1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */
//
// This file is dual-licensed, meaning that you can use it under your
// choice of either of the following two licenses:
//
// Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
//
// Licensed under the Apache License 2.0 (the "License"). You can obtain
// a copy in the file LICENSE in the source distribution or at
// https://www.openssl.org/source/license.html
//
// or
//
// Copyright (c) 2023, Jerry Shih <jerry.shih@sifive.com>
// Copyright 2024 Google LLC
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The generated code of this file depends on the following RISC-V extensions:
// - RV64I
// - RISC-V Vector ('V') with VLEN >= 128
// - RISC-V Vector Cryptography Bit-manipulation extension ('Zvkb')
#include <linux/linkage.h>
.text
.option arch, +zvkb
#define STATEP a0
#define INP a1
#define OUTP a2
#define NBLOCKS a3
#define NROUNDS a4
#define CONSTS0 a5
#define CONSTS1 a6
#define CONSTS2 a7
#define CONSTS3 t0
#define TMP t1
#define VL t2
#define STRIDE t3
#define ROUND_CTR t4
#define KEY0 s0
#define KEY1 s1
#define KEY2 s2
#define KEY3 s3
#define KEY4 s4
#define KEY5 s5
#define KEY6 s6
#define KEY7 s7
#define COUNTER s8
#define NONCE0 s9
#define NONCE1 s10
#define NONCE2 s11
.macro chacha_round a0, b0, c0, d0, a1, b1, c1, d1, \
a2, b2, c2, d2, a3, b3, c3, d3
// a += b; d ^= a; d = rol(d, 16);
vadd.vv \a0, \a0, \b0
vadd.vv \a1, \a1, \b1
vadd.vv \a2, \a2, \b2
vadd.vv \a3, \a3, \b3
vxor.vv \d0, \d0, \a0
vxor.vv \d1, \d1, \a1
vxor.vv \d2, \d2, \a2
vxor.vv \d3, \d3, \a3
vror.vi \d0, \d0, 32 - 16
vror.vi \d1, \d1, 32 - 16
vror.vi \d2, \d2, 32 - 16
vror.vi \d3, \d3, 32 - 16
// c += d; b ^= c; b = rol(b, 12);
vadd.vv \c0, \c0, \d0
vadd.vv \c1, \c1, \d1
vadd.vv \c2, \c2, \d2
vadd.vv \c3, \c3, \d3
vxor.vv \b0, \b0, \c0
vxor.vv \b1, \b1, \c1
vxor.vv \b2, \b2, \c2
vxor.vv \b3, \b3, \c3
vror.vi \b0, \b0, 32 - 12
vror.vi \b1, \b1, 32 - 12
vror.vi \b2, \b2, 32 - 12
vror.vi \b3, \b3, 32 - 12
// a += b; d ^= a; d = rol(d, 8);
vadd.vv \a0, \a0, \b0
vadd.vv \a1, \a1, \b1
vadd.vv \a2, \a2, \b2
vadd.vv \a3, \a3, \b3
vxor.vv \d0, \d0, \a0
vxor.vv \d1, \d1, \a1
vxor.vv \d2, \d2, \a2
vxor.vv \d3, \d3, \a3
vror.vi \d0, \d0, 32 - 8
vror.vi \d1, \d1, 32 - 8
vror.vi \d2, \d2, 32 - 8
vror.vi \d3, \d3, 32 - 8
// c += d; b ^= c; b = rol(b, 7);
vadd.vv \c0, \c0, \d0
vadd.vv \c1, \c1, \d1
vadd.vv \c2, \c2, \d2
vadd.vv \c3, \c3, \d3
vxor.vv \b0, \b0, \c0
vxor.vv \b1, \b1, \c1
vxor.vv \b2, \b2, \c2
vxor.vv \b3, \b3, \c3
vror.vi \b0, \b0, 32 - 7
vror.vi \b1, \b1, 32 - 7
vror.vi \b2, \b2, 32 - 7
vror.vi \b3, \b3, 32 - 7
.endm
// void chacha_zvkb(struct chacha_state *state, const u8 *in, u8 *out,
// size_t nblocks, int nrounds);
//
// |nblocks| is the number of 64-byte blocks to process, and must be nonzero.
//
// |state| gives the ChaCha state matrix, including the 32-bit counter in
// state->x[12] following the RFC7539 convention; note that this differs from
// the original Salsa20 paper which uses a 64-bit counter in state->x[12..13].
// The updated 32-bit counter is written back to state->x[12] before returning.
SYM_FUNC_START(chacha_zvkb)
addi sp, sp, -96
sd s0, 0(sp)
sd s1, 8(sp)
sd s2, 16(sp)
sd s3, 24(sp)
sd s4, 32(sp)
sd s5, 40(sp)
sd s6, 48(sp)
sd s7, 56(sp)
sd s8, 64(sp)
sd s9, 72(sp)
sd s10, 80(sp)
sd s11, 88(sp)
li STRIDE, 64
// Set up the initial state matrix in scalar registers.
lw CONSTS0, 0(STATEP)
lw CONSTS1, 4(STATEP)
lw CONSTS2, 8(STATEP)
lw CONSTS3, 12(STATEP)
lw KEY0, 16(STATEP)
lw KEY1, 20(STATEP)
lw KEY2, 24(STATEP)
lw KEY3, 28(STATEP)
lw KEY4, 32(STATEP)
lw KEY5, 36(STATEP)
lw KEY6, 40(STATEP)
lw KEY7, 44(STATEP)
lw COUNTER, 48(STATEP)
lw NONCE0, 52(STATEP)
lw NONCE1, 56(STATEP)
lw NONCE2, 60(STATEP)
.Lblock_loop:
// Set vl to the number of blocks to process in this iteration.
vsetvli VL, NBLOCKS, e32, m1, ta, ma
// Set up the initial state matrix for the next VL blocks in v0-v15.
// v{i} holds the i'th 32-bit word of the state matrix for all blocks.
// Note that only the counter word, at index 12, differs across blocks.
vmv.v.x v0, CONSTS0
vmv.v.x v1, CONSTS1
vmv.v.x v2, CONSTS2
vmv.v.x v3, CONSTS3
vmv.v.x v4, KEY0
vmv.v.x v5, KEY1
vmv.v.x v6, KEY2
vmv.v.x v7, KEY3
vmv.v.x v8, KEY4
vmv.v.x v9, KEY5
vmv.v.x v10, KEY6
vmv.v.x v11, KEY7
vid.v v12
vadd.vx v12, v12, COUNTER
vmv.v.x v13, NONCE0
vmv.v.x v14, NONCE1
vmv.v.x v15, NONCE2
// Load the first half of the input data for each block into v16-v23.
// v{16+i} holds the i'th 32-bit word for all blocks.
vlsseg8e32.v v16, (INP), STRIDE
mv ROUND_CTR, NROUNDS
.Lnext_doubleround:
addi ROUND_CTR, ROUND_CTR, -2
// column round
chacha_round v0, v4, v8, v12, v1, v5, v9, v13, \
v2, v6, v10, v14, v3, v7, v11, v15
// diagonal round
chacha_round v0, v5, v10, v15, v1, v6, v11, v12, \
v2, v7, v8, v13, v3, v4, v9, v14
bnez ROUND_CTR, .Lnext_doubleround
// Load the second half of the input data for each block into v24-v31.
// v{24+i} holds the {8+i}'th 32-bit word for all blocks.
addi TMP, INP, 32
vlsseg8e32.v v24, (TMP), STRIDE
// Finalize the first half of the keystream for each block.
vadd.vx v0, v0, CONSTS0
vadd.vx v1, v1, CONSTS1
vadd.vx v2, v2, CONSTS2
vadd.vx v3, v3, CONSTS3
vadd.vx v4, v4, KEY0
vadd.vx v5, v5, KEY1
vadd.vx v6, v6, KEY2
vadd.vx v7, v7, KEY3
// Encrypt/decrypt the first half of the data for each block.
vxor.vv v16, v16, v0
vxor.vv v17, v17, v1
vxor.vv v18, v18, v2
vxor.vv v19, v19, v3
vxor.vv v20, v20, v4
vxor.vv v21, v21, v5
vxor.vv v22, v22, v6
vxor.vv v23, v23, v7
// Store the first half of the output data for each block.
vssseg8e32.v v16, (OUTP), STRIDE
// Finalize the second half of the keystream for each block.
vadd.vx v8, v8, KEY4
vadd.vx v9, v9, KEY5
vadd.vx v10, v10, KEY6
vadd.vx v11, v11, KEY7
vid.v v0
vadd.vx v12, v12, COUNTER
vadd.vx v13, v13, NONCE0
vadd.vx v14, v14, NONCE1
vadd.vx v15, v15, NONCE2
vadd.vv v12, v12, v0
// Encrypt/decrypt the second half of the data for each block.
vxor.vv v24, v24, v8
vxor.vv v25, v25, v9
vxor.vv v26, v26, v10
vxor.vv v27, v27, v11
vxor.vv v29, v29, v13
vxor.vv v28, v28, v12
vxor.vv v30, v30, v14
vxor.vv v31, v31, v15
// Store the second half of the output data for each block.
addi TMP, OUTP, 32
vssseg8e32.v v24, (TMP), STRIDE
// Update the counter, the remaining number of blocks, and the input and
// output pointers according to the number of blocks processed (VL).
add COUNTER, COUNTER, VL
sub NBLOCKS, NBLOCKS, VL
slli TMP, VL, 6
add OUTP, OUTP, TMP
add INP, INP, TMP
bnez NBLOCKS, .Lblock_loop
sw COUNTER, 48(STATEP)
ld s0, 0(sp)
ld s1, 8(sp)
ld s2, 16(sp)
ld s3, 24(sp)
ld s4, 32(sp)
ld s5, 40(sp)
ld s6, 48(sp)
ld s7, 56(sp)
ld s8, 64(sp)
ld s9, 72(sp)
ld s10, 80(sp)
ld s11, 88(sp)
addi sp, sp, 96
ret
SYM_FUNC_END(chacha_zvkb)
|