildenbrand provides various cleanups in the areas of hugetlb
folios, THP folios and migration
- "Uncached buffered IO" from Jens Axboe implements the new
RWF_DONTCACHE flag which provides synchronous dropbehind for
pagecache reading and writing. To permite userspace to address
issues with massive buildup of useless pagecache when
reading/writing fast devices
- "selftests/mm: virtual_address_range: Reduce memory" from Thomas
Weißschuh fixes and optimizes some of the MM selftests"
* tag 'mm-stable-2025-01-26-14-59' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (321 commits)
mm/compaction: fix UBSAN shift-out-of-bounds warning
s390/mm: add missing ctor/dtor on page table upgrade
kasan: sw_tags: use str_on_off() helper in kasan_init_sw_tags()
tools: add VM_WARN_ON_VMG definition
mm/damon/core: use str_high_low() helper in damos_wmark_wait_us()
seqlock: add missing parameter documentation for raw_seqcount_try_begin()
mm/page-writeback: consolidate wb_thresh bumping logic into __wb_calc_thresh
mm/page_alloc: remove the incorrect and misleading comment
zram: remove zcomp_stream_put() from write_incompressible_page()
mm: separate move/undo parts from migrate_pages_batch()
mm/kfence: use str_write_read() helper in get_access_type()
selftests/mm/mkdirty: fix memory leak in test_uffdio_copy()
kasan: hw_tags: Use str_on_off() helper in kasan_init_hw_tags()
selftests/mm: virtual_address_range: avoid reading from VM_IO mappings
selftests/mm: vm_util: split up /proc/self/smaps parsing
selftests/mm: virtual_address_range: unmap chunks after validation
selftests/mm: virtual_address_range: mmap() without PROT_WRITE
selftests/memfd/memfd_test: fix possible NULL pointer dereference
mm: add FGP_DONTCACHE folio creation flag
mm: call filemap_fdatawrite_range_kick() after IOCB_DONTCACHE issue
...
|
|
Let's make the function name match "folio_isolate_lru()", and add some
kernel doc.
Link: https://lkml.kernel.org/r/20250113131611.2554758-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull performance events updates from Ingo Molnar:
"Seqlock optimizations that arose in a perf context and were merged
into the perf tree:
- seqlock: Add raw_seqcount_try_begin (Suren Baghdasaryan)
- mm: Convert mm_lock_seq to a proper seqcount (Suren Baghdasaryan)
- mm: Introduce mmap_lock_speculate_{try_begin|retry} (Suren
Baghdasaryan)
- mm/gup: Use raw_seqcount_try_begin() (Peter Zijlstra)
Core perf enhancements:
- Reduce 'struct page' footprint of perf by mapping pages in advance
(Lorenzo Stoakes)
- Save raw sample data conditionally based on sample type (Yabin Cui)
- Reduce sampling overhead by checking sample_type in
perf_sample_save_callchain() and perf_sample_save_brstack() (Yabin
Cui)
- Export perf_exclude_event() (Namhyung Kim)
Uprobes scalability enhancements: (Andrii Nakryiko)
- Simplify find_active_uprobe_rcu() VMA checks
- Add speculative lockless VMA-to-inode-to-uprobe resolution
- Simplify session consumer tracking
- Decouple return_instance list traversal and freeing
- Ensure return_instance is detached from the list before freeing
- Reuse return_instances between multiple uretprobes within task
- Guard against kmemdup() failing in dup_return_instance()
AMD core PMU driver enhancements:
- Relax privilege filter restriction on AMD IBS (Namhyung Kim)
AMD RAPL energy counters support: (Dhananjay Ugwekar)
- Introduce topology_logical_core_id() (K Prateek Nayak)
- Remove the unused get_rapl_pmu_cpumask() function
- Remove the cpu_to_rapl_pmu() function
- Rename rapl_pmu variables
- Make rapl_model struct global
- Add arguments to the init and cleanup functions
- Modify the generic variable names to *_pkg*
- Remove the global variable rapl_msrs
- Move the cntr_mask to rapl_pmus struct
- Add core energy counter support for AMD CPUs
Intel core PMU driver enhancements:
- Support RDPMC 'metrics clear mode' feature (Kan Liang)
- Clarify adaptive PEBS processing (Kan Liang)
- Factor out functions for PEBS records processing (Kan Liang)
- Simplify the PEBS records processing for adaptive PEBS (Kan Liang)
Intel uncore driver enhancements: (Kan Liang)
- Convert buggy pmu->func_id use to pmu->registered
- Support more units on Granite Rapids"
* tag 'perf-core-2025-01-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
perf: map pages in advance
perf/x86/intel/uncore: Support more units on Granite Rapids
perf/x86/intel/uncore: Clean up func_id
perf/x86/intel: Support RDPMC metrics clear mode
uprobes: Guard against kmemdup() failing in dup_return_instance()
perf/x86: Relax privilege filter restriction on AMD IBS
perf/core: Export perf_exclude_event()
uprobes: Reuse return_instances between multiple uretprobes within task
uprobes: Ensure return_instance is detached from the list before freeing
uprobes: Decouple return_instance list traversal and freeing
uprobes: Simplify session consumer tracking
uprobes: add speculative lockless VMA-to-inode-to-uprobe resolution
uprobes: simplify find_active_uprobe_rcu() VMA checks
mm: introduce mmap_lock_speculate_{try_begin|retry}
mm: convert mm_lock_seq to a proper seqcount
mm/gup: Use raw_seqcount_try_begin()
seqlock: add raw_seqcount_try_begin
perf/x86/rapl: Add core energy counter support for AMD CPUs
perf/x86/rapl: Move the cntr_mask to rapl_pmus struct
perf/x86/rapl: Remove the global variable rapl_msrs
...
|
|
Eric reported that PTRACE_POKETEXT fails when applications use hugetlb for
mapping text using huge pages. Before commit 1d8d14641fd9 ("mm/hugetlb:
support write-faults in shared mappings"), PTRACE_POKETEXT worked by
accident, but it was buggy and silently ended up mapping pages writable
into the page tables even though VM_WRITE was not set.
In general, FOLL_FORCE|FOLL_WRITE does currently not work with hugetlb.
Let's implement FOLL_FORCE|FOLL_WRITE properly for hugetlb, such that what
used to work in the past by accident now properly works, allowing
applications using hugetlb for text etc. to get properly debugged.
This change might also be required to implement uprobes support for
hugetlb [1].
[1] https://lore.kernel.org/lkml/ZiK50qob9yl5e0Xz@bender.morinfr.org/
Link: https://lkml.kernel.org/r/Z1NshNfWuzUCPebA@bender.morinfr.org
Signed-off-by: Guillaume Morin <guillaume@morinfr.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Eric Hagberg <ehagberg@janestreet.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The recent addition of "pofs" (pages or folios) handling to gup has a
flaw: it assumes that unpin_user_pages() handles NULL pages in the pages**
array. That's not the case, as I discovered when I ran on a new
configuration on my test machine.
Fix this by skipping NULL pages in unpin_user_pages(), just like
unpin_folios() already does.
Details: when booting on x86 with "numa=fake=2 movablecore=4G" on Linux
6.12, and running this:
tools/testing/selftests/mm/gup_longterm
...I get the following crash:
BUG: kernel NULL pointer dereference, address: 0000000000000008
RIP: 0010:sanity_check_pinned_pages+0x3a/0x2d0
...
Call Trace:
<TASK>
? __die_body+0x66/0xb0
? page_fault_oops+0x30c/0x3b0
? do_user_addr_fault+0x6c3/0x720
? irqentry_enter+0x34/0x60
? exc_page_fault+0x68/0x100
? asm_exc_page_fault+0x22/0x30
? sanity_check_pinned_pages+0x3a/0x2d0
unpin_user_pages+0x24/0xe0
check_and_migrate_movable_pages_or_folios+0x455/0x4b0
__gup_longterm_locked+0x3bf/0x820
? mmap_read_lock_killable+0x12/0x50
? __pfx_mmap_read_lock_killable+0x10/0x10
pin_user_pages+0x66/0xa0
gup_test_ioctl+0x358/0xb20
__se_sys_ioctl+0x6b/0xc0
do_syscall_64+0x7b/0x150
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Link: https://lkml.kernel.org/r/20241121034933.77502-1-jhubbard@nvidia.com
Fixes: 94efde1d1539 ("mm/gup: avoid an unnecessary allocation call for FOLL_LONGTERM cases")
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vivek Kasireddy <vivek.kasireddy@intel.com>
Cc: Dave Airlie <airlied@redhat.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Dongwon Kim <dongwon.kim@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Junxiao Chang <junxiao.chang@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
David pointed out that gup_fast() does exactly what the new
raw_seqcount_try_begin() does -- use it.
Suggested-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- The series "zram: optimal post-processing target selection" from
Sergey Senozhatsky improves zram's post-processing selection
algorithm. This leads to improved memory savings.
- Wei Yang has gone to town on the mapletree code, contributing several
series which clean up the implementation:
- "refine mas_mab_cp()"
- "Reduce the space to be cleared for maple_big_node"
- "maple_tree: simplify mas_push_node()"
- "Following cleanup after introduce mas_wr_store_type()"
- "refine storing null"
- The series "selftests/mm: hugetlb_fault_after_madv improvements" from
David Hildenbrand fixes this selftest for s390.
- The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng
implements some rationaizations and cleanups in the page mapping
code.
- The series "mm: optimize shadow entries removal" from Shakeel Butt
optimizes the file truncation code by speeding up the handling of
shadow entries.
- The series "Remove PageKsm()" from Matthew Wilcox completes the
migration of this flag over to being a folio-based flag.
- The series "Unify hugetlb into arch_get_unmapped_area functions" from
Oscar Salvador implements a bunch of consolidations and cleanups in
the hugetlb code.
- The series "Do not shatter hugezeropage on wp-fault" from Dev Jain
takes away the wp-fault time practice of turning a huge zero page
into small pages. Instead we replace the whole thing with a THP. More
consistent cleaner and potentiall saves a large number of pagefaults.
- The series "percpu: Add a test case and fix for clang" from Andy
Shevchenko enhances and fixes the kernel's built in percpu test code.
- The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett
optimizes mremap() by avoiding doing things which we didn't need to
do.
- The series "Improve the tmpfs large folio read performance" from
Baolin Wang teaches tmpfs to copy data into userspace at the folio
size rather than as individual pages. A 20% speedup was observed.
- The series "mm/damon/vaddr: Fix issue in
damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON
splitting.
- The series "memcg-v1: fully deprecate charge moving" from Shakeel
Butt removes the long-deprecated memcgv2 charge moving feature.
- The series "fix error handling in mmap_region() and refactor" from
Lorenzo Stoakes cleanup up some of the mmap() error handling and
addresses some potential performance issues.
- The series "x86/module: use large ROX pages for text allocations"
from Mike Rapoport teaches x86 to use large pages for
read-only-execute module text.
- The series "page allocation tag compression" from Suren Baghdasaryan
is followon maintenance work for the new page allocation profiling
feature.
- The series "page->index removals in mm" from Matthew Wilcox remove
most references to page->index in mm/. A slow march towards shrinking
struct page.
- The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs
interface tests" from Andrew Paniakin performs maintenance work for
DAMON's self testing code.
- The series "mm: zswap swap-out of large folios" from Kanchana Sridhar
improves zswap's batching of compression and decompression. It is a
step along the way towards using Intel IAA hardware acceleration for
this zswap operation.
- The series "kasan: migrate the last module test to kunit" from
Sabyrzhan Tasbolatov completes the migration of the KASAN built-in
tests over to the KUnit framework.
- The series "implement lightweight guard pages" from Lorenzo Stoakes
permits userapace to place fault-generating guard pages within a
single VMA, rather than requiring that multiple VMAs be created for
this. Improved efficiencies for userspace memory allocators are
expected.
- The series "memcg: tracepoint for flushing stats" from JP Kobryn uses
tracepoints to provide increased visibility into memcg stats flushing
activity.
- The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky
fixes a zram buglet which potentially affected performance.
- The series "mm: add more kernel parameters to control mTHP" from
Maíra Canal enhances our ability to control/configuremultisize THP
from the kernel boot command line.
- The series "kasan: few improvements on kunit tests" from Sabyrzhan
Tasbolatov has a couple of fixups for the KASAN KUnit tests.
- The series "mm/list_lru: Split list_lru lock into per-cgroup scope"
from Kairui Song optimizes list_lru memory utilization when lockdep
is enabled.
* tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (215 commits)
cma: enforce non-zero pageblock_order during cma_init_reserved_mem()
mm/kfence: add a new kunit test test_use_after_free_read_nofault()
zram: fix NULL pointer in comp_algorithm_show()
memcg/hugetlb: add hugeTLB counters to memcg
vmstat: call fold_vm_zone_numa_events() before show per zone NUMA event
mm: mmap_lock: check trace_mmap_lock_$type_enabled() instead of regcount
zram: ZRAM_DEF_COMP should depend on ZRAM
MAINTAINERS/MEMORY MANAGEMENT: add document files for mm
Docs/mm/damon: recommend academic papers to read and/or cite
mm: define general function pXd_init()
kmemleak: iommu/iova: fix transient kmemleak false positive
mm/list_lru: simplify the list_lru walk callback function
mm/list_lru: split the lock to per-cgroup scope
mm/list_lru: simplify reparenting and initial allocation
mm/list_lru: code clean up for reparenting
mm/list_lru: don't export list_lru_add
mm/list_lru: don't pass unnecessary key parameters
kasan: add kunit tests for kmalloc_track_caller, kmalloc_node_track_caller
kasan: change kasan_atomics kunit test as KUNIT_CASE_SLOW
kasan: use EXPORT_SYMBOL_IF_KUNIT to export symbols
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jgg/iommufd
Pull iommufd updates from Jason Gunthorpe:
"Several new features and uAPI for iommufd:
- IOMMU_IOAS_MAP_FILE allows passing in a file descriptor as the
backing memory for an iommu mapping. To date VFIO/iommufd have used
VMA's and pin_user_pages(), this now allows using memfds and
memfd_pin_folios(). Notably this creates a pure folio path from the
memfd to the iommu page table where memory is never broken down to
PAGE_SIZE.
- IOMMU_IOAS_CHANGE_PROCESS moves the pinned page accounting between
two processes. Combined with the above this allows iommufd to
support a VMM re-start using exec() where something like qemu would
exec() a new version of itself and fd pass the memfds/iommufd/etc
to the new process. The memfd allows DMA access to the memory to
continue while the new process is getting setup, and the
CHANGE_PROCESS updates all the accounting.
- Support for fault reporting to userspace on non-PRI HW, such as ARM
stall-mode embedded devices.
- IOMMU_VIOMMU_ALLOC introduces the concept of a HW/driver backed
virtual iommu. This will be used by VMMs to access hardware
features that are contained with in a VM. The first use is to
inform the kernel of the virtual SID to physical SID mapping when
issuing SID based invalidation on ARM. Further uses will tie HW
features that are directly accessed by the VM, such as invalidation
queue assignment and others.
- IOMMU_VDEVICE_ALLOC informs the kernel about the mapping of virtual
device to physical device within a VIOMMU. Minimially this is used
to translate VM issued cache invalidation commands from virtual to
physical device IDs.
- Enhancements to IOMMU_HWPT_INVALIDATE and IOMMU_HWPT_ALLOC to work
with the VIOMMU
- ARM SMMuv3 support for nested translation. Using the VIOMMU and
VDEVICE the driver can model this HW's behavior for nested
translation. This includes a shared branch from Will"
* tag 'for-linus-iommufd' of git://git.kernel.org/pub/scm/linux/kernel/git/jgg/iommufd: (51 commits)
iommu/arm-smmu-v3: Import IOMMUFD module namespace
iommufd: IOMMU_IOAS_CHANGE_PROCESS selftest
iommufd: Add IOMMU_IOAS_CHANGE_PROCESS
iommufd: Lock all IOAS objects
iommufd: Export do_update_pinned
iommu/arm-smmu-v3: Support IOMMU_HWPT_INVALIDATE using a VIOMMU object
iommu/arm-smmu-v3: Allow ATS for IOMMU_DOMAIN_NESTED
iommu/arm-smmu-v3: Use S2FWB for NESTED domains
iommu/arm-smmu-v3: Support IOMMU_DOMAIN_NESTED
iommu/arm-smmu-v3: Support IOMMU_VIOMMU_ALLOC
Documentation: userspace-api: iommufd: Update vDEVICE
iommufd/selftest: Add vIOMMU coverage for IOMMU_HWPT_INVALIDATE ioctl
iommufd/selftest: Add IOMMU_TEST_OP_DEV_CHECK_CACHE test command
iommufd/selftest: Add mock_viommu_cache_invalidate
iommufd/viommu: Add iommufd_viommu_find_dev helper
iommu: Add iommu_copy_struct_from_full_user_array helper
iommufd: Allow hwpt_id to carry viommu_id for IOMMU_HWPT_INVALIDATE
iommu/viommu: Add cache_invalidate to iommufd_viommu_ops
iommufd/selftest: Add IOMMU_VDEVICE_ALLOC test coverage
iommufd/viommu: Add IOMMUFD_OBJ_VDEVICE and IOMMU_VDEVICE_ALLOC ioctl
...
|
|
commit 53ba78de064b ("mm/gup: introduce
check_and_migrate_movable_folios()") created a new constraint on the
pin_user_pages*() API family: a potentially large internal allocation must
now occur, for FOLL_LONGTERM cases.
A user-visible consequence has now appeared: user space can no longer pin
more than 2GB of memory anymore on x86_64. That's because, on a 4KB
PAGE_SIZE system, when user space tries to (indirectly, via a device
driver that calls pin_user_pages()) pin 2GB, this requires an allocation
of a folio pointers array of MAX_PAGE_ORDER size, which is the limit for
kmalloc().
In addition to the directly visible effect described above, there is also
the problem of adding an unnecessary allocation. The **pages array
argument has already been allocated, and there is no need for a redundant
**folios array allocation in this case.
Fix this by avoiding the new allocation entirely. This is done by
referring to either the original page[i] within **pages, or to the
associated folio. Thanks to David Hildenbrand for suggesting this
approach and for providing the initial implementation (which I've tested
and adjusted slightly) as well.
[jhubbard@nvidia.com: whitespace tweak, per David]
Link: https://lkml.kernel.org/r/131cf9c8-ebc0-4cbb-b722-22fa8527bf3c@nvidia.com
[jhubbard@nvidia.com: bypass pofs_get_folio(), per Oscar]
Link: https://lkml.kernel.org/r/c1587c7f-9155-45be-bd62-1e36c0dd6923@nvidia.com
Link: https://lkml.kernel.org/r/20241105032944.141488-2-jhubbard@nvidia.com
Fixes: 53ba78de064b ("mm/gup: introduce check_and_migrate_movable_folios()")
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Vivek Kasireddy <vivek.kasireddy@intel.com>
Cc: Dave Airlie <airlied@redhat.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Dongwon Kim <dongwon.kim@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Junxiao Chang <junxiao.chang@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We already have the folio here, so just use it, removing three hidden
calls to compound_head().
Link: https://lkml.kernel.org/r/20241002151403.1345296-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If a driver tries to call any of the pin_user_pages*(FOLL_LONGTERM) family
of functions, and requests "too many" pages, then the call will
erroneously leave pages pinned. This is visible in user space as an
actual memory leak.
Repro is trivial: just make enough pin_user_pages(FOLL_LONGTERM) calls to
exhaust memory.
The root cause of the problem is this sequence, within
__gup_longterm_locked():
__get_user_pages_locked()
rc = check_and_migrate_movable_pages()
...which gets retried in a loop. The loop error handling is incomplete,
clearly due to a somewhat unusual and complicated tri-state error API.
But anyway, if -ENOMEM, or in fact, any unexpected error is returned from
check_and_migrate_movable_pages(), then __gup_longterm_locked() happily
returns the error, while leaving the pages pinned.
In the failed case, which is an app that requests (via a device driver)
30720000000 bytes to be pinned, and then exits, I see this:
$ grep foll /proc/vmstat
nr_foll_pin_acquired 7502048
nr_foll_pin_released 2048
And after applying this patch, it returns to balanced pins:
$ grep foll /proc/vmstat
nr_foll_pin_acquired 7502048
nr_foll_pin_released 7502048
Note that the child routine, check_and_migrate_movable_folios(), avoids
this problem, by unpinning any folios in the **folios argument, before
returning an error.
Fix this by making check_and_migrate_movable_pages() behave in exactly the
same way as check_and_migrate_movable_folios(): unpin all pages in
**pages, before returning an error.
Also, documentation was an aggravating factor, so:
1) Consolidate the documentation for these two routines, now that they
have identical external behavior.
2) Rewrite the consolidated documentation:
a) Clearly list the three return code cases, and what happens in
each case.
b) Mention that one of the cases unpins the pages or folios, before
returning an error code.
Link: https://lkml.kernel.org/r/20241018223411.310331-1-jhubbard@nvidia.com
Fixes: 24a95998e9ba ("mm/gup.c: simplify and fix check_and_migrate_movable_pages() return codes")
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Cc: Shigeru Yoshida <syoshida@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Export a function that adds pins to an already-pinned huge-page folio.
This allows any range of small pages within the folio to be unpinned later.
For example, pages pinned via memfd_pin_folios and modified by
folio_add_pins could be unpinned via unpin_user_page(s).
Link: https://patch.msgid.link/r/1729861919-234514-2-git-send-email-steven.sistare@oracle.com
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Steve Sistare <steven.sistare@oracle.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
|
|
The folio_try_get in memfd_alloc_folio is not necessary. Delete it, and
delete the matching folio_put in memfd_pin_folios. This also avoids
leaking a ref if the memfd_alloc_folio call to hugetlb_add_to_page_cache
fails. That error path is also broken in a second way -- when its
folio_put causes the ref to become 0, it will implicitly call
free_huge_folio, but then the path *explicitly* calls free_huge_folio.
Delete the latter.
This is a continuation of the fix
"mm/hugetlb: fix memfd_pin_folios free_huge_pages leak"
[steven.sistare@oracle.com: remove explicit call to free_huge_folio(), per Matthew]
Link: https://lkml.kernel.org/r/Zti-7nPVMcGgpcbi@casper.infradead.org
Link: https://lkml.kernel.org/r/1725481920-82506-1-git-send-email-steven.sistare@oracle.com
Link: https://lkml.kernel.org/r/1725478868-61732-1-git-send-email-steven.sistare@oracle.com
Fixes: 89c1905d9c14 ("mm/gup: introduce memfd_pin_folios() for pinning memfd folios")
Signed-off-by: Steve Sistare <steven.sistare@oracle.com>
Suggested-by: Vivek Kasireddy <vivek.kasireddy@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If memfd_pin_folios tries to create a hugetlb page, but someone else
already did, then folio gets the value -EEXIST here:
folio = memfd_alloc_folio(memfd, start_idx);
if (IS_ERR(folio)) {
ret = PTR_ERR(folio);
if (ret != -EEXIST)
goto err;
then on the next trip through the "while start_idx" loop we panic here:
if (folio) {
folio_put(folio);
To fix, set the folio to NULL on error.
Link: https://lkml.kernel.org/r/1725373521-451395-6-git-send-email-steven.sistare@oracle.com
Fixes: 89c1905d9c14 ("mm/gup: introduce memfd_pin_folios() for pinning memfd folios")
Signed-off-by: Steve Sistare <steven.sistare@oracle.com>
Acked-by: Vivek Kasireddy <vivek.kasireddy@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
memfd_pin_folios followed by unpin_folios fails to restore free_huge_pages
if the pages were not already faulted in, because the folio refcount for
pages created by memfd_alloc_folio never goes to 0. memfd_pin_folios
needs another folio_put to undo the folio_try_get below:
memfd_alloc_folio()
alloc_hugetlb_folio_nodemask()
dequeue_hugetlb_folio_nodemask()
dequeue_hugetlb_folio_node_exact()
folio_ref_unfreeze(folio, 1); ; adds 1 refcount
folio_try_get() ; adds 1 refcount
hugetlb_add_to_page_cache() ; adds 512 refcount (on x86)
With the fix, after memfd_pin_folios + unpin_folios, the refcount for the
(unfaulted) page is 512, which is correct, as the refcount for a faulted
unpinned page is 513.
Link: https://lkml.kernel.org/r/1725373521-451395-3-git-send-email-steven.sistare@oracle.com
Fixes: 89c1905d9c14 ("mm/gup: introduce memfd_pin_folios() for pinning memfd folios")
Signed-off-by: Steve Sistare <steven.sistare@oracle.com>
Acked-by: Vivek Kasireddy <vivek.kasireddy@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Along with the usual shower of singleton patches, notable patch series
in this pull request are:
- "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds
consistency to the APIs and behaviour of these two core allocation
functions. This also simplifies/enables Rustification.
- "Some cleanups for shmem" from Baolin Wang. No functional changes -
mode code reuse, better function naming, logic simplifications.
- "mm: some small page fault cleanups" from Josef Bacik. No
functional changes - code cleanups only.
- "Various memory tiering fixes" from Zi Yan. A small fix and a
little cleanup.
- "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and
simplifications and .text shrinkage.
- "Kernel stack usage histogram" from Pasha Tatashin and Shakeel
Butt. This is a feature, it adds new feilds to /proc/vmstat such as
$ grep kstack /proc/vmstat
kstack_1k 3
kstack_2k 188
kstack_4k 11391
kstack_8k 243
kstack_16k 0
which tells us that 11391 processes used 4k of stack while none at
all used 16k. Useful for some system tuning things, but
partivularly useful for "the dynamic kernel stack project".
- "kmemleak: support for percpu memory leak detect" from Pavel
Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory.
- "mm: memcg: page counters optimizations" from Roman Gushchin. "3
independent small optimizations of page counters".
- "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from
David Hildenbrand. Improves PTE/PMD splitlock detection, makes
powerpc/8xx work correctly by design rather than by accident.
- "mm: remove arch_make_page_accessible()" from David Hildenbrand.
Some folio conversions which make arch_make_page_accessible()
unneeded.
- "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David
Finkel. Cleans up and fixes our handling of the resetting of the
cgroup/process peak-memory-use detector.
- "Make core VMA operations internal and testable" from Lorenzo
Stoakes. Rationalizaion and encapsulation of the VMA manipulation
APIs. With a view to better enable testing of the VMA functions,
even from a userspace-only harness.
- "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix
issues in the zswap global shrinker, resulting in improved
performance.
- "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill
in some missing info in /proc/zoneinfo.
- "mm: replace follow_page() by folio_walk" from David Hildenbrand.
Code cleanups and rationalizations (conversion to folio_walk())
resulting in the removal of follow_page().
- "improving dynamic zswap shrinker protection scheme" from Nhat
Pham. Some tuning to improve zswap's dynamic shrinker. Significant
reductions in swapin and improvements in performance are shown.
- "mm: Fix several issues with unaccepted memory" from Kirill
Shutemov. Improvements to the new unaccepted memory feature,
- "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on
DAX PUDs. This was missing, although nobody seems to have notied
yet.
- "Introduce a store type enum for the Maple tree" from Sidhartha
Kumar. Cleanups and modest performance improvements for the maple
tree library code.
- "memcg: further decouple v1 code from v2" from Shakeel Butt. Move
more cgroup v1 remnants away from the v2 memcg code.
- "memcg: initiate deprecation of v1 features" from Shakeel Butt.
Adds various warnings telling users that memcg v1 features are
deprecated.
- "mm: swap: mTHP swap allocator base on swap cluster order" from
Chris Li. Greatly improves the success rate of the mTHP swap
allocation.
- "mm: introduce numa_memblks" from Mike Rapoport. Moves various
disparate per-arch implementations of numa_memblk code into generic
code.
- "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly
improves the performance of munmap() of swap-filled ptes.
- "support large folio swap-out and swap-in for shmem" from Baolin
Wang. With this series we no longer split shmem large folios into
simgle-page folios when swapping out shmem.
- "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice
performance improvements and code reductions for gigantic folios.
- "support shmem mTHP collapse" from Baolin Wang. Adds support for
khugepaged's collapsing of shmem mTHP folios.
- "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect()
performance regression due to the addition of mseal().
- "Increase the number of bits available in page_type" from Matthew
Wilcox. Increases the number of bits available in page_type!
- "Simplify the page flags a little" from Matthew Wilcox. Many legacy
page flags are now folio flags, so the page-based flags and their
accessors/mutators can be removed.
- "mm: store zero pages to be swapped out in a bitmap" from Usama
Arif. An optimization which permits us to avoid writing/reading
zero-filled zswap pages to backing store.
- "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race
window which occurs when a MAP_FIXED operqtion is occurring during
an unrelated vma tree walk.
- "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of
the vma_merge() functionality, making ot cleaner, more testable and
better tested.
- "misc fixups for DAMON {self,kunit} tests" from SeongJae Park.
Minor fixups of DAMON selftests and kunit tests.
- "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang.
Code cleanups and folio conversions.
- "Shmem mTHP controls and stats improvements" from Ryan Roberts.
Cleanups for shmem controls and stats.
- "mm: count the number of anonymous THPs per size" from Barry Song.
Expose additional anon THP stats to userspace for improved tuning.
- "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more
folio conversions and removal of now-unused page-based APIs.
- "replace per-quota region priorities histogram buffer with
per-context one" from SeongJae Park. DAMON histogram
rationalization.
- "Docs/damon: update GitHub repo URLs and maintainer-profile" from
SeongJae Park. DAMON documentation updates.
- "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and
improve related doc and warn" from Jason Wang: fixes usage of page
allocator __GFP_NOFAIL and GFP_ATOMIC flags.
- "mm: split underused THPs" from Yu Zhao. Improve THP=always policy.
This was overprovisioning THPs in sparsely accessed memory areas.
- "zram: introduce custom comp backends API" frm Sergey Senozhatsky.
Add support for zram run-time compression algorithm tuning.
- "mm: Care about shadow stack guard gap when getting an unmapped
area" from Mark Brown. Fix up the various arch_get_unmapped_area()
implementations to better respect guard areas.
- "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability
of mem_cgroup_iter() and various code cleanups.
- "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge
pfnmap support.
- "resource: Fix region_intersects() vs add_memory_driver_managed()"
from Huang Ying. Fix a bug in region_intersects() for systems with
CXL memory.
- "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches
a couple more code paths to correctly recover from the encountering
of poisoned memry.
- "mm: enable large folios swap-in support" from Barry Song. Support
the swapin of mTHP memory into appropriately-sized folios, rather
than into single-page folios"
* tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits)
zram: free secondary algorithms names
uprobes: turn xol_area->pages[2] into xol_area->page
uprobes: introduce the global struct vm_special_mapping xol_mapping
Revert "uprobes: use vm_special_mapping close() functionality"
mm: support large folios swap-in for sync io devices
mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios
mm: fix swap_read_folio_zeromap() for large folios with partial zeromap
mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries
set_memory: add __must_check to generic stubs
mm/vma: return the exact errno in vms_gather_munmap_vmas()
memcg: cleanup with !CONFIG_MEMCG_V1
mm/show_mem.c: report alloc tags in human readable units
mm: support poison recovery from copy_present_page()
mm: support poison recovery from do_cow_fault()
resource, kunit: add test case for region_intersects()
resource: make alloc_free_mem_region() works for iomem_resource
mm: z3fold: deprecate CONFIG_Z3FOLD
vfio/pci: implement huge_fault support
mm/arm64: support large pfn mappings
mm/x86: support large pfn mappings
...
|
|
Since gup-fast doesn't have the vma reference, teach it to detect such huge
pfnmaps by checking the special bit for pmd/pud too, just like ptes.
Link: https://lkml.kernel.org/r/20240826204353.2228736-6-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Gavin Shan <gshan@redhat.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Niklas Schnelle <schnelle@linux.ibm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Add a new function unpin_user_folio() to put the refs of a folio by
npages count.
The check for BIO_PAGE_PINNED flag is removed as it is already checked
in bio_release_pages().
Signed-off-by: Kundan Kumar <kundan.kumar@samsung.com>
Tested-by: Luis Chamberlain <mcgrof@kernel.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lore.kernel.org/r/20240911064935.5630-4-kundan.kumar@samsung.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Patch series "mm: finish isolate/putback_lru_page()".
Convert to use more folios in migrate_device.c, then we could remove
isolate_lru_page() and putback_lru_page().
This patch (of 6):
Save a few calls to compound_head() and use folio throughout.
Link: https://lkml.kernel.org/r/20240826065814.1336616-1-wangkefeng.wang@huawei.com
Link: https://lkml.kernel.org/r/20240826065814.1336616-2-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
All users are gone, let's remove it and any leftovers in comments. We'll
leave any FOLL/follow_page_() naming cleanups as future work.
Link: https://lkml.kernel.org/r/20240802155524.517137-11-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Janosch Frank <frankja@linux.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Let's use arch_make_folio_accessible() instead so we can get rid of
arch_make_page_accessible().
Link: https://lkml.kernel.org/r/20240729183844.388481-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Janosch Frank <frankja@linux.ibm.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Now that we're not passing around a pointer to the flags, there's no
reason to have an extra variable for the gup_flags, simply pass the
gup_flags directly everywhere.
Link: https://lkml.kernel.org/r/1e79b84bd30287cc9847f2aeb002374e6e60a10f.1721337845.git.josef@toxicpanda.com
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: some small page fault cleanups".
I was recently wreaking havoc in the page fault code and I noticed some
things that could be cleaned up. We no longer modify the gup flags in
faultin_page, so we can clean up how we pass the flags in and remove the
extra variable in __get_user_pages.
This patch (of 2):
We're passing a pointer to the foll_flags for faultin_page, however we
never modify the flags in this call. Change this to just take the flags
value instead.
Link: https://lkml.kernel.org/r/2df51a54c06bdf93e1cb09a19a9ef1df6557b59e.1721337845.git.josef@toxicpanda.com
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
powerpc was the only user of CONFIG_ARCH_HAS_HUGEPD and doesn't use it
anymore, so remove all related code.
Link: https://lkml.kernel.org/r/4b10c54c794780b955f3ad6c657d0199dd792146.1719928057.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Oscar Salvador <osalvador@suse.de>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
On powerpc 8xx huge_ptep_get() will need to know whether the given ptep is
a PTE entry or a PMD entry. This cannot be known with the PMD entry
itself because there is no easy way to know it from the content of the
entry.
So huge_ptep_get() will need to know either the size of the page or get
the pmd.
In order to be consistent with huge_ptep_get_and_clear(), give mm and
address to huge_ptep_get().
Link: https://lkml.kernel.org/r/cc00c70dd384298796a4e1b25d6c4eb306d3af85.1719928057.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
For drivers that would like to longterm-pin the folios associated with a
memfd, the memfd_pin_folios() API provides an option to not only pin the
folios via FOLL_PIN but also to check and migrate them if they reside in
movable zone or CMA block. This API currently works with memfds but it
should work with any files that belong to either shmemfs or hugetlbfs.
Files belonging to other filesystems are rejected for now.
The folios need to be located first before pinning them via FOLL_PIN. If
they are found in the page cache, they can be immediately pinned.
Otherwise, they need to be allocated using the filesystem specific APIs
and then pinned.
[akpm@linux-foundation.org: improve the CONFIG_MMU=n situation, per SeongJae]
[vivek.kasireddy@intel.com: return -EINVAL if the end offset is greater than the size of memfd]
Link: https://lkml.kernel.org/r/IA0PR11MB71850525CBC7D541CAB45DF1F8DB2@IA0PR11MB7185.namprd11.prod.outlook.com
Link: https://lkml.kernel.org/r/20240624063952.1572359-4-vivek.kasireddy@intel.com
Signed-off-by: Vivek Kasireddy <vivek.kasireddy@intel.com>
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> (v2)
Reviewed-by: David Hildenbrand <david@redhat.com> (v3)
Reviewed-by: Christoph Hellwig <hch@lst.de> (v6)
Acked-by: Dave Airlie <airlied@redhat.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Dongwon Kim <dongwon.kim@intel.com>
Cc: Junxiao Chang <junxiao.chang@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This helper is the folio equivalent of check_and_migrate_movable_pages().
Therefore, all the rules that apply to check_and_migrate_movable_pages()
also apply to this one as well. Currently, this helper is only used by
memfd_pin_folios().
This patch also includes changes to rename and convert the internal
functions collect_longterm_unpinnable_pages() and
migrate_longterm_unpinnable_pages() to work on folios. As a result,
check_and_migrate_movable_pages() is now a wrapper around
check_and_migrate_movable_folios().
Link: https://lkml.kernel.org/r/20240624063952.1572359-3-vivek.kasireddy@intel.com
Signed-off-by: Vivek Kasireddy <vivek.kasireddy@intel.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Dave Airlie <airlied@redhat.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Dongwon Kim <dongwon.kim@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Junxiao Chang <junxiao.chang@intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm/gup: Introduce memfd_pin_folios() for pinning memfd
folios", v16.
Currently, some drivers (e.g, Udmabuf) that want to longterm-pin the
pages/folios associated with a memfd, do so by simply taking a reference
on them. This is not desirable because the pages/folios may reside in
Movable zone or CMA block.
Therefore, having drivers use memfd_pin_folios() API ensures that the
folios are appropriately pinned via FOLL_PIN for longterm DMA.
This patchset also introduces a few helpers and converts the Udmabuf
driver to use folios and memfd_pin_folios() API to longterm-pin the folios
for DMA. Two new Udmabuf selftests are also included to test the driver
and the new API.
This patch (of 9):
These helpers are the folio versions of unpin_user_page/unpin_user_pages.
They are currently only useful for unpinning folios pinned by
memfd_pin_folios() or other associated routines. However, they could find
new uses in the future, when more and more folio-only helpers are added to
GUP.
We should probably sanity check the folio as part of unpin similar to how
it is done in unpin_user_page/unpin_user_pages but we cannot cleanly do
that at the moment without also checking the subpage. Therefore, sanity
checking needs to be added to these routines once we have a way to
determine if any given folio is anon-exclusive (via a per folio
AnonExclusive flag).
Link: https://lkml.kernel.org/r/20240624063952.1572359-1-vivek.kasireddy@intel.com
Link: https://lkml.kernel.org/r/20240624063952.1572359-2-vivek.kasireddy@intel.com
Signed-off-by: Vivek Kasireddy <vivek.kasireddy@intel.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Dave Airlie <airlied@redhat.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Dongwon Kim <dongwon.kim@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Junxiao Chang <junxiao.chang@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
crashes from deferred split racing folio migration", needed by "mm:
migrate: split folio_migrate_mapping()".
|
|
A kernel warning was reported when pinning folio in CMA memory when
launching SEV virtual machine. The splat looks like:
[ 464.325306] WARNING: CPU: 13 PID: 6734 at mm/gup.c:1313 __get_user_pages+0x423/0x520
[ 464.325464] CPU: 13 PID: 6734 Comm: qemu-kvm Kdump: loaded Not tainted 6.6.33+ #6
[ 464.325477] RIP: 0010:__get_user_pages+0x423/0x520
[ 464.325515] Call Trace:
[ 464.325520] <TASK>
[ 464.325523] ? __get_user_pages+0x423/0x520
[ 464.325528] ? __warn+0x81/0x130
[ 464.325536] ? __get_user_pages+0x423/0x520
[ 464.325541] ? report_bug+0x171/0x1a0
[ 464.325549] ? handle_bug+0x3c/0x70
[ 464.325554] ? exc_invalid_op+0x17/0x70
[ 464.325558] ? asm_exc_invalid_op+0x1a/0x20
[ 464.325567] ? __get_user_pages+0x423/0x520
[ 464.325575] __gup_longterm_locked+0x212/0x7a0
[ 464.325583] internal_get_user_pages_fast+0xfb/0x190
[ 464.325590] pin_user_pages_fast+0x47/0x60
[ 464.325598] sev_pin_memory+0xca/0x170 [kvm_amd]
[ 464.325616] sev_mem_enc_register_region+0x81/0x130 [kvm_amd]
Per the analysis done by yangge, when starting the SEV virtual machine, it
will call pin_user_pages_fast(..., FOLL_LONGTERM, ...) to pin the memory.
But the page is in CMA area, so fast GUP will fail then fallback to the
slow path due to the longterm pinnalbe check in try_grab_folio().
The slow path will try to pin the pages then migrate them out of CMA area.
But the slow path also uses try_grab_folio() to pin the page, it will
also fail due to the same check then the above warning is triggered.
In addition, the try_grab_folio() is supposed to be used in fast path and
it elevates folio refcount by using add ref unless zero. We are guaranteed
to have at least one stable reference in slow path, so the simple atomic add
could be used. The performance difference should be trivial, but the
misuse may be confusing and misleading.
Redefined try_grab_folio() to try_grab_folio_fast(), and try_grab_page()
to try_grab_folio(), and use them in the proper paths. This solves both
the abuse and the kernel warning.
The proper naming makes their usecase more clear and should prevent from
abusing in the future.
peterx said:
: The user will see the pin fails, for gpu-slow it further triggers the WARN
: right below that failure (as in the original report):
:
: folio = try_grab_folio(page, page_increm - 1,
: foll_flags);
: if (WARN_ON_ONCE(!folio)) { <------------------------ here
: /*
: * Release the 1st page ref if the
: * folio is problematic, fail hard.
: */
: gup_put_folio(page_folio(page), 1,
: foll_flags);
: ret = -EFAULT;
: goto out;
: }
[1] https://lore.kernel.org/linux-mm/1719478388-31917-1-git-send-email-yangge1116@126.com/
[shy828301@gmail.com: fix implicit declaration of function try_grab_folio_fast]
Link: https://lkml.kernel.org/r/CAHbLzkowMSso-4Nufc9hcMehQsK9PNz3OSu-+eniU-2Mm-xjhA@mail.gmail.com
Link: https://lkml.kernel.org/r/20240628191458.2605553-1-yang@os.amperecomputing.com
Fixes: 57edfcfd3419 ("mm/gup: accelerate thp gup even for "pages != NULL"")
Signed-off-by: Yang Shi <yang@os.amperecomputing.com>
Reported-by: yangge <yangge1116@126.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org> [6.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The below bug was reported on a non-SMP kernel:
[ 275.267158][ T4335] ------------[ cut here ]------------
[ 275.267949][ T4335] kernel BUG at include/linux/page_ref.h:275!
[ 275.268526][ T4335] invalid opcode: 0000 [#1] KASAN PTI
[ 275.269001][ T4335] CPU: 0 PID: 4335 Comm: trinity-c3 Not tainted 6.7.0-rc4-00061-gefa7df3e3bb5 #1
[ 275.269787][ T4335] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
[ 275.270679][ T4335] RIP: 0010:try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.272813][ T4335] RSP: 0018:ffffc90005dcf650 EFLAGS: 00010202
[ 275.273346][ T4335] RAX: 0000000000000246 RBX: ffffea00066e0000 RCX: 0000000000000000
[ 275.274032][ T4335] RDX: fffff94000cdc007 RSI: 0000000000000004 RDI: ffffea00066e0034
[ 275.274719][ T4335] RBP: ffffea00066e0000 R08: 0000000000000000 R09: fffff94000cdc006
[ 275.275404][ T4335] R10: ffffea00066e0037 R11: 0000000000000000 R12: 0000000000000136
[ 275.276106][ T4335] R13: ffffea00066e0034 R14: dffffc0000000000 R15: ffffea00066e0008
[ 275.276790][ T4335] FS: 00007fa2f9b61740(0000) GS:ffffffff89d0d000(0000) knlGS:0000000000000000
[ 275.277570][ T4335] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 275.278143][ T4335] CR2: 00007fa2f6c00000 CR3: 0000000134b04000 CR4: 00000000000406f0
[ 275.278833][ T4335] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 275.279521][ T4335] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 275.280201][ T4335] Call Trace:
[ 275.280499][ T4335] <TASK>
[ 275.280751][ T4335] ? die (arch/x86/kernel/dumpstack.c:421 arch/x86/kernel/dumpstack.c:434 arch/x86/kernel/dumpstack.c:447)
[ 275.281087][ T4335] ? do_trap (arch/x86/kernel/traps.c:112 arch/x86/kernel/traps.c:153)
[ 275.281463][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.281884][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.282300][ T4335] ? do_error_trap (arch/x86/kernel/traps.c:174)
[ 275.282711][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.283129][ T4335] ? handle_invalid_op (arch/x86/kernel/traps.c:212)
[ 275.283561][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.283990][ T4335] ? exc_invalid_op (arch/x86/kernel/traps.c:264)
[ 275.284415][ T4335] ? asm_exc_invalid_op (arch/x86/include/asm/idtentry.h:568)
[ 275.284859][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3))
[ 275.285278][ T4335] try_grab_folio (mm/gup.c:148)
[ 275.285684][ T4335] __get_user_pages (mm/gup.c:1297 (discriminator 1))
[ 275.286111][ T4335] ? __pfx___get_user_pages (mm/gup.c:1188)
[ 275.286579][ T4335] ? __pfx_validate_chain (kernel/locking/lockdep.c:3825)
[ 275.287034][ T4335] ? mark_lock (kernel/locking/lockdep.c:4656 (discriminator 1))
[ 275.287416][ T4335] __gup_longterm_locked (mm/gup.c:1509 mm/gup.c:2209)
[ 275.288192][ T4335] ? __pfx___gup_longterm_locked (mm/gup.c:2204)
[ 275.288697][ T4335] ? __pfx_lock_acquire (kernel/locking/lockdep.c:5722)
[ 275.289135][ T4335] ? __pfx___might_resched (kernel/sched/core.c:10106)
[ 275.289595][ T4335] pin_user_pages_remote (mm/gup.c:3350)
[ 275.290041][ T4335] ? __pfx_pin_user_pages_remote (mm/gup.c:3350)
[ 275.290545][ T4335] ? find_held_lock (kernel/locking/lockdep.c:5244 (discriminator 1))
[ 275.290961][ T4335] ? mm_access (kernel/fork.c:1573)
[ 275.291353][ T4335] process_vm_rw_single_vec+0x142/0x360
[ 275.291900][ T4335] ? __pfx_process_vm_rw_single_vec+0x10/0x10
[ 275.292471][ T4335] ? mm_access (kernel/fork.c:1573)
[ 275.292859][ T4335] process_vm_rw_core+0x272/0x4e0
[ 275.293384][ T4335] ? hlock_class (arch/x86/include/asm/bitops.h:227 arch/x86/include/asm/bitops.h:239 include/asm-generic/bitops/instrumented-non-atomic.h:142 kernel/locking/lockdep.c:228)
[ 275.293780][ T4335] ? __pfx_process_vm_rw_core+0x10/0x10
[ 275.294350][ T4335] process_vm_rw (mm/process_vm_access.c:284)
[ 275.294748][ T4335] ? __pfx_process_vm_rw (mm/process_vm_access.c:259)
[ 275.295197][ T4335] ? __task_pid_nr_ns (include/linux/rcupdate.h:306 (discriminator 1) include/linux/rcupdate.h:780 (discriminator 1) kernel/pid.c:504 (discriminator 1))
[ 275.295634][ T4335] __x64_sys_process_vm_readv (mm/process_vm_access.c:291)
[ 275.296139][ T4335] ? syscall_enter_from_user_mode (kernel/entry/common.c:94 kernel/entry/common.c:112)
[ 275.296642][ T4335] do_syscall_64 (arch/x86/entry/common.c:51 (discriminator 1) arch/x86/entry/common.c:82 (discriminator 1))
[ 275.297032][ T4335] ? __task_pid_nr_ns (include/linux/rcupdate.h:306 (discriminator 1) include/linux/rcupdate.h:780 (discriminator 1) kernel/pid.c:504 (discriminator 1))
[ 275.297470][ T4335] ? lockdep_hardirqs_on_prepare (kernel/locking/lockdep.c:4300 kernel/locking/lockdep.c:4359)
[ 275.297988][ T4335] ? do_syscall_64 (arch/x86/include/asm/cpufeature.h:171 arch/x86/entry/common.c:97)
[ 275.298389][ T4335] ? lockdep_hardirqs_on_prepare (kernel/locking/lockdep.c:4300 kernel/locking/lockdep.c:4359)
[ 275.298906][ T4335] ? do_syscall_64 (arch/x86/include/asm/cpufeature.h:171 arch/x86/entry/common.c:97)
[ 275.299304][ T4335] ? do_syscall_64 (arch/x86/include/asm/cpufeature.h:171 arch/x86/entry/common.c:97)
[ 275.299703][ T4335] ? do_syscall_64 (arch/x86/include/asm/cpufeature.h:171 arch/x86/entry/common.c:97)
[ 275.300115][ T4335] entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:129)
This BUG is the VM_BUG_ON(!in_atomic() && !irqs_disabled()) assertion in
folio_ref_try_add_rcu() for non-SMP kernel.
The process_vm_readv() calls GUP to pin the THP. An optimization for
pinning THP instroduced by commit 57edfcfd3419 ("mm/gup: accelerate thp
gup even for "pages != NULL"") calls try_grab_folio() to pin the THP,
but try_grab_folio() is supposed to be called in atomic context for
non-SMP kernel, for example, irq disabled or preemption disabled, due to
the optimization introduced by commit e286781d5f2e ("mm: speculative
page references").
The commit efa7df3e3bb5 ("mm: align larger anonymous mappings on THP
boundaries") is not actually the root cause although it was bisected to.
It just makes the problem exposed more likely.
The follow up discussion suggested the optimization for non-SMP kernel
may be out-dated and not worth it anymore [1]. So removing the
optimization to silence the BUG.
However calling try_grab_folio() in GUP slow path actually is
unnecessary, so the following patch will clean this up.
[1] https://lore.kernel.org/linux-mm/821cf1d6-92b9-4ac4-bacc-d8f2364ac14f@paulmck-laptop/
Link: https://lkml.kernel.org/r/20240625205350.1777481-1-yang@os.amperecomputing.com
Fixes: 57edfcfd3419 ("mm/gup: accelerate thp gup even for "pages != NULL"")
Signed-off-by: Yang Shi <yang@os.amperecomputing.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Tested-by: Oliver Sang <oliver.sang@intel.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vivek Kasireddy <vivek.kasireddy@intel.com>
Cc: <stable@vger.kernel.org> [6.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
There are no more users of page_mkclean(), remove it and update the
document and comment.
Link: https://lkml.kernel.org/r/20240604114822.2089819-5-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Helge Deller <deller@gmx.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers and
utilize them", v2.
This patchset introduces the pte_need_soft_dirty_wp and
pmd_need_soft_dirty_wp helpers to determine if write protection is
required for softdirty tracking. These helpers enhance code readability
and improve the overall appearance.
They are then utilized in gup, mprotect, swap, and other related
functions.
This patch (of 2):
This patch introduces the pte_needs_soft_dirty_wp and
pmd_needs_soft_dirty_wp helpers to determine if write protection is
required for softdirty tracking. This can enhance code readability and
improve its overall appearance. These new helpers are then utilized in
gup, huge_memory, and mprotect.
Link: https://lkml.kernel.org/r/20240607211358.4660-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20240607211358.4660-2-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Kairui Song <kasong@tencent.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Commit a12083d721d7 added hugepd handling for gup-slow, reusing gup-fast
functions. follow_hugepd() correctly took the vma pointer in, however
didn't pass it over into the lower functions, which was overlooked.
The issue is gup_fast_hugepte() uses the vma pointer to make the correct
decision on whether an unshare is needed for a FOLL_PIN|FOLL_LONGTERM.
Now without vma ponter it will constantly return "true" (needs an unshare)
for a page cache, even though in the SHARED case it will be wrong to
unshare.
The other problem is, even if an unshare is needed, it now returns 0
rather than -EMLINK, which will not trigger a follow up FAULT_FLAG_UNSHARE
fault. That will need to be fixed too when the unshare is wanted.
gup_longterm test didn't expose this issue in the past because it didn't
yet test R/O unshare in this case, another separate patch will enable that
in future tests.
Fix it by passing vma correctly to the bottom, rename gup_fast_hugepte()
back to gup_hugepte() as it is shared between the fast/slow paths, and
also allow -EMLINK to be returned properly by gup_hugepte() even though
gup-fast will take it the same as zero.
Link: https://lkml.kernel.org/r/20240430131303.264331-1-peterx@redhat.com
Fixes: a12083d721d7 ("mm/gup: handle hugepd for follow_page()")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Use try_grab_folio() instead of try_grab_page() so we get the folio back
that we calculated, and then use folio_set_referenced() instead of
SetPageReferenced(). Correspondingly, use gup_put_folio() to put any
unneeded references.
Link: https://lkml.kernel.org/r/20240424191914.361554-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
All callers have a folio so we can remove this use of
page_ref_sub_return().
Link: https://lkml.kernel.org/r/20240424191914.361554-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Nowadays, we call it "GUP-fast", the external interface includes functions
like "get_user_pages_fast()", and we renamed all internal functions to
reflect that as well.
Let's make the config option reflect that.
Link: https://lkml.kernel.org/r/20240402125516.223131-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm/gup: consistently call it GUP-fast".
Some cleanups around function names, comments and the config option of
"GUP-fast" -- GUP without "lock" safety belts on.
With this cleanup it's easy to judge which functions are GUP-fast
specific. We now consistently call it "GUP-fast", avoiding mixing it with
"fast GUP", "lockless", or simply "gup" (which I always considered
confusing in the ode).
So the magic now happens in functions that contain "gup_fast", whereby
gup_fast() is the entry point into that magic. Comments consistently
reference either "GUP-fast" or "gup_fast()".
This patch (of 3):
Let's consistently call the "fast-only" part of GUP "GUP-fast" and rename
all relevant internal functions to start with "gup_fast", to make it
clearer that this is not ordinary GUP. The current mixture of "lockless",
"gup" and "gup_fast" is confusing.
Further, avoid the term "huge" when talking about a "leaf" -- for example,
we nowadays check pmd_leaf() because pmd_huge() is gone. For the
"hugepd"/"hugepte" stuff, it's part of the name ("is_hugepd"), so that
stays.
What remains is the "external" interface:
* get_user_pages_fast_only()
* get_user_pages_fast()
* pin_user_pages_fast()
The high-level internal functions for GUP-fast (+slow fallback) are now:
* internal_get_user_pages_fast() -> gup_fast_fallback()
* lockless_pages_from_mm() -> gup_fast()
The basic GUP-fast walker functions:
* gup_pgd_range() -> gup_fast_pgd_range()
* gup_p4d_range() -> gup_fast_p4d_range()
* gup_pud_range() -> gup_fast_pud_range()
* gup_pmd_range() -> gup_fast_pmd_range()
* gup_pte_range() -> gup_fast_pte_range()
* gup_huge_pgd() -> gup_fast_pgd_leaf()
* gup_huge_pud() -> gup_fast_pud_leaf()
* gup_huge_pmd() -> gup_fast_pmd_leaf()
The weird hugepd stuff:
* gup_huge_pd() -> gup_fast_hugepd()
* gup_hugepte() -> gup_fast_hugepte()
The weird devmap stuff:
* __gup_device_huge_pud() -> gup_fast_devmap_pud_leaf()
* __gup_device_huge_pmd -> gup_fast_devmap_pmd_leaf()
* __gup_device_huge() -> gup_fast_devmap_leaf()
* undo_dev_pagemap() -> gup_fast_undo_dev_pagemap()
Helper functions:
* unpin_user_pages_lockless() -> gup_fast_unpin_user_pages()
* gup_fast_folio_allowed() is already properly named
* gup_fast_permitted() is already properly named
With "gup_fast()", we now even have a function that is referred to in
comment in mm/mmu_gather.c.
Link: https://lkml.kernel.org/r/20240402125516.223131-1-david@redhat.com
Link: https://lkml.kernel.org/r/20240402125516.223131-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Now follow_page() is ready to handle hugetlb pages in whatever form, and
over all architectures. Switch to the generic code path.
Time to retire hugetlb_follow_page_mask(), following the previous
retirement of follow_hugetlb_page() in 4849807114b8.
There may be a slight difference of how the loops run when processing slow
GUP over a large hugetlb range on cont_pte/cont_pmd supported archs: each
loop of __get_user_pages() will resolve one pgtable entry with the patch
applied, rather than relying on the size of hugetlb hstate, the latter may
cover multiple entries in one loop.
A quick performance test on an aarch64 VM on M1 chip shows 15% degrade
over a tight loop of slow gup after the path switched. That shouldn't be
a problem because slow-gup should not be a hot path for GUP in general:
when page is commonly present, fast-gup will already succeed, while when
the page is indeed missing and require a follow up page fault, the slow
gup degrade will probably buried in the fault paths anyway. It also
explains why slow gup for THP used to be very slow before 57edfcfd3419
("mm/gup: accelerate thp gup even for "pages != NULL"") lands, the latter
not part of a performance analysis but a side benefit. If the performance
will be a concern, we can consider handle CONT_PTE in follow_page().
Before that is justified to be necessary, keep everything clean and simple.
Link: https://lkml.kernel.org/r/20240327152332.950956-14-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Tested-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Jones <andrew.jones@linux.dev>
Cc: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Hugepd is only used in PowerPC so far on 4K page size kernels where hash
mmu is used. follow_page_mask() used to leverage hugetlb APIs to access
hugepd entries. Teach follow_page_mask() itself on hugepd.
With previous refactors on fast-gup gup_huge_pd(), most of the code can be
leveraged. There's something not needed for follow page, for example,
gup_hugepte() tries to detect pgtable entry change which will never happen
with slow gup (which has the pgtable lock held), but that's not a problem
to check.
Since follow_page() always only fetch one page, set the end to "address +
PAGE_SIZE" should suffice. We will still do the pgtable walk once for
each hugetlb page by setting ctx->page_mask properly.
One thing worth mentioning is that some level of pgtable's _bad() helper
will report is_hugepd() entries as TRUE on Power8 hash MMUs. I think it
at least applies to PUD on Power8 with 4K pgsize. It means feeding a
hugepd entry to pud_bad() will report a false positive. Let's leave that
for now because it can be arch-specific where I am a bit declined to
touch. In this patch it's not a problem as long as hugepd is detected
before any bad pgtable entries.
To allow slow gup like follow_*_page() to access hugepd helpers, hugepd
codes are moved to the top. Besides that, the helper record_subpages()
will be used by either hugepd or fast-gup now. To avoid "unused function"
warnings we must provide a "#ifdef" for it, unfortunately.
Link: https://lkml.kernel.org/r/20240327152332.950956-13-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Tested-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Jones <andrew.jones@linux.dev>
Cc: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Replace pmd_trans_huge() with pmd_leaf() to also cover pmd_huge() as long
as enabled.
FOLL_TOUCH and FOLL_SPLIT_PMD only apply to THP, not yet huge.
Since now follow_trans_huge_pmd() can process hugetlb pages, renaming it
into follow_huge_pmd() to match what it does. Move it into gup.c so not
depend on CONFIG_THP.
When at it, move the ctx->page_mask setup into follow_huge_pmd(), only set
it when the page is valid. It was not a bug to set it before even if GUP
failed (page==NULL), because follow_page_mask() callers always ignores
page_mask if so. But doing so makes the code cleaner.
[peterx@redhat.com: allow follow_pmd_mask() to take hugetlb tail pages]
Link: https://lkml.kernel.org/r/20240403013249.1418299-3-peterx@redhat.com
Link: https://lkml.kernel.org/r/20240327152332.950956-12-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Tested-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Jones <andrew.jones@linux.dev>
Cc: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Teach follow_pud_mask() to be able to handle normal PUD pages like
hugetlb.
Rename follow_devmap_pud() to follow_huge_pud() so that it can process
either huge devmap or hugetlb. Move it out of TRANSPARENT_HUGEPAGE_PUD
and and huge_memory.c (which relies on CONFIG_THP). Switch to pud_leaf()
to detect both cases in the slow gup.
In the new follow_huge_pud(), taking care of possible CoR for hugetlb if
necessary. touch_pud() needs to be moved out of huge_memory.c to be
accessable from gup.c even if !THP.
Since at it, optimize the non-present check by adding a pud_present()
early check before taking the pgtable lock, failing the follow_page()
early if PUD is not present: that is required by both devmap or hugetlb.
Use pud_huge() to also cover the pud_devmap() case.
One more trivial thing to mention is, introduce "pud_t pud" in the code
paths along the way, so the code doesn't dereference *pudp multiple time.
Not only because that looks less straightforward, but also because if the
dereference really happened, it's not clear whether there can be race to
see different *pudp values when it's being modified at the same time.
Setting ctx->page_mask properly for a PUD entry. As a side effect, this
patch should also be able to optimize devmap GUP on PUD to be able to jump
over the whole PUD range, but not yet verified. Hugetlb already can do so
prior to this patch.
Link: https://lkml.kernel.org/r/20240327152332.950956-11-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Tested-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Jones <andrew.jones@linux.dev>
Cc: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Mike Rapoport (IBM)" <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|