summaryrefslogtreecommitdiff
path: root/mm/mempolicy.c
AgeCommit message (Collapse)Author
2025-04-01Merge tag 'mm-stable-2025-03-30-16-52' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - The series "Enable strict percpu address space checks" from Uros Bizjak uses x86 named address space qualifiers to provide compile-time checking of percpu area accesses. This has caused a small amount of fallout - two or three issues were reported. In all cases the calling code was found to be incorrect. - The series "Some cleanup for memcg" from Chen Ridong implements some relatively monir cleanups for the memcontrol code. - The series "mm: fixes for device-exclusive entries (hmm)" from David Hildenbrand fixes a boatload of issues which David found then using device-exclusive PTE entries when THP is enabled. More work is needed, but this makes thins better - our own HMM selftests now succeed. - The series "mm: zswap: remove z3fold and zbud" from Yosry Ahmed remove the z3fold and zbud implementations. They have been deprecated for half a year and nobody has complained. - The series "mm: further simplify VMA merge operation" from Lorenzo Stoakes implements numerous simplifications in this area. No runtime effects are anticipated. - The series "mm/madvise: remove redundant mmap_lock operations from process_madvise()" from SeongJae Park rationalizes the locking in the madvise() implementation. Performance gains of 20-25% were observed in one MADV_DONTNEED microbenchmark. - The series "Tiny cleanup and improvements about SWAP code" from Baoquan He contains a number of touchups to issues which Baoquan noticed when working on the swap code. - The series "mm: kmemleak: Usability improvements" from Catalin Marinas implements a couple of improvements to the kmemleak user-visible output. - The series "mm/damon/paddr: fix large folios access and schemes handling" from Usama Arif provides a couple of fixes for DAMON's handling of large folios. - The series "mm/damon/core: fix wrong and/or useless damos_walk() behaviors" from SeongJae Park fixes a few issues with the accuracy of kdamond's walking of DAMON regions. - The series "expose mapping wrprotect, fix fb_defio use" from Lorenzo Stoakes changes the interaction between framebuffer deferred-io and core MM. No functional changes are anticipated - this is preparatory work for the future removal of page structure fields. - The series "mm/damon: add support for hugepage_size DAMOS filter" from Usama Arif adds a DAMOS filter which permits the filtering by huge page sizes. - The series "mm: permit guard regions for file-backed/shmem mappings" from Lorenzo Stoakes extends the guard region feature from its present "anon mappings only" state. The feature now covers shmem and file-backed mappings. - The series "mm: batched unmap lazyfree large folios during reclamation" from Barry Song cleans up and speeds up the unmapping for pte-mapped large folios. - The series "reimplement per-vma lock as a refcount" from Suren Baghdasaryan puts the vm_lock back into the vma. Our reasons for pulling it out were largely bogus and that change made the code more messy. This patchset provides small (0-10%) improvements on one microbenchmark. - The series "Docs/mm/damon: misc DAMOS filters documentation fixes and improves" from SeongJae Park does some maintenance work on the DAMON docs. - The series "hugetlb/CMA improvements for large systems" from Frank van der Linden addresses a pile of issues which have been observed when using CMA on large machines. - The series "mm/damon: introduce DAMOS filter type for unmapped pages" from SeongJae Park enables users of DMAON/DAMOS to filter my the page's mapped/unmapped status. - The series "zsmalloc/zram: there be preemption" from Sergey Senozhatsky teaches zram to run its compression and decompression operations preemptibly. - The series "selftests/mm: Some cleanups from trying to run them" from Brendan Jackman fixes a pile of unrelated issues which Brendan encountered while runnimg our selftests. - The series "fs/proc/task_mmu: add guard region bit to pagemap" from Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to determine whether a particular page is a guard page. - The series "mm, swap: remove swap slot cache" from Kairui Song removes the swap slot cache from the allocation path - it simply wasn't being effective. - The series "mm: cleanups for device-exclusive entries (hmm)" from David Hildenbrand implements a number of unrelated cleanups in this code. - The series "mm: Rework generic PTDUMP configs" from Anshuman Khandual implements a number of preparatoty cleanups to the GENERIC_PTDUMP Kconfig logic. - The series "mm/damon: auto-tune aggregation interval" from SeongJae Park implements a feedback-driven automatic tuning feature for DAMON's aggregation interval tuning. - The series "Fix lazy mmu mode" from Ryan Roberts fixes some issues in powerpc, sparc and x86 lazy MMU implementations. Ryan did this in preparation for implementing lazy mmu mode for arm64 to optimize vmalloc. - The series "mm/page_alloc: Some clarifications for migratetype fallback" from Brendan Jackman reworks some commentary to make the code easier to follow. - The series "page_counter cleanup and size reduction" from Shakeel Butt cleans up the page_counter code and fixes a size increase which we accidentally added late last year. - The series "Add a command line option that enables control of how many threads should be used to allocate huge pages" from Thomas Prescher does that. It allows the careful operator to significantly reduce boot time by tuning the parallalization of huge page initialization. - The series "Fix calculations in trace_balance_dirty_pages() for cgwb" from Tang Yizhou fixes the tracing output from the dirty page balancing code. - The series "mm/damon: make allow filters after reject filters useful and intuitive" from SeongJae Park improves the handling of allow and reject filters. Behaviour is made more consistent and the documention is updated accordingly. - The series "Switch zswap to object read/write APIs" from Yosry Ahmed updates zswap to the new object read/write APIs and thus permits the removal of some legacy code from zpool and zsmalloc. - The series "Some trivial cleanups for shmem" from Baolin Wang does as it claims. - The series "fs/dax: Fix ZONE_DEVICE page reference counts" from Alistair Popple regularizes the weird ZONE_DEVICE page refcount handling in DAX, permittig the removal of a number of special-case checks. - The series "refactor mremap and fix bug" from Lorenzo Stoakes is a preparatoty refactoring and cleanup of the mremap() code. - The series "mm: MM owner tracking for large folios (!hugetlb) + CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in which we determine whether a large folio is known to be mapped exclusively into a single MM. - The series "mm/damon: add sysfs dirs for managing DAMOS filters based on handling layers" from SeongJae Park adds a couple of new sysfs directories to ease the management of DAMON/DAMOS filters. - The series "arch, mm: reduce code duplication in mem_init()" from Mike Rapoport consolidates many per-arch implementations of mem_init() into code generic code, where that is practical. - The series "mm/damon/sysfs: commit parameters online via damon_call()" from SeongJae Park continues the cleaning up of sysfs access to DAMON internal data. - The series "mm: page_ext: Introduce new iteration API" from Luiz Capitulino reworks the page_ext initialization to fix a boot-time crash which was observed with an unusual combination of compile and cmdline options. - The series "Buddy allocator like (or non-uniform) folio split" from Zi Yan reworks the code to split a folio into smaller folios. The main benefit is lessened memory consumption: fewer post-split folios are generated. - The series "Minimize xa_node allocation during xarry split" from Zi Yan reduces the number of xarray xa_nodes which are generated during an xarray split. - The series "drivers/base/memory: Two cleanups" from Gavin Shan performs some maintenance work on the drivers/base/memory code. - The series "Add tracepoints for lowmem reserves, watermarks and totalreserve_pages" from Martin Liu adds some more tracepoints to the page allocator code. - The series "mm/madvise: cleanup requests validations and classifications" from SeongJae Park cleans up some warts which SeongJae observed during his earlier madvise work. - The series "mm/hwpoison: Fix regressions in memory failure handling" from Shuai Xue addresses two quite serious regressions which Shuai has observed in the memory-failure implementation. - The series "mm: reliable huge page allocator" from Johannes Weiner makes huge page allocations cheaper and more reliable by reducing fragmentation. - The series "Minor memcg cleanups & prep for memdescs" from Matthew Wilcox is preparatory work for the future implementation of memdescs. - The series "track memory used by balloon drivers" from Nico Pache introduces a way to track memory used by our various balloon drivers. - The series "mm/damon: introduce DAMOS filter type for active pages" from Nhat Pham permits users to filter for active/inactive pages, separately for file and anon pages. - The series "Adding Proactive Memory Reclaim Statistics" from Hao Jia separates the proactive reclaim statistics from the direct reclaim statistics. - The series "mm/vmscan: don't try to reclaim hwpoison folio" from Jinjiang Tu fixes our handling of hwpoisoned pages within the reclaim code. * tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (431 commits) mm/page_alloc: remove unnecessary __maybe_unused in order_to_pindex() x86/mm: restore early initialization of high_memory for 32-bits mm/vmscan: don't try to reclaim hwpoison folio mm/hwpoison: introduce folio_contain_hwpoisoned_page() helper cgroup: docs: add pswpin and pswpout items in cgroup v2 doc mm: vmscan: split proactive reclaim statistics from direct reclaim statistics selftests/mm: speed up split_huge_page_test selftests/mm: uffd-unit-tests support for hugepages > 2M docs/mm/damon/design: document active DAMOS filter type mm/damon: implement a new DAMOS filter type for active pages fs/dax: don't disassociate zero page entries MM documentation: add "Unaccepted" meminfo entry selftests/mm: add commentary about 9pfs bugs fork: use __vmalloc_node() for stack allocation docs/mm: Physical Memory: Populate the "Zones" section xen: balloon: update the NR_BALLOON_PAGES state hv_balloon: update the NR_BALLOON_PAGES state balloon_compaction: update the NR_BALLOON_PAGES state meminfo: add a per node counter for balloon drivers mm: remove references to folio in __memcg_kmem_uncharge_page() ...
2025-03-24Merge tag 'sched_ext-for-6.15' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext Pull sched_ext updates from Tejun Heo: - Add mechanism to count and report internal events. This significantly improves visibility on subtle corner conditions. - The default idle CPU selection logic is revamped and improved in multiple ways including being made topology aware. - sched_ext was disabling ttwu_queue for simplicity, which can be costly when hardware topology is more complex. Implement SCX_OPS_ALLOWED_QUEUED_WAKEUP so that BPF schedulers can selectively enable ttwu_queue. - tools/sched_ext updates to improve compatibility among others. - Other misc updates and fixes. - sched_ext/for-6.14-fixes were pulled a few times to receive prerequisite fixes and resolve conflicts. * tag 'sched_ext-for-6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/sched_ext: (42 commits) sched_ext: idle: Refactor scx_select_cpu_dfl() sched_ext: idle: Honor idle flags in the built-in idle selection policy sched_ext: Skip per-CPU tasks in scx_bpf_reenqueue_local() sched_ext: Add trace point to track sched_ext core events sched_ext: Change the event type from u64 to s64 sched_ext: Documentation: add task lifecycle summary tools/sched_ext: Provide a compatible helper for scx_bpf_events() selftests/sched_ext: Add NUMA-aware scheduler test tools/sched_ext: Provide consistent access to scx flags sched_ext: idle: Fix scx_bpf_pick_any_cpu_node() behavior sched_ext: idle: Introduce scx_bpf_nr_node_ids() sched_ext: idle: Introduce node-aware idle cpu kfunc helpers sched_ext: idle: Per-node idle cpumasks sched_ext: idle: Introduce SCX_OPS_BUILTIN_IDLE_PER_NODE sched_ext: idle: Make idle static keys private sched/topology: Introduce for_each_node_numadist() iterator mm/numa: Introduce nearest_node_nodemask() nodemask: numa: reorganize inclusion path nodemask: add nodes_copy() tools/sched_ext: Sync with scx repo ...
2025-03-17mm: convert folio_likely_mapped_shared() to folio_maybe_mapped_shared()David Hildenbrand
Let's reuse our new MM ownership tracking infrastructure for large folios to make folio_likely_mapped_shared() never return false negatives -- never indicating "not mapped shared" although the folio *is* mapped shared. With that, we can rename it to folio_maybe_mapped_shared() and get rid of the dependency on the mapcount of the first folio page. The semantics are now arguably clearer: no mixture of "false negatives" and "false positives", only the remaining possibility for "false positives". Thoroughly document the new semantics. We might now detect that a large folio is "maybe mapped shared" although it *no longer* is -- but once was. Now, if more than two MMs mapped a folio at the same time, and the MM mapping the folio exclusively at the end is not one tracked in the two folio MM slots, we will detect the folio as "maybe mapped shared". For anonymous folios, usually (except weird corner cases) all PTEs that target a "maybe mapped shared" folio are R/O. As soon as a child process would write to them (iow, actively use them), we would CoW and effectively replace these PTEs. Most cases (below) are not expected to really matter with large anonymous folios for this reason. Most importantly, there will be no change at all for: * small folios * hugetlb folios * PMD-mapped PMD-sized THPs (single mapping) This change has the potential to affect existing callers of folio_likely_mapped_shared() -> folio_maybe_mapped_shared(): (1) fs/proc/task_mmu.c: no change (hugetlb) (2) khugepaged counts PTEs that target shared folios towards max_ptes_shared (default: HPAGE_PMD_NR / 2), meaning we could skip a collapse where we would have previously collapsed. This only applies to anonymous folios and is not expected to matter in practice. Worth noting that this change sorts out case (A) documented in commit 1bafe96e89f0 ("mm/khugepaged: replace page_mapcount() check by folio_likely_mapped_shared()") by removing the possibility for "false negatives". (3) MADV_COLD / MADV_PAGEOUT / MADV_FREE will not try splitting PTE-mapped THPs that are considered shared but not fully covered by the requested range, consequently not processing them. PMD-mapped PMD-sized THP are not affected, or when all PTEs are covered. These functions are usually only called on anon/file folios that are exclusively mapped most of the time (no other file mappings or no fork()), so the "false negatives" are not expected to matter in practice. (4) mbind() / migrate_pages() / move_pages() will refuse to migrate shared folios unless MPOL_MF_MOVE_ALL is effective (requires CAP_SYS_NICE). We will now reject some folios that could be migrated. Similar to (3), especially with MPOL_MF_MOVE_ALL, so this is not expected to matter in practice. Note that cpuset_migrate_mm_workfn() calls do_migrate_pages() with MPOL_MF_MOVE_ALL. (5) NUMA hinting mm/migrate.c:migrate_misplaced_folio_prepare() will skip file folios that are probably shared libraries (-> "mapped shared" and executable). This check would have detected it as a shared library at some point (at least 3 MMs mapping it), so detecting it afterwards does not sound wrong (still a shared library). Not expected to matter. mm/memory.c:numa_migrate_check() will indicate TNF_SHARED in MAP_SHARED file mappings when encountering a shared folio. Similar reasoning, not expected to matter. mm/mprotect.c:change_pte_range() will skip folios detected as shared in CoW mappings. Similarly, this is not expected to matter in practice, but if it would ever be a problem we could relax that check a bit (e.g., basing it on the average page-mapcount in a folio), because it was only an optimization when many (e.g., 288) processes were mapping the same folios -- see commit 859d4adc3415 ("mm: numa: do not trap faults on shared data section pages.") (6) mm/rmap.c:folio_referenced_one() will skip exclusive swapbacked folios in dying processes. Applies to anonymous folios only. Without "false negatives", we'll now skip all actually shared ones. Skipping ones that are actually exclusive won't really matter, it's a pure optimization, and is not expected to matter in practice. In theory, one can detect the problematic scenario: folio_mapcount() > 0 and no folio MM slot is occupied ("state unknown"). One could reset the MM slots while doing an rmap walk, which migration / folio split already do when setting everything up. Further, when batching PTEs we might naturally learn about a owner (e.g., folio_mapcount() == nr_ptes) and could update the owner. However, we'll defer that until the scenarios where it would really matter are clear. Link: https://lkml.kernel.org/r/20250303163014.1128035-15-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Andy Lutomirks^H^Hski <luto@kernel.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lance Yang <ioworker0@gmail.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Michal Koutn <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: tejun heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-16mm/numa: Introduce nearest_node_nodemask()Andrea Righi
Introduce the new helper nearest_node_nodemask() to find the closest node in a specified nodemask from a given starting node. Returns MAX_NUMNODES if no node is found. Suggested-by: Yury Norov [NVIDIA] <yury.norov@gmail.com> Signed-off-by: Andrea Righi <arighi@nvidia.com> Acked-by: Yury Norov [NVIDIA] <yury.norov@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2025-01-25mm/hugetlb: rename isolate_hugetlb() to folio_isolate_hugetlb()David Hildenbrand
Let's make the function name match "folio_isolate_lru()", and add some kernel doc. Link: https://lkml.kernel.org/r/20250113131611.2554758-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm: alloc_pages_bulk: rename APILuiz Capitulino
The previous commit removed the page_list argument from alloc_pages_bulk_noprof() along with the alloc_pages_bulk_list() function. Now that only the *_array() flavour of the API remains, we can do the following renaming (along with the _noprof() ones): alloc_pages_bulk_array -> alloc_pages_bulk alloc_pages_bulk_array_mempolicy -> alloc_pages_bulk_mempolicy alloc_pages_bulk_array_node -> alloc_pages_bulk_node Link: https://lkml.kernel.org/r/275a3bbc0be20fbe9002297d60045e67ab3d4ada.1734991165.git.luizcap@redhat.com Signed-off-by: Luiz Capitulino <luizcap@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yunsheng Lin <linyunsheng@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm: alloc_pages_bulk_noprof: drop page_list argumentLuiz Capitulino
Patch series "mm: alloc_pages_bulk: small API refactor", v2. Today, alloc_pages_bulk_noprof() supports two arguments to return allocated pages: a linked list and an array. There are also higher level APIs for both. However, the linked list API has apparently never been used. So, this series removes it along with the list API and also refactors the remaining API naming for consistency. This patch (of 2): commit 387ba26fb1cb ("mm/page_alloc: add a bulk page allocator") added __alloc_pages_bulk() along with the page_list argument. The next commit 0f87d9d30f21 ("mm/page_alloc: add an array-based interface to the bulk page allocator") added the array-based argument. As it turns out, the page_list argument has no users in the current tree (if it ever had any). Dropping it allows for a slight simplification and eliminates some unnecessary checks, now that page_array is required. Also, note that the removal of the page_list argument was proposed before in the thread below, where Matthew Wilcox mentions that: """ Iterating a linked list is _expensive_. It is about 10x quicker to iterate an array than a linked list. """ (https://lore.kernel.org/linux-mm/20231025093254.xvomlctwhcuerzky@techsingularity.net) Link: https://lkml.kernel.org/r/cover.1734991165.git.luizcap@redhat.com Link: https://lkml.kernel.org/r/f1c75db91d08cafd211eca6a3b199b629d4ffe16.1734991165.git.luizcap@redhat.com Signed-off-by: Luiz Capitulino <luizcap@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yunsheng Lin <linyunsheng@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-13mm/mempolicy: add alloc_frozen_pages()Matthew Wilcox (Oracle)
Provide an interface to allocate pages from the page allocator without incrementing their refcount. This saves an atomic operation on free, which may be beneficial to some users (eg slab). Link: https://lkml.kernel.org/r/20241125210149.2976098-15-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Hildenbrand <david@redhat.com> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-13mm: make alloc_pages_mpol() staticMatthew Wilcox (Oracle)
All callers outside mempolicy.c now use folio_alloc_mpol() thanks to Kefeng's cleanups, so we can remove this as a visible symbol. And also remove the alloc_hooks for alloc_pages_mpol(), since all users in mempolicy.c are using the nonprof version. Link: https://lkml.kernel.org/r/20241125210149.2976098-3-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-12mm/mempolicy: count MPOL_WEIGHTED_INTERLEAVE to "interleave_hit"Honggyu Kim
Commit fa3bea4e1f82 introduced MPOL_WEIGHTED_INTERLEAVE but it missed adding its counter to "interleave_hit" of numastat, which is located at /sys/devices/system/node/nodeN/ directory. It'd be better to add weighted interleving counter info to the existing "interleave_hit" instead of introducing a new counter "weighted_interleave_hit". Link: https://lkml.kernel.org/r/20241227095737.645-1-honggyu.kim@sk.com Fixes: fa3bea4e1f82 ("mm/mempolicy: introduce MPOL_WEIGHTED_INTERLEAVE for weighted interleaving") Signed-off-by: Honggyu Kim <honggyu.kim@sk.com> Reviewed-by: Gregory Price <gourry@gourry.net> Reviewed-by: Hyeonggon Yoo <hyeonggon.yoo@sk.com> Tested-by: Yunjeong Mun <yunjeong.mun@sk.com> Cc: Andi Kleen <ak@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-12-05mm/mempolicy: fix migrate_to_node() assuming there is at least one VMA in a MMDavid Hildenbrand
We currently assume that there is at least one VMA in a MM, which isn't true. So we might end up having find_vma() return NULL, to then de-reference NULL. So properly handle find_vma() returning NULL. This fixes the report: Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 1 UID: 0 PID: 6021 Comm: syz-executor284 Not tainted 6.12.0-rc7-syzkaller-00187-gf868cd251776 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/30/2024 RIP: 0010:migrate_to_node mm/mempolicy.c:1090 [inline] RIP: 0010:do_migrate_pages+0x403/0x6f0 mm/mempolicy.c:1194 Code: ... RSP: 0018:ffffc9000375fd08 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffffc9000375fd78 RCX: 0000000000000000 RDX: ffff88807e171300 RSI: dffffc0000000000 RDI: ffff88803390c044 RBP: ffff88807e171428 R08: 0000000000000014 R09: fffffbfff2039ef1 R10: ffffffff901cf78f R11: 0000000000000000 R12: 0000000000000003 R13: ffffc9000375fe90 R14: ffffc9000375fe98 R15: ffffc9000375fdf8 FS: 00005555919e1380(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005555919e1ca8 CR3: 000000007f12a000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> kernel_migrate_pages+0x5b2/0x750 mm/mempolicy.c:1709 __do_sys_migrate_pages mm/mempolicy.c:1727 [inline] __se_sys_migrate_pages mm/mempolicy.c:1723 [inline] __x64_sys_migrate_pages+0x96/0x100 mm/mempolicy.c:1723 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f [akpm@linux-foundation.org: add unlikely()] Link: https://lkml.kernel.org/r/20241120201151.9518-1-david@redhat.com Fixes: 39743889aaf7 ("[PATCH] Swap Migration V5: sys_migrate_pages interface") Signed-off-by: David Hildenbrand <david@redhat.com> Reported-by: syzbot+3511625422f7aa637f0d@syzkaller.appspotmail.com Closes: https://lore.kernel.org/lkml/673d2696.050a0220.3c9d61.012f.GAE@google.com/T/ Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Reviewed-by: Christoph Lameter <cl@linux.com> Cc: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-07mm: renovate page_address_in_vma()Matthew Wilcox (Oracle)
This function doesn't modify any of its arguments, so if we make a few other functions take const pointers, we can make page_address_in_vma() take const pointers too. All of its callers have the containing folio already, so pass that in as an argument instead of recalculating it. Also add kernel-doc Link: https://lkml.kernel.org/r/20241005200121.3231142-4-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-06mm: remove unused hugepage for vma_alloc_folio()Kefeng Wang
The hugepage parameter was deprecated since commit ddc1a5cbc05d ("mempolicy: alloc_pages_mpol() for NUMA policy without vma"), for PMD-sized THP, it still tries only preferred node if possible in vma_alloc_folio() by checking the order of the folio allocation. Link: https://lkml.kernel.org/r/20241010061556.1846751-1-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Barry Song <baohua@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-05mm/mempolicy: fix comments for better documentationTanya Agarwal
Fix typo in mempolicy.h and Correct the number of allowed memory policy Link: https://lkml.kernel.org/r/20240926183516.4034-2-tanyaagarwal25699@gmail.com Signed-off-by: Tanya Agarwal <tanyaagarwal25699@gmail.com> Reviewed-by: Shuah Khan <skhan@linuxfoundation.org> Cc: Anup Sharma <anupnewsmail@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03mm,memcg: provide per-cgroup counters for NUMA balancing operationsKaiyang Zhao
The ability to observe the demotion and promotion decisions made by the kernel on a per-cgroup basis is important for monitoring and tuning containerized workloads on machines equipped with tiered memory. Different containers in the system may experience drastically different memory tiering actions that cannot be distinguished from the global counters alone. For example, a container running a workload that has a much hotter memory accesses will likely see more promotions and fewer demotions, potentially depriving a colocated container of top tier memory to such an extent that its performance degrades unacceptably. For another example, some containers may exhibit longer periods between data reuse, causing much more numa_hint_faults than numa_pages_migrated. In this case, tuning hot_threshold_ms may be appropriate, but the signal can easily be lost if only global counters are available. In the long term, we hope to introduce per-cgroup control of promotion and demotion actions to implement memory placement policies in tiering. This patch set adds seven counters to memory.stat in a cgroup: numa_pages_migrated, numa_pte_updates, numa_hint_faults, pgdemote_kswapd, pgdemote_khugepaged, pgdemote_direct and pgpromote_success. pgdemote_* and pgpromote_success are also available in memory.numa_stat. count_memcg_events_mm() is added to count multiple event occurrences at once, and get_mem_cgroup_from_folio() is added because we need to get a reference to the memcg of a folio before it's migrated to track numa_pages_migrated. The accounting of PGDEMOTE_* is moved to shrink_inactive_list() before being changed to per-cgroup. [kaiyang2@cs.cmu.edu: add documentation of the memcg counters in cgroup-v2.rst] Link: https://lkml.kernel.org/r/20240814235122.252309-1-kaiyang2@cs.cmu.edu Link: https://lkml.kernel.org/r/20240814174227.30639-1-kaiyang2@cs.cmu.edu Signed-off-by: Kaiyang Zhao <kaiyang2@cs.cmu.edu> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Wei Xu <weixugc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01mm: improve code consistency with zonelist_* helper functionsWei Yang
Replace direct access to zoneref->zone, zoneref->zone_idx, or zone_to_nid(zoneref->zone) with the corresponding zonelist_* helper functions for consistency. No functional change. Link: https://lkml.kernel.org/r/20240729091717.464-1-shivankg@amd.com Co-developed-by: Shivank Garg <shivankg@amd.com> Signed-off-by: Shivank Garg <shivankg@amd.com> Signed-off-by: Wei Yang <richard.weiyang@gmail.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-24Merge tag 'random-6.11-rc1-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/crng/random Pull random number generator updates from Jason Donenfeld: "This adds getrandom() support to the vDSO. First, it adds a new kind of mapping to mmap(2), MAP_DROPPABLE, which lets the kernel zero out pages anytime under memory pressure, which enables allocating memory that never gets swapped to disk but also doesn't count as being mlocked. Then, the vDSO implementation of getrandom() is introduced in a generic manner and hooked into random.c. Next, this is implemented on x86. (Also, though it's not ready for this pull, somebody has begun an arm64 implementation already) Finally, two vDSO selftests are added. There are also two housekeeping cleanup commits" * tag 'random-6.11-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: MAINTAINERS: add random.h headers to RNG subsection random: note that RNDGETPOOL was removed in 2.6.9-rc2 selftests/vDSO: add tests for vgetrandom x86: vdso: Wire up getrandom() vDSO implementation random: introduce generic vDSO getrandom() implementation mm: add MAP_DROPPABLE for designating always lazily freeable mappings
2024-07-19mm: add MAP_DROPPABLE for designating always lazily freeable mappingsJason A. Donenfeld
The vDSO getrandom() implementation works with a buffer allocated with a new system call that has certain requirements: - It shouldn't be written to core dumps. * Easy: VM_DONTDUMP. - It should be zeroed on fork. * Easy: VM_WIPEONFORK. - It shouldn't be written to swap. * Uh-oh: mlock is rlimited. * Uh-oh: mlock isn't inherited by forks. - It shouldn't reserve actual memory, but it also shouldn't crash when page faulting in memory if none is available * Uh-oh: VM_NORESERVE means segfaults. It turns out that the vDSO getrandom() function has three really nice characteristics that we can exploit to solve this problem: 1) Due to being wiped during fork(), the vDSO code is already robust to having the contents of the pages it reads zeroed out midway through the function's execution. 2) In the absolute worst case of whatever contingency we're coding for, we have the option to fallback to the getrandom() syscall, and everything is fine. 3) The buffers the function uses are only ever useful for a maximum of 60 seconds -- a sort of cache, rather than a long term allocation. These characteristics mean that we can introduce VM_DROPPABLE, which has the following semantics: a) It never is written out to swap. b) Under memory pressure, mm can just drop the pages (so that they're zero when read back again). c) It is inherited by fork. d) It doesn't count against the mlock budget, since nothing is locked. e) If there's not enough memory to service a page fault, it's not fatal, and no signal is sent. This way, allocations used by vDSO getrandom() can use: VM_DROPPABLE | VM_DONTDUMP | VM_WIPEONFORK | VM_NORESERVE And there will be no problem with OOMing, crashing on overcommitment, using memory when not in use, not wiping on fork(), coredumps, or writing out to swap. In order to let vDSO getrandom() use this, expose these via mmap(2) as MAP_DROPPABLE. Note that this involves removing the MADV_FREE special case from sort_folio(), which according to Yu Zhao is unnecessary and will simply result in an extra call to shrink_folio_list() in the worst case. The chunk removed reenables the swapbacked flag, which we don't want for VM_DROPPABLE, and we can't conditionalize it here because there isn't a vma reference available. Finally, the provided self test ensures that this is working as desired. Cc: linux-mm@kvack.org Acked-by: David Hildenbrand <david@redhat.com> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2024-07-17mm/numa_balancing: teach mpol_to_str about the balancing modeTvrtko Ursulin
Since balancing mode was added in bda420b98505 ("numa balancing: migrate on fault among multiple bound nodes"), it was possible to set this mode but it wouldn't be shown in /proc/<pid>/numa_maps since there was no support for it in the mpol_to_str() helper. Furthermore, because the balancing mode sets the MPOL_F_MORON flag, it would be displayed as 'default' due a workaround introduced a few years earlier in 8790c71a18e5 ("mm/mempolicy.c: fix mempolicy printing in numa_maps"). To tidy this up we implement two changes: Replace the MPOL_F_MORON check by pointer comparison against the preferred_node_policy array. By doing this we generalise the current special casing and replace the incorrect 'default' with the correct 'bind' for the mode. Secondly, we add a string representation and corresponding handling for the MPOL_F_NUMA_BALANCING flag. With the two changes together we start showing the balancing flag when it is set and therefore complete the fix. Representation format chosen is to separate multiple flags with vertical bars, following what existed long time ago in kernel 2.6.25. But as between then and now there wasn't a way to display multiple flags, this patch does not change the format in practice. Some /proc/<pid>/numa_maps output examples: 555559580000 bind=balancing:0-1,3 file=... 555585800000 bind=balancing|static:0,2 file=... 555635240000 prefer=relative:0 file= Link: https://lkml.kernel.org/r/20240708075632.95857-1-tursulin@igalia.com Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@igalia.com> Fixes: bda420b98505 ("numa balancing: migrate on fault among multiple bound nodes") References: 8790c71a18e5 ("mm/mempolicy.c: fix mempolicy printing in numa_maps") Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: <stable@vger.kernel.org> [5.12+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-12mm: provide mm_struct and address to huge_ptep_get()Christophe Leroy
On powerpc 8xx huge_ptep_get() will need to know whether the given ptep is a PTE entry or a PMD entry. This cannot be known with the PMD entry itself because there is no easy way to know it from the content of the entry. So huge_ptep_get() will need to know either the size of the page or get the pmd. In order to be consistent with huge_ptep_get_and_clear(), give mm and address to huge_ptep_get(). Link: https://lkml.kernel.org/r/cc00c70dd384298796a4e1b25d6c4eb306d3af85.1719928057.git.christophe.leroy@csgroup.eu Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm: mempolicy: use folio_alloc_mpol() in alloc_migration_target_by_mpol()Kefeng Wang
Convert to use folio_alloc_mpol() to make vma_alloc_folio_noprof() to use folio throughout. Link: https://lkml.kernel.org/r/20240515070709.78529-4-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm: mempolicy: use folio_alloc_mpol_noprof() in vma_alloc_folio_noprof()Kefeng Wang
Convert to use folio_alloc_mpol_noprof() to make vma_alloc_folio_noprof() to use folio throughout. Link: https://lkml.kernel.org/r/20240515070709.78529-3-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03mm: add folio_alloc_mpol()Kefeng Wang
Patch series "mm: convert to folio_alloc_mpol()". This patch (of 4): This adds a new folio_alloc_mpol() like folio_alloc() but allocate folio according to NUMA mempolicy. Link: https://lkml.kernel.org/r/20240515070709.78529-1-wangkefeng.wang@huawei.com Link: https://lkml.kernel.org/r/20240515070709.78529-2-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25mm: add pmd_folio()Matthew Wilcox (Oracle)
Convert directly from a pmd to a folio without going through another representation first. For now this is just a slightly shorter way to write it, but it might end up being more efficient later. Link: https://lkml.kernel.org/r/20240326202833.523759-4-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25mm: add is_huge_zero_folio()Matthew Wilcox (Oracle)
This is the folio equivalent of is_huge_zero_page(). It doesn't add any efficiency, but it does prevent the caller from passing a tail page and getting confused when the predicate returns false. Link: https://lkml.kernel.org/r/20240326202833.523759-3-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25mm: convert folio_estimated_sharers() to folio_likely_mapped_shared()David Hildenbrand
Callers of folio_estimated_sharers() only care about "mapped shared vs. mapped exclusively", not the exact estimate of sharers. Let's consolidate and unify the condition users are checking. While at it clarify the semantics and extend the discussion on the fuzziness. Use the "likely mapped shared" terminology to better express what the (adjusted) function actually checks. Whether a partially-mappable folio is more likely to not be partially mapped than partially mapped is debatable. In the future, we might be able to improve our estimate for partially-mappable folios, though. Note that we will now consistently detect "mapped shared" only if the first subpage is actually mapped multiple times. When the first subpage is not mapped, we will consistently detect it as "mapped exclusively". This change should currently only affect the usage in madvise_free_pte_range() and queue_folios_pte_range() for large folios: if the first page was already unmapped, we would have skipped the folio. [david@redhat.com: folio_likely_mapped_shared() kerneldoc fixup] Link: https://lkml.kernel.org/r/dd0ad9f2-2d7a-45f3-9ba3-979488c7dd27@redhat.com Link: https://lkml.kernel.org/r/20240227201548.857831-1-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com> Acked-by: Barry Song <v-songbaohua@oppo.com> Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Reviewed-by: Ryan Roberts <ryan.roberts@arm.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25mm: hugetlb: make the hugetlb migration strategy consistentBaolin Wang
As discussed in previous thread [1], there is an inconsistency when handing hugetlb migration. When handling the migration of freed hugetlb, it prevents fallback to other NUMA nodes in alloc_and_dissolve_hugetlb_folio(). However, when dealing with in-use hugetlb, it allows fallback to other NUMA nodes in alloc_hugetlb_folio_nodemask(), which can break the per-node hugetlb pool and might result in unexpected failures when node bound workloads doesn't get what is asssumed available. To make hugetlb migration strategy more clear, we should list all the scenarios of hugetlb migration and analyze whether allocation fallback is permitted: 1) Memory offline: will call dissolve_free_huge_pages() to free the freed hugetlb, and call do_migrate_range() to migrate the in-use hugetlb. Both can break the per-node hugetlb pool, but as this is an explicit offlining operation, no better choice. So should allow the hugetlb allocation fallback. 2) Memory failure: same as memory offline. Should allow fallback to a different node might be the only option to handle it, otherwise the impact of poisoned memory can be amplified. 3) Longterm pinning: will call migrate_longterm_unpinnable_pages() to migrate in-use and not-longterm-pinnable hugetlb, which can break the per-node pool. But we should fail to longterm pinning if can not allocate on current node to avoid breaking the per-node pool. 4) Syscalls (mbind, migrate_pages, move_pages): these are explicit users operation to move pages to other nodes, so fallback to other nodes should not be prohibited. 5) alloc_contig_range: used by CMA allocation and virtio-mem fake-offline to allocate given range of pages. Now the freed hugetlb migration is not allowed to fallback, to keep consistency, the in-use hugetlb migration should be also not allowed to fallback. 6) alloc_contig_pages: used by kfence, pgtable_debug etc. The strategy should be consistent with that of alloc_contig_range(). Based on the analysis of the various scenarios above, introducing a new helper to determine whether fallback is permitted according to the migration reason.. [1] https://lore.kernel.org/all/6f26ce22d2fcd523418a085f2c588fe0776d46e7.1706794035.git.baolin.wang@linux.alibaba.com/ Link: https://lkml.kernel.org/r/3519fcd41522817307a05b40fb551e2e17e68101.1709719720.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Cc: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25mm: record the migration reason for struct migration_target_controlBaolin Wang
Patch series "make the hugetlb migration strategy consistent", v2. As discussed in previous thread [1], there is an inconsistency when handling hugetlb migration. When handling the migration of freed hugetlb, it prevents fallback to other NUMA nodes in alloc_and_dissolve_hugetlb_folio(). However, when dealing with in-use hugetlb, it allows fallback to other NUMA nodes in alloc_hugetlb_folio_nodemask(), which can break the per-node hugetlb pool and might result in unexpected failures when node bound workloads doesn't get what is asssumed available. This patchset tries to make the hugetlb migration strategy more clear and consistent. Please find details in each patch. [1] https://lore.kernel.org/all/6f26ce22d2fcd523418a085f2c588fe0776d46e7.1706794035.git.baolin.wang@linux.alibaba.com/ This patch (of 2): To support different hugetlb allocation strategies during hugetlb migration based on various migration reasons, record the migration reason in the migration_target_control structure as a preparation. Link: https://lkml.kernel.org/r/cover.1709719720.git.baolin.wang@linux.alibaba.com Link: https://lkml.kernel.org/r/7b95d4981e07211f57139fc5b1f7ce91b920cee4.1709719720.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25mm: enable page allocation taggingSuren Baghdasaryan
Redefine page allocators to record allocation tags upon their invocation. Instrument post_alloc_hook and free_pages_prepare to modify current allocation tag. [surenb@google.com: undo _noprof additions in the documentation] Link: https://lkml.kernel.org/r/20240326231453.1206227-3-surenb@google.com Link: https://lkml.kernel.org/r/20240321163705.3067592-19-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Co-developed-by: Kent Overstreet <kent.overstreet@linux.dev> Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Kees Cook <keescook@chromium.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alex Gaynor <alex.gaynor@gmail.com> Cc: Alice Ryhl <aliceryhl@google.com> Cc: Andreas Hindborg <a.hindborg@samsung.com> Cc: Benno Lossin <benno.lossin@proton.me> Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Gary Guo <gary@garyguo.net> Cc: Miguel Ojeda <ojeda@kernel.org> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Wedson Almeida Filho <wedsonaf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25mm/numa_balancing: allow migrate on protnone reference with ↵Donet Tom
MPOL_PREFERRED_MANY policy commit bda420b98505 ("numa balancing: migrate on fault among multiple bound nodes") added support for migrate on protnone reference with MPOL_BIND memory policy. This allowed numa fault migration when the executing node is part of the policy mask for MPOL_BIND. This patch extends migration support to MPOL_PREFERRED_MANY policy. Currently, we cannot specify MPOL_PREFERRED_MANY with the mempolicy flag MPOL_F_NUMA_BALANCING. This causes issues when we want to use NUMA_BALANCING_MEMORY_TIERING. To effectively use the slow memory tier, the kernel should not allocate pages from the slower memory tier via allocation control zonelist fallback. Instead, we should move cold pages from the faster memory node via memory demotion. For a page allocation, kswapd is only woken up after we try to allocate pages from all nodes in the allocation zone list. This implies that, without using memory policies, we will end up allocating hot pages in the slower memory tier. MPOL_PREFERRED_MANY was added by commit b27abaccf8e8 ("mm/mempolicy: add MPOL_PREFERRED_MANY for multiple preferred nodes") to allow better allocation control when we have memory tiers in the system. With MPOL_PREFERRED_MANY, the user can use a policy node mask consisting only of faster memory nodes. When we fail to allocate pages from the faster memory node, kswapd would be woken up, allowing demotion of cold pages to slower memory nodes. With the current kernel, such usage of memory policies implies we can't do page promotion from a slower memory tier to a faster memory tier using numa fault. This patch fixes this issue. For MPOL_PREFERRED_MANY, if the executing node is in the policy node mask, we allow numa migration to the executing nodes. If the executing node is not in the policy node mask, we do not allow numa migration. Example: On a 2-sockets system, NUMA node N0, N1 and N2 are in socket 0, N3 in socket 1. N0, N1 and N3 have fast memory and CPU, while N2 has slow memory and no CPU. For a workload, we may use MPOL_PREFERRED_MANY with nodemask N0 and N1 set because the workload runs on CPUs of socket 0 at most times. Then, even if the workload runs on CPUs of N3 occasionally, we will not try to migrate the workload pages from N2 to N3 because users may want to avoid cross-socket access as much as possible in the long term. In below table, Process is the Process executing node and Curr Loc Pgs is the numa node where page present(folio node) =========================================================== Process Policy Curr Loc Pgs Observation ----------------------------------------------------------- N0 N0 N1 N1 Pages Migrated from N1 to N0 N0 N0 N1 N2 Pages Migrated from N2 to N0 N0 N0 N1 N3 Pages Migrated from N3 to N0 N3 N0 N1 N0 Pages NOT Migrated to N3 N3 N0 N1 N1 Pages NOT Migrated to N3 N3 N0 N1 N2 Pages NOT Migrated to N3 ------------------------------------------------------------ Link: https://lkml.kernel.org/r/158acc57319129aa46d50fd64c9330f3e7c7b4bf.1711373653.git.donettom@linux.ibm.com Link: https://lkml.kernel.org/r/369d6a58758396335fd1176d97bbca4e7730d75a.1709909210.git.donettom@linux.ibm.com Signed-off-by: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org> Signed-off-by: Donet Tom <donettom@linux.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25mm/mempolicy: use numa_node_id() instead of cpu_to_node()Donet Tom
Patch series "Allow migrate on protnone reference with MPOL_PREFERRED_MANY policy:, v4. This patchset is to optimize the cross-socket memory access with MPOL_PREFERRED_MANY policy. To test this patch we ran the following test on a 3 node system. Node 0 - 2GB - Tier 1 Node 1 - 11GB - Tier 1 Node 6 - 10GB - Tier 2 Below changes are made to memcached to set the memory policy, It select Node0 and Node1 as preferred nodes. #include <numaif.h> #include <numa.h> unsigned long nodemask; int ret; nodemask = 0x03; ret = set_mempolicy(MPOL_PREFERRED_MANY | MPOL_F_NUMA_BALANCING, &nodemask, 10); /* If MPOL_F_NUMA_BALANCING isn't supported, * fall back to MPOL_PREFERRED_MANY */ if (ret < 0 && errno == EINVAL){ printf("set mem policy normal\n"); ret = set_mempolicy(MPOL_PREFERRED_MANY, &nodemask, 10); } if (ret < 0) { perror("Failed to call set_mempolicy"); exit(-1); } Test Procedure: =============== 1. Make sure memory tiring and demotion are enabled. 2. Start memcached. # ./memcached -b 100000 -m 204800 -u root -c 1000000 -t 7 -d -s "/tmp/memcached.sock" 3. Run memtier_benchmark to store 3200000 keys. #./memtier_benchmark -S "/tmp/memcached.sock" --protocol=memcache_binary --threads=1 --pipeline=1 --ratio=1:0 --key-pattern=S:S --key-minimum=1 --key-maximum=3200000 -n allkeys -c 1 -R -x 1 -d 1024 4. Start a memory eater on node 0 and 1. This will demote all memcached pages to node 6. 5. Make sure all the memcached pages got demoted to lower tier by reading /proc/<memcaced PID>/numa_maps. # cat /proc/2771/numa_maps --- default anon=1009 dirty=1009 active=0 N6=1009 kernelpagesize_kB=64 default anon=1009 dirty=1009 active=0 N6=1009 kernelpagesize_kB=64 --- 6. Kill memory eater. 7. Read the pgpromote_success counter. 8. Start reading the keys by running memtier_benchmark. #./memtier_benchmark -S "/tmp/memcached.sock" --protocol=memcache_binary --pipeline=1 --distinct-client-seed --ratio=0:3 --key-pattern=R:R --key-minimum=1 --key-maximum=3200000 -n allkeys --threads=64 -c 1 -R -x 6 9. Read the pgpromote_success counter. Test Results: ============= Without Patch ------------------ 1. pgpromote_success before test Node 0: pgpromote_success 11 Node 1: pgpromote_success 140974 pgpromote_success after test Node 0: pgpromote_success 11 Node 1: pgpromote_success 140974 2. Memtier-benchmark result. AGGREGATED AVERAGE RESULTS (6 runs) ================================================================== Type Ops/sec Hits/sec Misses/sec Avg. Latency p50 Latency ------------------------------------------------------------------ Sets 0.00 --- --- --- --- Gets 305792.03 305791.93 0.10 0.18949 0.16700 Waits 0.00 --- --- --- --- Totals 305792.03 305791.93 0.10 0.18949 0.16700 ====================================== p99 Latency p99.9 Latency KB/sec ------------------------------------- --- --- 0.00 0.44700 1.71100 11542.69 --- --- --- 0.44700 1.71100 11542.69 With Patch --------------- 1. pgpromote_success before test Node 0: pgpromote_success 5 Node 1: pgpromote_success 89386 pgpromote_success after test Node 0: pgpromote_success 57895 Node 1: pgpromote_success 141463 2. Memtier-benchmark result. AGGREGATED AVERAGE RESULTS (6 runs) ==================================================================== Type Ops/sec Hits/sec Misses/sec Avg. Latency p50 Latency -------------------------------------------------------------------- Sets 0.00 --- --- --- --- Gets 521942.24 521942.07 0.17 0.11459 0.10300 Waits 0.00 --- --- --- --- Totals 521942.24 521942.07 0.17 0.11459 0.10300 ======================================= p99 Latency p99.9 Latency KB/sec --------------------------------------- --- --- 0.00 0.23100 0.31900 19701.68 --- --- --- 0.23100 0.31900 19701.68 Test Result Analysis: ===================== 1. With patch we could observe pages are getting promoted. 2. Memtier-benchmark results shows that, with the patch, performance has increased more than 50%. Ops/sec without fix - 305792.03 Ops/sec with fix - 521942.24 This patch (of 2): Instead of using 'cpu_to_node()', we use 'numa_node_id()', which is quicker. smp_processor_id is guaranteed to be stable in the 'mpol_misplaced()' function because it is called with ptl held. lockdep_assert_held was added to ensure that. No functional change in this patch. [donettom@linux.ibm.com: add "* @vmf: structure describing the fault" comment] Link: https://lkml.kernel.org/r/d8b993ea9dccfac0bc3ed61d3a81f4ac5f376e46.1711002865.git.donettom@linux.ibm.com Link: https://lkml.kernel.org/r/cover.1711373653.git.donettom@linux.ibm.com Link: https://lkml.kernel.org/r/6059f034f436734b472d066db69676fb3a459864.1711373653.git.donettom@linux.ibm.com Link: https://lkml.kernel.org/r/cover.1709909210.git.donettom@linux.ibm.com Link: https://lkml.kernel.org/r/744646531af02cc687cde8ae788fb1779e99d02c.1709909210.git.donettom@linux.ibm.com Signed-off-by: Aneesh Kumar K.V (IBM) <aneesh.kumar@kernel.org> Signed-off-by: Donet Tom <donettom@linux.ibm.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-06mm/mempolicy: use a folio in do_mbind()Matthew Wilcox (Oracle)
We actually add folios to the pagelist already, but then work with them as pages. Removes a call to compound_head() in PageKsm() and removes a reference to page->index. Link: https://lkml.kernel.org/r/20240229153015.1996829-1-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Gregory Price <gregory.price@memverge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/mempolicy: protect task interleave functions with tsk->mems_allowed_seqGregory Price
In the event of rebind, pol->nodemask can change at the same time as an allocation occurs. We can detect this with tsk->mems_allowed_seq and prevent a miscount or an allocation failure from occurring. The same thing happens in the allocators to detect failure, but this can prevent spurious failures in a much smaller critical section. [gourry.memverge@gmail.com: weighted interleave checks wrong parameter] Link: https://lkml.kernel.org/r/20240206192853.3589-1-gregory.price@memverge.com Link: https://lkml.kernel.org/r/20240202170238.90004-5-gregory.price@memverge.com Signed-off-by: Gregory Price <gregory.price@memverge.com> Suggested-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Hasan Al Maruf <Hasan.Maruf@amd.com> Cc: Honggyu Kim <honggyu.kim@sk.com> Cc: Hyeongtak Ji <hyeongtak.ji@sk.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rakie Kim <rakie.kim@sk.com> Cc: Ravi Jonnalagadda <ravis.opensrc@micron.com> Cc: Srinivasulu Thanneeru <sthanneeru.opensrc@micron.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/mempolicy: introduce MPOL_WEIGHTED_INTERLEAVE for weighted interleavingGregory Price
When a system has multiple NUMA nodes and it becomes bandwidth hungry, using the current MPOL_INTERLEAVE could be an wise option. However, if those NUMA nodes consist of different types of memory such as socket-attached DRAM and CXL/PCIe attached DRAM, the round-robin based interleave policy does not optimally distribute data to make use of their different bandwidth characteristics. Instead, interleave is more effective when the allocation policy follows each NUMA nodes' bandwidth weight rather than a simple 1:1 distribution. This patch introduces a new memory policy, MPOL_WEIGHTED_INTERLEAVE, enabling weighted interleave between NUMA nodes. Weighted interleave allows for proportional distribution of memory across multiple numa nodes, preferably apportioned to match the bandwidth of each node. For example, if a system has 1 CPU node (0), and 2 memory nodes (0,1), with bandwidth of (100GB/s, 50GB/s) respectively, the appropriate weight distribution is (2:1). Weights for each node can be assigned via the new sysfs extension: /sys/kernel/mm/mempolicy/weighted_interleave/ For now, the default value of all nodes will be `1`, which matches the behavior of standard 1:1 round-robin interleave. An extension will be added in the future to allow default values to be registered at kernel and device bringup time. The policy allocates a number of pages equal to the set weights. For example, if the weights are (2,1), then 2 pages will be allocated on node0 for every 1 page allocated on node1. The new flag MPOL_WEIGHTED_INTERLEAVE can be used in set_mempolicy(2) and mbind(2). Some high level notes about the pieces of weighted interleave: current->il_prev: Tracks the node previously allocated from. current->il_weight: The active weight of the current node (current->il_prev) When this reaches 0, current->il_prev is set to the next node and current->il_weight is set to the next weight. weighted_interleave_nodes: Counts the number of allocations as they occur, and applies the weight for the current node. When the weight reaches 0, switch to the next node. Operates only on task->mempolicy. weighted_interleave_nid: Gets the total weight of the nodemask as well as each individual node weight, then calculates the node based on the given index. Operates on VMA policies. bulk_array_weighted_interleave: Gets the total weight of the nodemask as well as each individual node weight, then calculates the number of "interleave rounds" as well as any delta ("partial round"). Calculates the number of pages for each node and allocates them. If a node was scheduled for interleave via interleave_nodes, the current weight will be allocated first. Operates only on the task->mempolicy. One piece of complexity is the interaction between a recent refactor which split the logic to acquire the "ilx" (interleave index) of an allocation and the actually application of the interleave. If a call to alloc_pages_mpol() were made with a weighted-interleave policy and ilx set to NO_INTERLEAVE_INDEX, weighted_interleave_nodes() would operate on a VMA policy - violating the description above. An inspection of all callers of alloc_pages_mpol() shows that all external callers set ilx to `0`, an index value, or will call get_vma_policy() to acquire the ilx. For example, mm/shmem.c may call into alloc_pages_mpol. The call stacks all set (pgoff_t ilx) or end up in `get_vma_policy()`. This enforces the `weighted_interleave_nodes()` and `weighted_interleave_nid()` policy requirements (task/vma respectively). Link: https://lkml.kernel.org/r/20240202170238.90004-4-gregory.price@memverge.com Suggested-by: Hasan Al Maruf <Hasan.Maruf@amd.com> Signed-off-by: Gregory Price <gregory.price@memverge.com> Co-developed-by: Rakie Kim <rakie.kim@sk.com> Signed-off-by: Rakie Kim <rakie.kim@sk.com> Co-developed-by: Honggyu Kim <honggyu.kim@sk.com> Signed-off-by: Honggyu Kim <honggyu.kim@sk.com> Co-developed-by: Hyeongtak Ji <hyeongtak.ji@sk.com> Signed-off-by: Hyeongtak Ji <hyeongtak.ji@sk.com> Co-developed-by: Srinivasulu Thanneeru <sthanneeru.opensrc@micron.com> Signed-off-by: Srinivasulu Thanneeru <sthanneeru.opensrc@micron.com> Co-developed-by: Ravi Jonnalagadda <ravis.opensrc@micron.com> Signed-off-by: Ravi Jonnalagadda <ravis.opensrc@micron.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/mempolicy: refactor a read-once mechanism into a function for re-useGregory Price
Move the use of barrier() to force policy->nodemask onto the stack into a function `read_once_policy_nodemask` so that it may be re-used. Link: https://lkml.kernel.org/r/20240202170238.90004-3-gregory.price@memverge.com Signed-off-by: Gregory Price <gregory.price@memverge.com> Suggested-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Hasan Al Maruf <Hasan.Maruf@amd.com> Cc: Honggyu Kim <honggyu.kim@sk.com> Cc: Hyeongtak Ji <hyeongtak.ji@sk.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rakie Kim <rakie.kim@sk.com> Cc: Ravi Jonnalagadda <ravis.opensrc@micron.com> Cc: Srinivasulu Thanneeru <sthanneeru.opensrc@micron.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/mempolicy: implement the sysfs-based weighted_interleave interfaceRakie Kim
Patch series "mm/mempolicy: weighted interleave mempolicy and sysfs extension", v5. Weighted interleave is a new interleave policy intended to make use of heterogeneous memory environments appearing with CXL. The existing interleave mechanism does an even round-robin distribution of memory across all nodes in a nodemask, while weighted interleave distributes memory across nodes according to a provided weight. (Weight = # of page allocations per round) Weighted interleave is intended to reduce average latency when bandwidth is pressured - therefore increasing total throughput. In other words: It allows greater use of the total available bandwidth in a heterogeneous hardware environment (different hardware provides different bandwidth capacity). As bandwidth is pressured, latency increases - first linearly and then exponentially. By keeping bandwidth usage distributed according to available bandwidth, we therefore can reduce the average latency of a cacheline fetch. A good explanation of the bandwidth vs latency response curve: https://mahmoudhatem.wordpress.com/2017/11/07/memory-bandwidth-vs-latency-response-curve/ From the article: ``` Constant region: The latency response is fairly constant for the first 40% of the sustained bandwidth. Linear region: In between 40% to 80% of the sustained bandwidth, the latency response increases almost linearly with the bandwidth demand of the system due to contention overhead by numerous memory requests. Exponential region: Between 80% to 100% of the sustained bandwidth, the memory latency is dominated by the contention latency which can be as much as twice the idle latency or more. Maximum sustained bandwidth : Is 65% to 75% of the theoretical maximum bandwidth. ``` As a general rule of thumb: * If bandwidth usage is low, latency does not increase. It is optimal to place data in the nearest (lowest latency) device. * If bandwidth usage is high, latency increases. It is optimal to place data such that bandwidth use is optimized per-device. This is the top line goal: Provide a user a mechanism to target using the "maximum sustained bandwidth" of each hardware component in a heterogenous memory system. For example, the stream benchmark demonstrates that 1:1 (default) interleave is actively harmful, while weighted interleave can be beneficial. Default interleave distributes data such that too much pressure is placed on devices with lower available bandwidth. Stream Benchmark (vs DRAM, 1 Socket + 1 CXL Device) Default interleave : -78% (slower than DRAM) Global weighting : -6% to +4% (workload dependant) Targeted weights : +2.5% to +4% (consistently better than DRAM) Global means the task-policy was set (set_mempolicy), while targeted means VMA policies were set (mbind2). We see weighted interleave is not always beneficial when applied globally, but is always beneficial when applied to bandwidth-driving memory regions. There are 4 patches in this set: 1) Implement system-global interleave weights as sysfs extension in mm/mempolicy.c. These weights are RCU protected, and a default weight set is provided (all weights are 1 by default). In future work, we intend to expose an interface for HMAT/CDAT code to set reasonable default values based on the memory configuration of the system discovered at boot/hotplug. 2) A mild refactor of some interleave-logic for re-use in the new weighted interleave logic. 3) MPOL_WEIGHTED_INTERLEAVE extension for set_mempolicy/mbind 4) Protect interleave logic (weighted and normal) with the mems_allowed seq cookie. If the nodemask changes while accessing it during a rebind, just retry the access. Included below are some performance and LTP test information, and a sample numactl branch which can be used for testing. = Performance summary = (tests may have different configurations, see extended info below) 1) MLC (W2) : +38% over DRAM. +264% over default interleave. MLC (W5) : +40% over DRAM. +226% over default interleave. 2) Stream : -6% to +4% over DRAM, +430% over default interleave. 3) XSBench : +19% over DRAM. +47% over default interleave. = LTP Testing Summary = existing mempolicy & mbind tests: pass mempolicy & mbind + weighted interleave (global weights): pass = version history v5: - style fixes - mems_allowed cookie protection to detect rebind issues, prevents spurious allocation failures and/or mis-allocations - sparse warning fixes related to __rcu on local variables ===================================================================== Performance tests - MLC From - Ravi Jonnalagadda <ravis.opensrc@micron.com> Hardware: Single-socket, multiple CXL memory expanders. Workload: W2 Data Signature: 2:1 read:write DRAM only bandwidth (GBps): 298.8 DRAM + CXL (default interleave) (GBps): 113.04 DRAM + CXL (weighted interleave)(GBps): 412.5 Gain over DRAM only: 1.38x Gain over default interleave: 2.64x Workload: W5 Data Signature: 1:1 read:write DRAM only bandwidth (GBps): 273.2 DRAM + CXL (default interleave) (GBps): 117.23 DRAM + CXL (weighted interleave)(GBps): 382.7 Gain over DRAM only: 1.4x Gain over default interleave: 2.26x ===================================================================== Performance test - Stream From - Gregory Price <gregory.price@memverge.com> Hardware: Single socket, single CXL expander numactl extension: https://github.com/gmprice/numactl/tree/weighted_interleave_master Summary: 64 threads, ~18GB workload, 3GB per array, executed 100 times Default interleave : -78% (slower than DRAM) Global weighting : -6% to +4% (workload dependant) mbind2 weights : +2.5% to +4% (consistently better than DRAM) dram only: numactl --cpunodebind=1 --membind=1 ./stream_c.exe --ntimes 100 --array-size 400M --malloc Function Direction BestRateMBs AvgTime MinTime MaxTime Copy: 0->0 200923.2 0.032662 0.031853 0.033301 Scale: 0->0 202123.0 0.032526 0.031664 0.032970 Add: 0->0 208873.2 0.047322 0.045961 0.047884 Triad: 0->0 208523.8 0.047262 0.046038 0.048414 CXL-only: numactl --cpunodebind=1 -w --membind=2 ./stream_c.exe --ntimes 100 --array-size 400M --malloc Copy: 0->0 22209.7 0.288661 0.288162 0.289342 Scale: 0->0 22288.2 0.287549 0.287147 0.288291 Add: 0->0 24419.1 0.393372 0.393135 0.393735 Triad: 0->0 24484.6 0.392337 0.392083 0.394331 Based on the above, the optimal weights are ~9:1 echo 9 > /sys/kernel/mm/mempolicy/weighted_interleave/node1 echo 1 > /sys/kernel/mm/mempolicy/weighted_interleave/node2 default interleave: numactl --cpunodebind=1 --interleave=1,2 ./stream_c.exe --ntimes 100 --array-size 400M --malloc Copy: 0->0 44666.2 0.143671 0.143285 0.144174 Scale: 0->0 44781.6 0.143256 0.142916 0.143713 Add: 0->0 48600.7 0.197719 0.197528 0.197858 Triad: 0->0 48727.5 0.197204 0.197014 0.197439 global weighted interleave: numactl --cpunodebind=1 -w --interleave=1,2 ./stream_c.exe --ntimes 100 --array-size 400M --malloc Copy: 0->0 190085.9 0.034289 0.033669 0.034645 Scale: 0->0 207677.4 0.031909 0.030817 0.033061 Add: 0->0 202036.8 0.048737 0.047516 0.053409 Triad: 0->0 217671.5 0.045819 0.044103 0.046755 targted regions w/ global weights (modified stream to mbind2 malloc'd regions)) numactl --cpunodebind=1 --membind=1 ./stream_c.exe -b --ntimes 100 --array-size 400M --malloc Copy: 0->0 205827.0 0.031445 0.031094 0.031984 Scale: 0->0 208171.8 0.031320 0.030744 0.032505 Add: 0->0 217352.0 0.045087 0.044168 0.046515 Triad: 0->0 216884.8 0.045062 0.044263 0.046982 ===================================================================== Performance tests - XSBench From - Hyeongtak Ji <hyeongtak.ji@sk.com> Hardware: Single socket, Single CXL memory Expander NUMA node 0: 56 logical cores, 128 GB memory NUMA node 2: 96 GB CXL memory Threads: 56 Lookups: 170,000,000 Summary: +19% over DRAM. +47% over default interleave. Performance tests - XSBench 1. dram only $ numactl -m 0 ./XSBench -s XL –p 5000000 Runtime: 36.235 seconds Lookups/s: 4,691,618 2. default interleave $ numactl –i 0,2 ./XSBench –s XL –p 5000000 Runtime: 55.243 seconds Lookups/s: 3,077,293 3. weighted interleave numactl –w –i 0,2 ./XSBench –s XL –p 5000000 Runtime: 29.262 seconds Lookups/s: 5,809,513 ===================================================================== LTP Tests: https://github.com/gmprice/ltp/tree/mempolicy2 = Existing tests set_mempolicy, get_mempolicy, mbind MPOL_WEIGHTED_INTERLEAVE added manually to test basic functionality but did not adjust tests for weighting. Basically the weights were set to 1, which is the default, and it should behave the same as MPOL_INTERLEAVE if logic is correct. == set_mempolicy01 : passed 18, failed 0 == set_mempolicy02 : passed 10, failed 0 == set_mempolicy03 : passed 64, failed 0 == set_mempolicy04 : passed 32, failed 0 == set_mempolicy05 - n/a on non-x86 == set_mempolicy06 : passed 10, failed 0 this is set_mempolicy02 + MPOL_WEIGHTED_INTERLEAVE == set_mempolicy07 : passed 32, failed 0 set_mempolicy04 + MPOL_WEIGHTED_INTERLEAVE == get_mempolicy01 : passed 12, failed 0 change: added MPOL_WEIGHTED_INTERLEAVE == get_mempolicy02 : passed 2, failed 0 == mbind01 : passed 15, failed 0 added MPOL_WEIGHTED_INTERLEAVE == mbind02 : passed 4, failed 0 added MPOL_WEIGHTED_INTERLEAVE == mbind03 : passed 16, failed 0 added MPOL_WEIGHTED_INTERLEAVE == mbind04 : passed 48, failed 0 added MPOL_WEIGHTED_INTERLEAVE ===================================================================== numactl (set_mempolicy) w/ global weighting test numactl fork: https://github.com/gmprice/numactl/tree/weighted_interleave_master command: numactl -w --interleave=0,1 ./eatmem result (weights 1:1): 0176a000 weighted interleave:0-1 heap anon=65793 dirty=65793 active=0 N0=32897 N1=32896 kernelpagesize_kB=4 7fceeb9ff000 weighted interleave:0-1 anon=65537 dirty=65537 active=0 N0=32768 N1=32769 kernelpagesize_kB=4 50% distribution is correct result (weights 5:1): 01b14000 weighted interleave:0-1 heap anon=65793 dirty=65793 active=0 N0=54828 N1=10965 kernelpagesize_kB=4 7f47a1dff000 weighted interleave:0-1 anon=65537 dirty=65537 active=0 N0=54614 N1=10923 kernelpagesize_kB=4 16.666% distribution is correct result (weights 1:5): 01f07000 weighted interleave:0-1 heap anon=65793 dirty=65793 active=0 N0=10966 N1=54827 kernelpagesize_kB=4 7f17b1dff000 weighted interleave:0-1 anon=65537 dirty=65537 active=0 N0=10923 N1=54614 kernelpagesize_kB=4 16.666% distribution is correct #include <stdio.h> #include <stdlib.h> #include <string.h> int main (void) { char* mem = malloc(1024*1024*256); memset(mem, 1, 1024*1024*256); for (int i = 0; i < ((1024*1024*256)/4096); i++) { mem = malloc(4096); mem[0] = 1; } printf("done\n"); getchar(); return 0; } This patch (of 4): This patch provides a way to set interleave weight information under sysfs at /sys/kernel/mm/mempolicy/weighted_interleave/nodeN The sysfs structure is designed as follows. $ tree /sys/kernel/mm/mempolicy/ /sys/kernel/mm/mempolicy/ [1] └── weighted_interleave [2] ├── node0 [3] └── node1 Each file above can be explained as follows. [1] mm/mempolicy: configuration interface for mempolicy subsystem [2] weighted_interleave/: config interface for weighted interleave policy [3] weighted_interleave/nodeN: weight for nodeN If a node value is set to `0`, the system-default value will be used. As of this patch, the system-default for all nodes is always 1. Link: https://lkml.kernel.org/r/20240202170238.90004-1-gregory.price@memverge.com Link: https://lkml.kernel.org/r/20240202170238.90004-2-gregory.price@memverge.com Suggested-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Rakie Kim <rakie.kim@sk.com> Signed-off-by: Honggyu Kim <honggyu.kim@sk.com> Co-developed-by: Gregory Price <gregory.price@memverge.com> Signed-off-by: Gregory Price <gregory.price@memverge.com> Co-developed-by: Hyeongtak Ji <hyeongtak.ji@sk.com> Signed-off-by: Hyeongtak Ji <hyeongtak.ji@sk.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Gregory Price <gourry.memverge@gmail.com> Cc: Hasan Al Maruf <Hasan.Maruf@amd.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Srinivasulu Thanneeru <sthanneeru.opensrc@micron.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mempolicy: clean up minor dead code in queue_pages_test_walk()Lukas Bulwahn
Commit 2cafb582173f ("mempolicy: remove confusing MPOL_MF_LAZY dead code") removes MPOL_MF_LAZY handling in queue_pages_test_walk(), and with that, there is no effective use of the local variable endvma in that function remaining. Remove the local variable endvma and its dead code. No functional change. This issue was identified with clang-analyzer's dead stores analysis. Link: https://lkml.kernel.org/r/20240122092504.18377-1-lukas.bulwahn@gmail.com Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-11-02Merge tag 'mm-stable-2023-11-01-14-33' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ...
2023-10-30Merge tag 'sched-core-2023-10-28' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: "Fair scheduler (SCHED_OTHER) improvements: - Remove the old and now unused SIS_PROP code & option - Scan cluster before LLC in the wake-up path - Use candidate prev/recent_used CPU if scanning failed for cluster wakeup NUMA scheduling improvements: - Improve the VMA access-PID code to better skip/scan VMAs - Extend tracing to cover VMA-skipping decisions - Improve/fix the recently introduced sched_numa_find_nth_cpu() code - Generalize numa_map_to_online_node() Energy scheduling improvements: - Remove the EM_MAX_COMPLEXITY limit - Add tracepoints to track energy computation - Make the behavior of the 'sched_energy_aware' sysctl more consistent - Consolidate and clean up access to a CPU's max compute capacity - Fix uclamp code corner cases RT scheduling improvements: - Drive dl_rq->overloaded with dl_rq->pushable_dl_tasks updates - Drive the ->rto_mask with rt_rq->pushable_tasks updates Scheduler scalability improvements: - Rate-limit updates to tg->load_avg - On x86 disable IBRS when CPU is offline to improve single-threaded performance - Micro-optimize in_task() and in_interrupt() - Micro-optimize the PSI code - Avoid updating PSI triggers and ->rtpoll_total when there are no state changes Core scheduler infrastructure improvements: - Use saved_state to reduce some spurious freezer wakeups - Bring in a handful of fast-headers improvements to scheduler headers - Make the scheduler UAPI headers more widely usable by user-space - Simplify the control flow of scheduler syscalls by using lock guards - Fix sched_setaffinity() vs. CPU hotplug race Scheduler debuggability improvements: - Disallow writing invalid values to sched_rt_period_us - Fix a race in the rq-clock debugging code triggering warnings - Fix a warning in the bandwidth distribution code - Micro-optimize in_atomic_preempt_off() checks - Enforce that the tasklist_lock is held in for_each_thread() - Print the TGID in sched_show_task() - Remove the /proc/sys/kernel/sched_child_runs_first sysctl ... and misc cleanups & fixes" * tag 'sched-core-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (82 commits) sched/fair: Remove SIS_PROP sched/fair: Use candidate prev/recent_used CPU if scanning failed for cluster wakeup sched/fair: Scan cluster before scanning LLC in wake-up path sched: Add cpus_share_resources API sched/core: Fix RQCF_ACT_SKIP leak sched/fair: Remove unused 'curr' argument from pick_next_entity() sched/nohz: Update comments about NEWILB_KICK sched/fair: Remove duplicate #include sched/psi: Update poll => rtpoll in relevant comments sched: Make PELT acronym definition searchable sched: Fix stop_one_cpu_nowait() vs hotplug sched/psi: Bail out early from irq time accounting sched/topology: Rename 'DIE' domain to 'PKG' sched/psi: Delete the 'update_total' function parameter from update_triggers() sched/psi: Avoid updating PSI triggers and ->rtpoll_total when there are no state changes sched/headers: Remove comment referring to rq::cpu_load, since this has been removed sched/numa: Complete scanning of inactive VMAs when there is no alternative sched/numa: Complete scanning of partial VMAs regardless of PID activity sched/numa: Move up the access pid reset logic sched/numa: Trace decisions related to skipping VMAs ...
2023-10-25mempolicy: migration attempt to match interleave nodesHugh Dickins
Improve alloc_migration_target_by_mpol()'s treatment of MPOL_INTERLEAVE. Make an effort in do_mbind(), to identify the correct interleave index for the first page to be migrated, so that it and all subsequent pages from the same vma will be targeted to precisely their intended nodes. Pages from following vmas will still be interleaved from the requested nodemask, but perhaps starting from a different base. Whether this is worth doing at all, or worth improving further, is arguable: queue_folio_required() is right not to care about the precise placement on interleaved nodes; but this little effort seems appropriate. [hughd@google.com: do vma_iter search under mmap_write_unlock()] Link: https://lkml.kernel.org/r/3311d544-fb05-a7f1-1b74-16aa0f6cd4fe@google.com Link: https://lkml.kernel.org/r/77954a5-9c9b-1c11-7d5c-3262c01b895f@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun heo <tj@kernel.org> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mempolicy: mmap_lock is not needed while migrating foliosHugh Dickins
mbind(2) holds down_write of current task's mmap_lock throughout (exclusive because it needs to set the new mempolicy on the vmas); migrate_pages(2) holds down_read of pid's mmap_lock throughout. They both hold mmap_lock across the internal migrate_pages(), under which all new page allocations (huge or small) are made. I'm nervous about it; and migrate_pages() certainly does not need mmap_lock itself. It's done this way for mbind(2), because its page allocator is vma_alloc_folio() or alloc_hugetlb_folio_vma(), both of which depend on vma and address. Now that we have alloc_pages_mpol(), depending on (refcounted) memory policy and interleave index, mbind(2) can be modified to use that or alloc_hugetlb_folio_nodemask(), and then not need mmap_lock across the internal migrate_pages() at all: add alloc_migration_target_by_mpol() to replace mbind's new_page(). (After that change, alloc_hugetlb_folio_vma() is used by nothing but a userfaultfd function: move it out of hugetlb.h and into the #ifdef.) migrate_pages(2) has chosen its target node before migrating, so can continue to use the standard alloc_migration_target(); but let it take and drop mmap_lock just around migrate_to_node()'s queue_pages_range(): neither the node-to-node calculations nor the page migrations need it. It seems unlikely, but it is conceivable that some userspace depends on the kernel's mmap_lock exclusion here, instead of doing its own locking: more likely in a testsuite than in real life. It is also possible, of course, that some pages on the list will be munmapped by another thread before they are migrated, or a newer memory policy applied to the range by that time: but such races could happen before, as soon as mmap_lock was dropped, so it does not appear to be a concern. Link: https://lkml.kernel.org/r/21e564e8-269f-6a89-7ee2-fd612831c289@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun heo <tj@kernel.org> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mempolicy: alloc_pages_mpol() for NUMA policy without vmaHugh Dickins
Shrink shmem's stack usage by eliminating the pseudo-vma from its folio allocation. alloc_pages_mpol(gfp, order, pol, ilx, nid) becomes the principal actor for passing mempolicy choice down to __alloc_pages(), rather than vma_alloc_folio(gfp, order, vma, addr, hugepage). vma_alloc_folio() and alloc_pages() remain, but as wrappers around alloc_pages_mpol(). alloc_pages_bulk_*() untouched, except to provide the additional args to policy_nodemask(), which subsumes policy_node(). Cleanup throughout, cutting out some unhelpful "helpers". It would all be much simpler without MPOL_INTERLEAVE, but that adds a dynamic to the constant mpol: complicated by v3.6 commit 09c231cb8bfd ("tmpfs: distribute interleave better across nodes"), which added ino bias to the interleave, hidden from mm/mempolicy.c until this commit. Hence "ilx" throughout, the "interleave index". Originally I thought it could be done just with nid, but that's wrong: the nodemask may come from the shared policy layer below a shmem vma, or it may come from the task layer above a shmem vma; and without the final nodemask then nodeid cannot be decided. And how ilx is applied depends also on page order. The interleave index is almost always irrelevant unless MPOL_INTERLEAVE: with one exception in alloc_pages_mpol(), where the NO_INTERLEAVE_INDEX passed down from vma-less alloc_pages() is also used as hint not to use THP-style hugepage allocation - to avoid the overhead of a hugepage arg (though I don't understand why we never just added a GFP bit for THP - if it actually needs a different allocation strategy from other pages of the same order). vma_alloc_folio() still carries its hugepage arg here, but it is not used, and should be removed when agreed. get_vma_policy() no longer allows a NULL vma: over time I believe we've eradicated all the places which used to need it e.g. swapoff and madvise used to pass NULL vma to read_swap_cache_async(), but now know the vma. [hughd@google.com: handle NULL mpol being passed to __read_swap_cache_async()] Link: https://lkml.kernel.org/r/ea419956-4751-0102-21f7-9c93cb957892@google.com Link: https://lkml.kernel.org/r/74e34633-6060-f5e3-aee-7040d43f2e93@google.com Link: https://lkml.kernel.org/r/1738368e-bac0-fd11-ed7f-b87142a939fe@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Huang Ying <ying.huang@intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun heo <tj@kernel.org> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Domenico Cerasuolo <mimmocerasuolo@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mm: add page_rmappable_folio() wrapperHugh Dickins
folio_prep_large_rmappable() is being used repeatedly along with a conversion from page to folio, a check non-NULL, a check order > 1: wrap it all up into struct folio *page_rmappable_folio(struct page *). Link: https://lkml.kernel.org/r/8d92c6cf-eebe-748-e29c-c8ab224c741@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun heo <tj@kernel.org> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mempolicy: remove confusing MPOL_MF_LAZY dead codeHugh Dickins
v3.8 commit b24f53a0bea3 ("mm: mempolicy: Add MPOL_MF_LAZY") introduced MPOL_MF_LAZY, and included it in the MPOL_MF_VALID flags; but a720094ded8 ("mm: mempolicy: Hide MPOL_NOOP and MPOL_MF_LAZY from userspace for now") immediately removed it from MPOL_MF_VALID flags, pending further review. "This will need to be revisited", but it has not been reinstated. The present state is confusing: there is dead code in mm/mempolicy.c to handle MPOL_MF_LAZY cases which can never occur. Remove that: it can be resurrected later if necessary. But keep the definition of MPOL_MF_LAZY, which must remain in the UAPI, even though it always fails with EINVAL. https://lore.kernel.org/linux-mm/1553041659-46787-1-git-send-email-yang.shi@linux.alibaba.com/ links to a previous request to remove MPOL_MF_LAZY. Link: https://lkml.kernel.org/r/80c9665c-1c3f-17ba-21a3-f6115cebf7d@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun heo <tj@kernel.org> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mempolicy: mpol_shared_policy_init() without pseudo-vmaHugh Dickins
mpol_shared_policy_init() does not need to use a pseudo-vma: it can use sp_alloc() and sp_insert() directly, since the object's shared policy tree is empty and inaccessible (needing no lock) at get_inode() time. Link: https://lkml.kernel.org/r/3bef62d8-ae78-4c2-533-56a44ae425c@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun heo <tj@kernel.org> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mempolicy trivia: use pgoff_t in shared mempolicy treeHugh Dickins
Prefer the more explicit "pgoff_t" to "unsigned long" when dealing with a shared mempolicy tree. Delete confusing comment about pseudo mm vmas. Link: https://lkml.kernel.org/r/5451157-3818-4af5-fd2c-5d26a5d1dc53@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun heo <tj@kernel.org> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mempolicy trivia: slightly more consistent namingHugh Dickins
Before getting down to work, do a little cleanup, mainly of inconsistent variable naming. I gave up trying to rationalize mpol versus pol versus policy, and node versus nid, but let's avoid p and nd. Remove a few superfluous blank lines, but add one; and here prefer vma->vm_policy to vma_policy(vma) - the latter being appropriate in other sources, which have to allow for !CONFIG_NUMA. That intriguing line about KERNEL_DS? should have gone in v2.6.15, when numa_policy_init() stopped using set_mempolicy(2)'s system call handler. Link: https://lkml.kernel.org/r/68287974-b6ae-7df-4ba-d19ddd69cbf@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun heo <tj@kernel.org> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mempolicy trivia: delete those ancient pr_debug()sHugh Dickins
Delete those ancient pr_debug()s - PDprintk()s in Andi Kleen's original submission of core NUMA API, and useful when debugging shared mempolicy lifetime back then, but not used recently. Link: https://lkml.kernel.org/r/f25135-ffb2-40d8-9577-720772b333@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun heo <tj@kernel.org> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-25mempolicy: fix migrate_pages(2) syscall return nr_failedHugh Dickins
"man 2 migrate_pages" says "On success migrate_pages() returns the number of pages that could not be moved". Although 5.3 and 5.4 commits fixed mbind(MPOL_MF_STRICT|MPOL_MF_MOVE*) to fail with EIO when not all pages could be moved (because some could not be isolated for migration), migrate_pages(2) was left still reporting only those pages failing at the migration stage, forgetting those failing at the earlier isolation stage. Fix that by accumulating a long nr_failed count in struct queue_pages, returned by queue_pages_range() when it's not returning an error, for adding on to the nr_failed count from migrate_pages() in mm/migrate.c. A count of pages? It's more a count of folios, but changing it to pages would entail more work (also in mm/migrate.c): does not seem justified. queue_pages_range() itself should only return -EIO in the "strictly unmovable" case (STRICT without any MOVEs): in that case it's best to break out as soon as nr_failed gets set; but otherwise it should continue to isolate pages for MOVing even when nr_failed - as the mbind(2) manpage promises. There's a case when nr_failed should be incremented when it was missed: queue_folios_pte_range() and queue_folios_hugetlb() count the transient migration entries, like queue_folios_pmd() already did. And there's a case when nr_failed should not be incremented when it would have been: in meeting later PTEs of the same large folio, which can only be isolated once: fixed by recording the current large folio in struct queue_pages. Clean up the affected functions, fixing or updating many comments. Bool migrate_folio_add(), without -EIO: true if adding, or if skipping shared (but its arguable folio_estimated_sharers() heuristic left unchanged). Use MPOL_MF_WRLOCK flag to queue_pages_range(), instead of bool lock_vma. Use explicit STRICT|MOVE* flags where queue_pages_test_walk() checks for skipping, instead of hiding them behind MPOL_MF_VALID. Link: https://lkml.kernel.org/r/9a6b0b9-3bb-dbef-8adf-efab4397b8d@google.com Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Tejun heo <tj@kernel.org> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-18mm: abstract the vma_merge()/split_vma() pattern for mprotect() et al.Lorenzo Stoakes
mprotect() and other functions which change VMA parameters over a range each employ a pattern of:- 1. Attempt to merge the range with adjacent VMAs. 2. If this fails, and the range spans a subset of the VMA, split it accordingly. This is open-coded and duplicated in each case. Also in each case most of the parameters passed to vma_merge() remain the same. Create a new function, vma_modify(), which abstracts this operation, accepting only those parameters which can be changed. To avoid the mess of invoking each function call with unnecessary parameters, create inline wrapper functions for each of the modify operations, parameterised only by what is required to perform the action. We can also significantly simplify the logic - by returning the VMA if we split (or merged VMA if we do not) we no longer need specific handling for merge/split cases in any of the call sites. Note that the userfaultfd_release() case works even though it does not split VMAs - since start is set to vma->vm_start and end is set to vma->vm_end, the split logic does not trigger. In addition, since we calculate pgoff to be equal to vma->vm_pgoff + (start - vma->vm_start) >> PAGE_SHIFT, and start - vma->vm_start will be 0 in this instance, this invocation will remain unchanged. We eliminate a VM_WARN_ON() in mprotect_fixup() as this simply asserts that vma_merge() correctly ensures that flags remain the same, something that is already checked in is_mergeable_vma() and elsewhere, and in any case is not specific to mprotect(). Link: https://lkml.kernel.org/r/0dfa9368f37199a423674bf0ee312e8ea0619044.1697043508.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christian Brauner <brauner@kernel.org> Cc: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>