1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
|
// SPDX-License-Identifier: GPL-2.0-or-later
/* rfc8009 AES Encryption with HMAC-SHA2 for Kerberos 5
*
* Copyright (C) 2025 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/slab.h>
#include <crypto/authenc.h>
#include "internal.h"
static const struct krb5_buffer rfc8009_no_context = { .len = 0, .data = "" };
/*
* Calculate the key derivation function KDF-HMAC-SHA2(key, label, [context,] k)
*
* KDF-HMAC-SHA2(key, label, [context,] k) = k-truncate(K1)
*
* Using the appropriate one of:
* K1 = HMAC-SHA-256(key, 0x00000001 | label | 0x00 | k)
* K1 = HMAC-SHA-384(key, 0x00000001 | label | 0x00 | k)
* K1 = HMAC-SHA-256(key, 0x00000001 | label | 0x00 | context | k)
* K1 = HMAC-SHA-384(key, 0x00000001 | label | 0x00 | context | k)
* [rfc8009 sec 3]
*/
static int rfc8009_calc_KDF_HMAC_SHA2(const struct krb5_enctype *krb5,
const struct krb5_buffer *key,
const struct krb5_buffer *label,
const struct krb5_buffer *context,
unsigned int k,
struct krb5_buffer *result,
gfp_t gfp)
{
struct crypto_shash *shash;
struct krb5_buffer K1, data;
struct shash_desc *desc;
__be32 tmp;
size_t bsize;
void *buffer;
u8 *p;
int ret = -ENOMEM;
if (WARN_ON(result->len != k / 8))
return -EINVAL;
shash = crypto_alloc_shash(krb5->cksum_name, 0, 0);
if (IS_ERR(shash))
return (PTR_ERR(shash) == -ENOENT) ? -ENOPKG : PTR_ERR(shash);
ret = crypto_shash_setkey(shash, key->data, key->len);
if (ret < 0)
goto error_shash;
ret = -EINVAL;
if (WARN_ON(crypto_shash_digestsize(shash) * 8 < k))
goto error_shash;
ret = -ENOMEM;
data.len = 4 + label->len + 1 + context->len + 4;
bsize = krb5_shash_size(shash) +
krb5_digest_size(shash) +
crypto_roundup(data.len);
buffer = kzalloc(bsize, GFP_NOFS);
if (!buffer)
goto error_shash;
desc = buffer;
desc->tfm = shash;
ret = crypto_shash_init(desc);
if (ret < 0)
goto error;
p = data.data = buffer +
krb5_shash_size(shash) +
krb5_digest_size(shash);
*(__be32 *)p = htonl(0x00000001);
p += 4;
memcpy(p, label->data, label->len);
p += label->len;
*p++ = 0;
memcpy(p, context->data, context->len);
p += context->len;
tmp = htonl(k);
memcpy(p, &tmp, 4);
p += 4;
ret = -EINVAL;
if (WARN_ON(p - (u8 *)data.data != data.len))
goto error;
K1.len = crypto_shash_digestsize(shash);
K1.data = buffer +
krb5_shash_size(shash);
ret = crypto_shash_finup(desc, data.data, data.len, K1.data);
if (ret < 0)
goto error;
memcpy(result->data, K1.data, result->len);
error:
kfree_sensitive(buffer);
error_shash:
crypto_free_shash(shash);
return ret;
}
/*
* Calculate the pseudo-random function, PRF().
*
* PRF = KDF-HMAC-SHA2(input-key, "prf", octet-string, 256)
* PRF = KDF-HMAC-SHA2(input-key, "prf", octet-string, 384)
*
* The "prfconstant" used in the PRF operation is the three-octet string
* "prf".
* [rfc8009 sec 5]
*/
static int rfc8009_calc_PRF(const struct krb5_enctype *krb5,
const struct krb5_buffer *input_key,
const struct krb5_buffer *octet_string,
struct krb5_buffer *result,
gfp_t gfp)
{
static const struct krb5_buffer prfconstant = { 3, "prf" };
return rfc8009_calc_KDF_HMAC_SHA2(krb5, input_key, &prfconstant,
octet_string, krb5->prf_len * 8,
result, gfp);
}
/*
* Derive Ke.
* Ke = KDF-HMAC-SHA2(base-key, usage | 0xAA, 128)
* Ke = KDF-HMAC-SHA2(base-key, usage | 0xAA, 256)
* [rfc8009 sec 5]
*/
static int rfc8009_calc_Ke(const struct krb5_enctype *krb5,
const struct krb5_buffer *base_key,
const struct krb5_buffer *usage_constant,
struct krb5_buffer *result,
gfp_t gfp)
{
return rfc8009_calc_KDF_HMAC_SHA2(krb5, base_key, usage_constant,
&rfc8009_no_context, krb5->key_bytes * 8,
result, gfp);
}
/*
* Derive Kc/Ki
* Kc = KDF-HMAC-SHA2(base-key, usage | 0x99, 128)
* Ki = KDF-HMAC-SHA2(base-key, usage | 0x55, 128)
* Kc = KDF-HMAC-SHA2(base-key, usage | 0x99, 192)
* Ki = KDF-HMAC-SHA2(base-key, usage | 0x55, 192)
* [rfc8009 sec 5]
*/
static int rfc8009_calc_Ki(const struct krb5_enctype *krb5,
const struct krb5_buffer *base_key,
const struct krb5_buffer *usage_constant,
struct krb5_buffer *result,
gfp_t gfp)
{
return rfc8009_calc_KDF_HMAC_SHA2(krb5, base_key, usage_constant,
&rfc8009_no_context, krb5->cksum_len * 8,
result, gfp);
}
/*
* Apply encryption and checksumming functions to a message. Unlike for
* RFC3961, for RFC8009, we have to chuck the starting IV into the hash first.
*/
static ssize_t rfc8009_encrypt(const struct krb5_enctype *krb5,
struct crypto_aead *aead,
struct scatterlist *sg, unsigned int nr_sg, size_t sg_len,
size_t data_offset, size_t data_len,
bool preconfounded)
{
struct aead_request *req;
struct scatterlist bsg[2];
ssize_t ret, done;
size_t bsize, base_len, secure_offset, secure_len, pad_len, cksum_offset;
void *buffer;
u8 *iv, *ad;
if (WARN_ON(data_offset != krb5->conf_len))
return -EINVAL; /* Data is in wrong place */
secure_offset = 0;
base_len = krb5->conf_len + data_len;
pad_len = 0;
secure_len = base_len + pad_len;
cksum_offset = secure_len;
if (WARN_ON(cksum_offset + krb5->cksum_len > sg_len))
return -EFAULT;
bsize = krb5_aead_size(aead) +
krb5_aead_ivsize(aead) * 2;
buffer = kzalloc(bsize, GFP_NOFS);
if (!buffer)
return -ENOMEM;
req = buffer;
iv = buffer + krb5_aead_size(aead);
ad = buffer + krb5_aead_size(aead) + krb5_aead_ivsize(aead);
/* Insert the confounder into the buffer */
ret = -EFAULT;
if (!preconfounded) {
get_random_bytes(buffer, krb5->conf_len);
done = sg_pcopy_from_buffer(sg, nr_sg, buffer, krb5->conf_len,
secure_offset);
if (done != krb5->conf_len)
goto error;
}
/* We may need to pad out to the crypto blocksize. */
if (pad_len) {
done = sg_zero_buffer(sg, nr_sg, pad_len, data_offset + data_len);
if (done != pad_len)
goto error;
}
/* We need to include the starting IV in the hash. */
sg_init_table(bsg, 2);
sg_set_buf(&bsg[0], ad, krb5_aead_ivsize(aead));
sg_chain(bsg, 2, sg);
/* Hash and encrypt the message. */
aead_request_set_tfm(req, aead);
aead_request_set_callback(req, 0, NULL, NULL);
aead_request_set_ad(req, krb5_aead_ivsize(aead));
aead_request_set_crypt(req, bsg, bsg, secure_len, iv);
ret = crypto_aead_encrypt(req);
if (ret < 0)
goto error;
ret = secure_len + krb5->cksum_len;
error:
kfree_sensitive(buffer);
return ret;
}
/*
* Apply decryption and checksumming functions to a message. Unlike for
* RFC3961, for RFC8009, we have to chuck the starting IV into the hash first.
*
* The offset and length are updated to reflect the actual content of the
* encrypted region.
*/
static int rfc8009_decrypt(const struct krb5_enctype *krb5,
struct crypto_aead *aead,
struct scatterlist *sg, unsigned int nr_sg,
size_t *_offset, size_t *_len)
{
struct aead_request *req;
struct scatterlist bsg[2];
size_t bsize;
void *buffer;
int ret;
u8 *iv, *ad;
if (WARN_ON(*_offset != 0))
return -EINVAL; /* Can't set offset on aead */
if (*_len < krb5->conf_len + krb5->cksum_len)
return -EPROTO;
bsize = krb5_aead_size(aead) +
krb5_aead_ivsize(aead) * 2;
buffer = kzalloc(bsize, GFP_NOFS);
if (!buffer)
return -ENOMEM;
req = buffer;
iv = buffer + krb5_aead_size(aead);
ad = buffer + krb5_aead_size(aead) + krb5_aead_ivsize(aead);
/* We need to include the starting IV in the hash. */
sg_init_table(bsg, 2);
sg_set_buf(&bsg[0], ad, krb5_aead_ivsize(aead));
sg_chain(bsg, 2, sg);
/* Decrypt the message and verify its checksum. */
aead_request_set_tfm(req, aead);
aead_request_set_callback(req, 0, NULL, NULL);
aead_request_set_ad(req, krb5_aead_ivsize(aead));
aead_request_set_crypt(req, bsg, bsg, *_len, iv);
ret = crypto_aead_decrypt(req);
if (ret < 0)
goto error;
/* Adjust the boundaries of the data. */
*_offset += krb5->conf_len;
*_len -= krb5->conf_len + krb5->cksum_len;
ret = 0;
error:
kfree_sensitive(buffer);
return ret;
}
static const struct krb5_crypto_profile rfc8009_crypto_profile = {
.calc_PRF = rfc8009_calc_PRF,
.calc_Kc = rfc8009_calc_Ki,
.calc_Ke = rfc8009_calc_Ke,
.calc_Ki = rfc8009_calc_Ki,
.derive_encrypt_keys = authenc_derive_encrypt_keys,
.load_encrypt_keys = authenc_load_encrypt_keys,
.derive_checksum_key = rfc3961_derive_checksum_key,
.load_checksum_key = rfc3961_load_checksum_key,
.encrypt = rfc8009_encrypt,
.decrypt = rfc8009_decrypt,
.get_mic = rfc3961_get_mic,
.verify_mic = rfc3961_verify_mic,
};
const struct krb5_enctype krb5_aes128_cts_hmac_sha256_128 = {
.etype = KRB5_ENCTYPE_AES128_CTS_HMAC_SHA256_128,
.ctype = KRB5_CKSUMTYPE_HMAC_SHA256_128_AES128,
.name = "aes128-cts-hmac-sha256-128",
.encrypt_name = "authenc(hmac(sha256),cts(cbc(aes)))",
.cksum_name = "hmac(sha256)",
.hash_name = "sha256",
.derivation_enc = "cts(cbc(aes))",
.key_bytes = 16,
.key_len = 16,
.Kc_len = 16,
.Ke_len = 16,
.Ki_len = 16,
.block_len = 16,
.conf_len = 16,
.cksum_len = 16,
.hash_len = 20,
.prf_len = 32,
.keyed_cksum = true,
.random_to_key = NULL, /* Identity */
.profile = &rfc8009_crypto_profile,
};
const struct krb5_enctype krb5_aes256_cts_hmac_sha384_192 = {
.etype = KRB5_ENCTYPE_AES256_CTS_HMAC_SHA384_192,
.ctype = KRB5_CKSUMTYPE_HMAC_SHA384_192_AES256,
.name = "aes256-cts-hmac-sha384-192",
.encrypt_name = "authenc(hmac(sha384),cts(cbc(aes)))",
.cksum_name = "hmac(sha384)",
.hash_name = "sha384",
.derivation_enc = "cts(cbc(aes))",
.key_bytes = 32,
.key_len = 32,
.Kc_len = 24,
.Ke_len = 32,
.Ki_len = 24,
.block_len = 16,
.conf_len = 16,
.cksum_len = 24,
.hash_len = 20,
.prf_len = 48,
.keyed_cksum = true,
.random_to_key = NULL, /* Identity */
.profile = &rfc8009_crypto_profile,
};
|