1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2024 Nuvoton Technology Corp.
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/rawnand.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
/* NFI Registers */
#define MA35_NFI_REG_DMACTL 0x400
#define DMA_EN BIT(0)
#define DMA_RST BIT(1)
#define DMA_BUSY BIT(9)
#define MA35_NFI_REG_DMASA 0x408
#define MA35_NFI_REG_GCTL 0x800
#define GRST BIT(0)
#define NAND_EN BIT(3)
#define MA35_NFI_REG_NANDCTL 0x8A0
#define SWRST BIT(0)
#define DMA_R_EN BIT(1)
#define DMA_W_EN BIT(2)
#define ECC_CHK BIT(7)
#define PROT3BEN BIT(8)
#define PSIZE_2K BIT(16)
#define PSIZE_4K BIT(17)
#define PSIZE_8K GENMASK(17, 16)
#define PSIZE_MASK GENMASK(17, 16)
#define BCH_T24 BIT(18)
#define BCH_T8 BIT(20)
#define BCH_T12 BIT(21)
#define BCH_NONE (0x0)
#define BCH_MASK GENMASK(22, 18)
#define ECC_EN BIT(23)
#define DISABLE_CS0 BIT(25)
#define MA35_NFI_REG_NANDINTEN 0x8A8
#define MA35_NFI_REG_NANDINTSTS 0x8AC
#define INT_DMA BIT(0)
#define INT_ECC BIT(2)
#define INT_RB0 BIT(10)
#define MA35_NFI_REG_NANDCMD 0x8B0
#define MA35_NFI_REG_NANDADDR 0x8B4
#define ENDADDR BIT(31)
#define MA35_NFI_REG_NANDDATA 0x8B8
#define MA35_NFI_REG_NANDRACTL 0x8BC
#define MA35_NFI_REG_NANDECTL 0x8C0
#define ENABLE_WP 0x0
#define DISABLE_WP BIT(0)
#define MA35_NFI_REG_NANDECCES0 0x8D0
#define ECC_STATUS_MASK GENMASK(1, 0)
#define ECC_ERR_CNT_MASK GENMASK(4, 0)
#define MA35_NFI_REG_NANDECCEA0 0x900
#define MA35_NFI_REG_NANDECCED0 0x960
#define MA35_NFI_REG_NANDRA0 0xA00
/* Define for the BCH hardware ECC engine */
/* define the total padding bytes for 512/1024 data segment */
#define MA35_BCH_PADDING_512 32
#define MA35_BCH_PADDING_1024 64
/* define the BCH parity code length for 512 bytes data pattern */
#define MA35_PARITY_BCH8 15
#define MA35_PARITY_BCH12 23
/* define the BCH parity code length for 1024 bytes data pattern */
#define MA35_PARITY_BCH24 45
#define MA35_MAX_NSELS (2)
#define PREFIX_RA_IS_EMPTY(reg) FIELD_GET(GENMASK(31, 16), (reg))
struct ma35_nand_chip {
struct list_head node;
struct nand_chip chip;
u32 eccstatus;
u8 nsels;
u8 sels[] __counted_by(nsels);
};
struct ma35_nand_info {
struct nand_controller controller;
struct device *dev;
void __iomem *regs;
int irq;
struct clk *clk;
struct completion complete;
struct list_head chips;
u8 *buffer;
unsigned long assigned_cs;
};
static inline struct ma35_nand_chip *to_ma35_nand(struct nand_chip *chip)
{
return container_of(chip, struct ma35_nand_chip, chip);
}
static int ma35_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oob_region)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oob_region->length = chip->ecc.total;
oob_region->offset = mtd->oobsize - oob_region->length;
return 0;
}
static int ma35_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oob_region)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oob_region->length = mtd->oobsize - chip->ecc.total - 2;
oob_region->offset = 2;
return 0;
}
static const struct mtd_ooblayout_ops ma35_ooblayout_ops = {
.free = ma35_ooblayout_free,
.ecc = ma35_ooblayout_ecc,
};
static inline void ma35_clear_spare(struct nand_chip *chip, int size)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
int i;
for (i = 0; i < size / 4; i++)
writel(0xff, nand->regs + MA35_NFI_REG_NANDRA0);
}
static inline void read_remaining_bytes(struct ma35_nand_info *nand, u32 *buf,
u32 offset, int size, int swap)
{
u32 value = readl(nand->regs + MA35_NFI_REG_NANDRA0 + offset);
u8 *ptr = (u8 *)buf;
int i, shift;
for (i = 0; i < size; i++) {
shift = (swap ? 3 - i : i) * 8;
ptr[i] = (value >> shift) & 0xff;
}
}
static inline void ma35_read_spare(struct nand_chip *chip, int size, u32 *buf, u32 offset)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
u32 off = round_down(offset, 4);
int len = offset % 4;
int i;
if (len) {
read_remaining_bytes(nand, buf, off, 4 - len, 1);
off += 4;
size -= (4 - len);
}
for (i = 0; i < size / 4; i++)
*buf++ = readl(nand->regs + MA35_NFI_REG_NANDRA0 + off + (i * 4));
read_remaining_bytes(nand, buf, off + (size & ~3), size % 4, 0);
}
static inline void ma35_write_spare(struct nand_chip *chip, int size, u32 *buf)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
u32 value;
int i, j;
u8 *ptr;
for (i = 0, j = 0; i < size / 4; i++, j += 4)
writel(*buf++, nand->regs + MA35_NFI_REG_NANDRA0 + j);
ptr = (u8 *)buf;
switch (size % 4) {
case 1:
writel(*ptr, nand->regs + MA35_NFI_REG_NANDRA0 + j);
break;
case 2:
value = *ptr | (*(ptr + 1) << 8);
writel(value, nand->regs + MA35_NFI_REG_NANDRA0 + j);
break;
case 3:
value = *ptr | (*(ptr + 1) << 8) | (*(ptr + 2) << 16);
writel(value, nand->regs + MA35_NFI_REG_NANDRA0 + j);
break;
default:
break;
}
}
static void ma35_nand_target_enable(struct nand_chip *chip, unsigned int cs)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
u32 reg;
switch (cs) {
case 0:
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
writel(reg & ~DISABLE_CS0, nand->regs + MA35_NFI_REG_NANDCTL);
reg = readl(nand->regs + MA35_NFI_REG_NANDINTSTS);
reg |= INT_RB0;
writel(reg, nand->regs + MA35_NFI_REG_NANDINTSTS);
break;
default:
break;
}
}
static int ma35_nand_hwecc_init(struct nand_chip *chip, struct ma35_nand_info *nand)
{
struct ma35_nand_chip *nvtnand = to_ma35_nand(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct device *dev = mtd->dev.parent;
u32 reg;
nand->buffer = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
if (!nand->buffer)
return -ENOMEM;
/* Redundant area size */
writel(mtd->oobsize, nand->regs + MA35_NFI_REG_NANDRACTL);
/* Protect redundant 3 bytes and disable ECC engine */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
reg |= (PROT3BEN | ECC_CHK);
reg &= ~ECC_EN;
if (chip->ecc.strength != 0) {
chip->ecc.steps = mtd->writesize / chip->ecc.size;
nvtnand->eccstatus = (chip->ecc.steps < 4) ? 1 : chip->ecc.steps / 4;
/* Set BCH algorithm */
reg &= ~BCH_MASK;
switch (chip->ecc.strength) {
case 8:
chip->ecc.total = chip->ecc.steps * MA35_PARITY_BCH8;
reg |= BCH_T8;
break;
case 12:
chip->ecc.total = chip->ecc.steps * MA35_PARITY_BCH12;
reg |= BCH_T12;
break;
case 24:
chip->ecc.total = chip->ecc.steps * MA35_PARITY_BCH24;
reg |= BCH_T24;
break;
default:
dev_err(nand->dev, "ECC strength unsupported\n");
return -EINVAL;
}
chip->ecc.bytes = chip->ecc.total / chip->ecc.steps;
}
writel(reg, nand->regs + MA35_NFI_REG_NANDCTL);
return 0;
}
/* Correct data by BCH alrogithm */
static void ma35_nfi_correct(struct nand_chip *chip, u8 index,
u8 err_cnt, u8 *addr)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
u32 temp_data[24], temp_addr[24];
u32 padding_len, parity_len;
u32 value, offset, remain;
u32 err_data[6];
u8 i, j;
/* Configurations */
if (chip->ecc.strength <= 8) {
parity_len = MA35_PARITY_BCH8;
padding_len = MA35_BCH_PADDING_512;
} else if (chip->ecc.strength <= 12) {
parity_len = MA35_PARITY_BCH12;
padding_len = MA35_BCH_PADDING_512;
} else if (chip->ecc.strength <= 24) {
parity_len = MA35_PARITY_BCH24;
padding_len = MA35_BCH_PADDING_1024;
} else {
dev_err(nand->dev, "Invalid BCH_TSEL = 0x%lx\n",
readl(nand->regs + MA35_NFI_REG_NANDCTL) & BCH_MASK);
return;
}
/*
* got valid BCH_ECC_DATAx and parse them to temp_data[]
* got the valid register number of BCH_ECC_DATAx since
* one register include 4 error bytes
*/
j = (err_cnt + 3) / 4;
j = (j > 6) ? 6 : j;
for (i = 0; i < j; i++)
err_data[i] = readl(nand->regs + MA35_NFI_REG_NANDECCED0 + i * 4);
for (i = 0; i < j; i++) {
temp_data[i * 4 + 0] = err_data[i] & 0xff;
temp_data[i * 4 + 1] = (err_data[i] >> 8) & 0xff;
temp_data[i * 4 + 2] = (err_data[i] >> 16) & 0xff;
temp_data[i * 4 + 3] = (err_data[i] >> 24) & 0xff;
}
/*
* got valid REG_BCH_ECC_ADDRx and parse them to temp_addr[]
* got the valid register number of REG_BCH_ECC_ADDRx since
* one register include 2 error addresses
*/
j = (err_cnt + 1) / 2;
j = (j > 12) ? 12 : j;
for (i = 0; i < j; i++) {
temp_addr[i * 2 + 0] = readl(nand->regs + MA35_NFI_REG_NANDECCEA0 + i * 4)
& 0x07ff;
temp_addr[i * 2 + 1] = (readl(nand->regs + MA35_NFI_REG_NANDECCEA0 + i * 4)
>> 16) & 0x07ff;
}
/* pointer to begin address of field that with data error */
addr += index * chip->ecc.size;
/* correct each error bytes */
for (i = 0; i < err_cnt; i++) {
u32 corrected_index = temp_addr[i];
if (corrected_index < chip->ecc.size) {
/* for wrong data in field */
*(addr + corrected_index) ^= temp_data[i];
} else if (corrected_index < (chip->ecc.size + 3)) {
/* for wrong first-3-bytes in redundancy area */
corrected_index -= chip->ecc.size;
temp_addr[i] += (parity_len * index); /* field offset */
value = readl(nand->regs + MA35_NFI_REG_NANDRA0);
value ^= temp_data[i] << (8 * corrected_index);
writel(value, nand->regs + MA35_NFI_REG_NANDRA0);
} else {
/*
* for wrong parity code in redundancy area
* ERR_ADDRx = [data in field] + [3 bytes] + [xx] + [parity code]
* |<-- padding bytes -->|
* The ERR_ADDRx for last parity code always = field size + padding size.
* The first parity code = field size + padding size - parity code length.
* For example, for BCH T12, the first parity code = 512 + 32 - 23 = 521.
* That is, error byte address offset within field is
*/
corrected_index -= (chip->ecc.size + padding_len - parity_len);
/*
* final address = first parity code of first field +
* offset of fields +
* offset within field
*/
offset = (readl(nand->regs + MA35_NFI_REG_NANDRACTL) & 0x1ff) -
(parity_len * chip->ecc.steps) +
(parity_len * index) + corrected_index;
remain = offset % 4;
value = readl(nand->regs + MA35_NFI_REG_NANDRA0 + offset - remain);
value ^= temp_data[i] << (8 * remain);
writel(value, nand->regs + MA35_NFI_REG_NANDRA0 + offset - remain);
}
}
}
static int ma35_nfi_ecc_check(struct nand_chip *chip, u8 *addr)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct ma35_nand_chip *nvtnand = to_ma35_nand(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int maxbitflips = 0;
int cnt = 0;
u32 status;
int i, j;
for (j = 0; j < nvtnand->eccstatus; j++) {
status = readl(nand->regs + MA35_NFI_REG_NANDECCES0 + j * 4);
if (!status)
continue;
for (i = 0; i < 4; i++) {
if ((status & ECC_STATUS_MASK) == 0x01) {
/* Correctable error */
cnt = (status >> 2) & ECC_ERR_CNT_MASK;
ma35_nfi_correct(chip, j * 4 + i, cnt, addr);
maxbitflips = max_t(u32, maxbitflips, cnt);
mtd->ecc_stats.corrected += cnt;
} else {
/* Uncorrectable error */
mtd->ecc_stats.failed++;
dev_err(nand->dev, "uncorrectable error! 0x%4x\n", status);
return -EBADMSG;
}
status >>= 8;
}
}
return maxbitflips;
}
static void ma35_nand_dmac_init(struct ma35_nand_info *nand)
{
/* DMAC reset and enable */
writel(DMA_RST | DMA_EN, nand->regs + MA35_NFI_REG_DMACTL);
writel(DMA_EN, nand->regs + MA35_NFI_REG_DMACTL);
/* Clear DMA finished flag and enable */
writel(INT_DMA | INT_ECC, nand->regs + MA35_NFI_REG_NANDINTSTS);
writel(INT_DMA, nand->regs + MA35_NFI_REG_NANDINTEN);
}
static int ma35_nand_do_write(struct nand_chip *chip, const u8 *addr, u32 len)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
dma_addr_t dma_addr;
int ret = 0, i;
u32 reg;
if (len != mtd->writesize) {
for (i = 0; i < len; i++)
writel(addr[i], nand->regs + MA35_NFI_REG_NANDDATA);
return 0;
}
ma35_nand_dmac_init(nand);
/* To mark this page as dirty. */
reg = readl(nand->regs + MA35_NFI_REG_NANDRA0);
if (reg & 0xffff0000)
writel(reg & 0xffff, nand->regs + MA35_NFI_REG_NANDRA0);
dma_addr = dma_map_single(nand->dev, (void *)addr, len, DMA_TO_DEVICE);
ret = dma_mapping_error(nand->dev, dma_addr);
if (ret) {
dev_err(nand->dev, "dma mapping error\n");
return -EINVAL;
}
dma_sync_single_for_device(nand->dev, dma_addr, len, DMA_TO_DEVICE);
reinit_completion(&nand->complete);
writel(dma_addr, nand->regs + MA35_NFI_REG_DMASA);
writel(readl(nand->regs + MA35_NFI_REG_NANDCTL) | DMA_W_EN,
nand->regs + MA35_NFI_REG_NANDCTL);
ret = wait_for_completion_timeout(&nand->complete, msecs_to_jiffies(1000));
if (!ret) {
dev_err(nand->dev, "write timeout\n");
ret = -ETIMEDOUT;
}
dma_unmap_single(nand->dev, dma_addr, len, DMA_TO_DEVICE);
return ret;
}
static int ma35_nand_do_read(struct nand_chip *chip, u8 *addr, u32 len)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int ret = 0, cnt = 0, i;
dma_addr_t dma_addr;
u32 reg;
if (len != mtd->writesize) {
for (i = 0; i < len; i++)
addr[i] = readb(nand->regs + MA35_NFI_REG_NANDDATA);
return 0;
}
ma35_nand_dmac_init(nand);
/* Setup and start DMA using dma_addr */
dma_addr = dma_map_single(nand->dev, (void *)addr, len, DMA_FROM_DEVICE);
ret = dma_mapping_error(nand->dev, dma_addr);
if (ret) {
dev_err(nand->dev, "dma mapping error\n");
return -EINVAL;
}
reinit_completion(&nand->complete);
writel(dma_addr, nand->regs + MA35_NFI_REG_DMASA);
writel(readl(nand->regs + MA35_NFI_REG_NANDCTL) | DMA_R_EN,
nand->regs + MA35_NFI_REG_NANDCTL);
ret = wait_for_completion_timeout(&nand->complete, msecs_to_jiffies(1000));
if (!ret) {
dev_err(nand->dev, "read timeout\n");
ret = -ETIMEDOUT;
}
dma_unmap_single(nand->dev, dma_addr, len, DMA_FROM_DEVICE);
reg = readl(nand->regs + MA35_NFI_REG_NANDINTSTS);
if (reg & INT_ECC) {
cnt = ma35_nfi_ecc_check(chip, addr);
if (cnt < 0) {
writel(DMA_RST | DMA_EN, nand->regs + MA35_NFI_REG_DMACTL);
writel(readl(nand->regs + MA35_NFI_REG_NANDCTL) | SWRST,
nand->regs + MA35_NFI_REG_NANDCTL);
}
writel(INT_ECC, nand->regs + MA35_NFI_REG_NANDINTSTS);
}
ret = ret < 0 ? ret : cnt;
return ret;
}
static int ma35_nand_format_subpage(struct nand_chip *chip, u32 offset,
u32 len, const u8 *buf)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
u32 page_off = round_down(offset, chip->ecc.size);
u32 end = DIV_ROUND_UP(page_off + len, chip->ecc.size);
u32 start = page_off / chip->ecc.size;
u32 reg;
int i;
reg = readl(nand->regs + MA35_NFI_REG_NANDRACTL) | 0xffff0000;
memset(nand->buffer, 0xff, mtd->writesize);
for (i = start; i < end; i++) {
memcpy(nand->buffer + i * chip->ecc.size,
buf + i * chip->ecc.size, chip->ecc.size);
reg &= ~(1 << (i + 16));
}
writel(reg, nand->regs + MA35_NFI_REG_NANDRACTL);
return 0;
}
static int ma35_nand_write_subpage_hwecc(struct nand_chip *chip, u32 offset,
u32 data_len, const u8 *buf,
int oob_required, int page)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
u32 reg, oobpoi, index;
int i;
/* Enable HW ECC engine */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
writel(reg | ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
ma35_nand_target_enable(chip, chip->cur_cs);
ma35_clear_spare(chip, mtd->oobsize);
ma35_write_spare(chip, mtd->oobsize - chip->ecc.total,
(u32 *)chip->oob_poi);
ma35_nand_format_subpage(chip, offset, data_len, buf);
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
ma35_nand_do_write(chip, nand->buffer, mtd->writesize);
nand_prog_page_end_op(chip);
oobpoi = mtd->oobsize - chip->ecc.total;
reg = readl(nand->regs + MA35_NFI_REG_NANDRACTL);
for (i = 0; i < chip->ecc.steps; i++) {
index = i * chip->ecc.bytes;
if (!(reg & (1 << (i + 16)))) {
ma35_read_spare(chip, chip->ecc.bytes,
(u32 *)(chip->oob_poi + oobpoi + index),
oobpoi + index);
}
}
writel(mtd->oobsize, nand->regs + MA35_NFI_REG_NANDRACTL);
/* Disable HW ECC engine */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
writel(reg & ~ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
return 0;
}
static int ma35_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
u32 reg;
/* Enable HW ECC engine */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
writel(reg | ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
ma35_nand_target_enable(chip, chip->cur_cs);
ma35_clear_spare(chip, mtd->oobsize);
ma35_write_spare(chip, mtd->oobsize - chip->ecc.total,
(u32 *)chip->oob_poi);
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
ma35_nand_do_write(chip, buf, mtd->writesize);
nand_prog_page_end_op(chip);
ma35_read_spare(chip, chip->ecc.total,
(u32 *)(chip->oob_poi + (mtd->oobsize - chip->ecc.total)),
mtd->oobsize - chip->ecc.total);
/* Disable HW ECC engine */
writel(reg & ~ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
return 0;
}
static int ma35_nand_read_subpage_hwecc(struct nand_chip *chip, u32 offset,
u32 data_len, u8 *buf, int page)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int bitflips = 0;
u32 reg;
/* Enable HW ECC engine */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
writel(reg | ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
ma35_nand_target_enable(chip, chip->cur_cs);
nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
ma35_write_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi);
reg = readl(nand->regs + MA35_NFI_REG_NANDRA0);
if (PREFIX_RA_IS_EMPTY(reg)) {
memset((void *)buf, 0xff, mtd->writesize);
} else {
nand_read_page_op(chip, page, offset, NULL, 0);
bitflips = ma35_nand_do_read(chip, buf + offset, data_len);
ma35_read_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi, 0);
}
/* Disable HW ECC engine */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
writel(reg & ~ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
return bitflips;
}
static int ma35_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
int bitflips = 0;
u32 reg;
/* Enable HW ECC engine */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
writel(reg | ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
ma35_nand_target_enable(chip, chip->cur_cs);
nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
ma35_write_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi);
reg = readl(nand->regs + MA35_NFI_REG_NANDRA0);
if (PREFIX_RA_IS_EMPTY(reg)) {
memset((void *)buf, 0xff, mtd->writesize);
} else {
nand_read_page_op(chip, page, 0, NULL, 0);
bitflips = ma35_nand_do_read(chip, buf, mtd->writesize);
ma35_read_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi, 0);
}
/* Disable HW ECC engine */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
writel(reg & ~ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL);
return bitflips;
}
static int ma35_nand_read_oob_hwecc(struct nand_chip *chip, int page)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
u32 reg;
ma35_nand_target_enable(chip, chip->cur_cs);
nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
/* copy OOB data to controller redundant area for page read */
ma35_write_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi);
reg = readl(nand->regs + MA35_NFI_REG_NANDRA0);
if (PREFIX_RA_IS_EMPTY(reg))
memset((void *)chip->oob_poi, 0xff, mtd->oobsize);
return 0;
}
static inline void ma35_hw_init(struct ma35_nand_info *nand)
{
u32 reg;
/* Disable flash wp. */
writel(DISABLE_WP, nand->regs + MA35_NFI_REG_NANDECTL);
/* resets the internal state machine and counters */
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL);
reg |= SWRST;
writel(reg, nand->regs + MA35_NFI_REG_NANDCTL);
}
static irqreturn_t ma35_nand_irq(int irq, void *id)
{
struct ma35_nand_info *nand = (struct ma35_nand_info *)id;
u32 isr;
isr = readl(nand->regs + MA35_NFI_REG_NANDINTSTS);
if (isr & INT_DMA) {
writel(INT_DMA, nand->regs + MA35_NFI_REG_NANDINTSTS);
complete(&nand->complete);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static int ma35_nand_attach_chip(struct nand_chip *chip)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct device *dev = mtd->dev.parent;
u32 reg;
if (chip->options & NAND_BUSWIDTH_16) {
dev_err(dev, "16 bits bus width not supported");
return -EINVAL;
}
reg = readl(nand->regs + MA35_NFI_REG_NANDCTL) & (~PSIZE_MASK);
switch (mtd->writesize) {
case SZ_2K:
writel(reg | PSIZE_2K, nand->regs + MA35_NFI_REG_NANDCTL);
break;
case SZ_4K:
writel(reg | PSIZE_4K, nand->regs + MA35_NFI_REG_NANDCTL);
break;
case SZ_8K:
writel(reg | PSIZE_8K, nand->regs + MA35_NFI_REG_NANDCTL);
break;
default:
dev_err(dev, "Unsupported page size");
return -EINVAL;
}
switch (chip->ecc.engine_type) {
case NAND_ECC_ENGINE_TYPE_ON_HOST:
/* Do not store BBT bits in the OOB section as it is not protected */
if (chip->bbt_options & NAND_BBT_USE_FLASH)
chip->bbt_options |= NAND_BBT_NO_OOB;
chip->options |= NAND_USES_DMA | NAND_SUBPAGE_READ;
chip->ecc.write_subpage = ma35_nand_write_subpage_hwecc;
chip->ecc.write_page = ma35_nand_write_page_hwecc;
chip->ecc.read_subpage = ma35_nand_read_subpage_hwecc;
chip->ecc.read_page = ma35_nand_read_page_hwecc;
chip->ecc.read_oob = ma35_nand_read_oob_hwecc;
return ma35_nand_hwecc_init(chip, nand);
case NAND_ECC_ENGINE_TYPE_NONE:
case NAND_ECC_ENGINE_TYPE_SOFT:
case NAND_ECC_ENGINE_TYPE_ON_DIE:
break;
default:
return -EINVAL;
}
return 0;
}
static int ma35_nfc_exec_instr(struct nand_chip *chip,
const struct nand_op_instr *instr)
{
struct ma35_nand_info *nand = nand_get_controller_data(chip);
unsigned int i;
int ret = 0;
u32 status;
switch (instr->type) {
case NAND_OP_CMD_INSTR:
writel(instr->ctx.cmd.opcode, nand->regs + MA35_NFI_REG_NANDCMD);
break;
case NAND_OP_ADDR_INSTR:
for (i = 0; i < instr->ctx.addr.naddrs; i++) {
if (i == (instr->ctx.addr.naddrs - 1))
writel(instr->ctx.addr.addrs[i] | ENDADDR,
nand->regs + MA35_NFI_REG_NANDADDR);
else
writel(instr->ctx.addr.addrs[i],
nand->regs + MA35_NFI_REG_NANDADDR);
}
break;
case NAND_OP_DATA_IN_INSTR:
ret = ma35_nand_do_read(chip, instr->ctx.data.buf.in, instr->ctx.data.len);
break;
case NAND_OP_DATA_OUT_INSTR:
ret = ma35_nand_do_write(chip, instr->ctx.data.buf.out, instr->ctx.data.len);
break;
case NAND_OP_WAITRDY_INSTR:
return readl_poll_timeout(nand->regs + MA35_NFI_REG_NANDINTSTS, status,
status & INT_RB0, 20,
instr->ctx.waitrdy.timeout_ms * MSEC_PER_SEC);
default:
ret = -EINVAL;
break;
}
return ret;
}
static int ma35_nfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
int ret = 0;
u32 i;
if (check_only)
return 0;
ma35_nand_target_enable(chip, op->cs);
for (i = 0; i < op->ninstrs; i++) {
ret = ma35_nfc_exec_instr(chip, &op->instrs[i]);
if (ret)
break;
}
return ret;
}
static const struct nand_controller_ops ma35_nfc_ops = {
.attach_chip = ma35_nand_attach_chip,
.exec_op = ma35_nfc_exec_op,
};
static int ma35_nand_chip_init(struct device *dev, struct ma35_nand_info *nand,
struct device_node *np)
{
struct ma35_nand_chip *nvtnand;
struct nand_chip *chip;
struct mtd_info *mtd;
int nsels;
int ret;
u32 cs;
int i;
nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
if (!nsels || nsels > MA35_MAX_NSELS) {
dev_err(dev, "invalid reg property size %d\n", nsels);
return -EINVAL;
}
nvtnand = devm_kzalloc(dev, struct_size(nvtnand, sels, nsels),
GFP_KERNEL);
if (!nvtnand)
return -ENOMEM;
nvtnand->nsels = nsels;
for (i = 0; i < nsels; i++) {
ret = of_property_read_u32_index(np, "reg", i, &cs);
if (ret) {
dev_err(dev, "reg property failure : %d\n", ret);
return ret;
}
if (cs >= MA35_MAX_NSELS) {
dev_err(dev, "invalid CS: %u\n", cs);
return -EINVAL;
}
if (test_and_set_bit(cs, &nand->assigned_cs)) {
dev_err(dev, "CS %u already assigned\n", cs);
return -EINVAL;
}
nvtnand->sels[i] = cs;
}
chip = &nvtnand->chip;
chip->controller = &nand->controller;
nand_set_flash_node(chip, np);
nand_set_controller_data(chip, nand);
mtd = nand_to_mtd(chip);
mtd->owner = THIS_MODULE;
mtd->dev.parent = dev;
mtd_set_ooblayout(mtd, &ma35_ooblayout_ops);
ret = nand_scan(chip, nsels);
if (ret)
return ret;
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
nand_cleanup(chip);
return ret;
}
list_add_tail(&nvtnand->node, &nand->chips);
return 0;
}
static void ma35_chips_cleanup(struct ma35_nand_info *nand)
{
struct ma35_nand_chip *nvtnand, *tmp;
struct nand_chip *chip;
int ret;
list_for_each_entry_safe(nvtnand, tmp, &nand->chips, node) {
chip = &nvtnand->chip;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
list_del(&nvtnand->node);
}
}
static int ma35_nand_chips_init(struct device *dev, struct ma35_nand_info *nand)
{
struct device_node *np = dev->of_node, *nand_np;
int ret;
for_each_child_of_node(np, nand_np) {
ret = ma35_nand_chip_init(dev, nand, nand_np);
if (ret) {
ma35_chips_cleanup(nand);
return ret;
}
}
return 0;
}
static int ma35_nand_probe(struct platform_device *pdev)
{
struct ma35_nand_info *nand;
int ret = 0;
nand = devm_kzalloc(&pdev->dev, sizeof(*nand), GFP_KERNEL);
if (!nand)
return -ENOMEM;
nand_controller_init(&nand->controller);
INIT_LIST_HEAD(&nand->chips);
nand->controller.ops = &ma35_nfc_ops;
init_completion(&nand->complete);
nand->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(nand->regs))
return PTR_ERR(nand->regs);
nand->dev = &pdev->dev;
nand->clk = devm_clk_get_enabled(&pdev->dev, "nand_gate");
if (IS_ERR(nand->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(nand->clk),
"failed to find NAND clock\n");
nand->irq = platform_get_irq(pdev, 0);
if (nand->irq < 0)
return dev_err_probe(&pdev->dev, nand->irq,
"failed to get platform irq\n");
ret = devm_request_irq(&pdev->dev, nand->irq, ma35_nand_irq,
IRQF_TRIGGER_HIGH, "ma35d1-nand-controller", nand);
if (ret) {
dev_err(&pdev->dev, "failed to request NAND irq\n");
return -ENXIO;
}
platform_set_drvdata(pdev, nand);
writel(GRST | NAND_EN, nand->regs + MA35_NFI_REG_GCTL);
ma35_hw_init(nand);
ret = ma35_nand_chips_init(&pdev->dev, nand);
if (ret) {
dev_err(&pdev->dev, "failed to init NAND chips\n");
clk_disable(nand->clk);
return ret;
}
return ret;
}
static void ma35_nand_remove(struct platform_device *pdev)
{
struct ma35_nand_info *nand = platform_get_drvdata(pdev);
ma35_chips_cleanup(nand);
}
static const struct of_device_id ma35_nand_of_match[] = {
{ .compatible = "nuvoton,ma35d1-nand-controller" },
{},
};
MODULE_DEVICE_TABLE(of, ma35_nand_of_match);
static struct platform_driver ma35_nand_driver = {
.driver = {
.name = "ma35d1-nand-controller",
.of_match_table = ma35_nand_of_match,
},
.probe = ma35_nand_probe,
.remove = ma35_nand_remove,
};
module_platform_driver(ma35_nand_driver);
MODULE_DESCRIPTION("Nuvoton ma35 NAND driver");
MODULE_AUTHOR("Hui-Ping Chen <hpchen0nvt@gmail.com>");
MODULE_LICENSE("GPL");
|