1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
|
// SPDX-License-Identifier: GPL-2.0
/*
* mm/mremap.c
*
* (C) Copyright 1996 Linus Torvalds
*
* Address space accounting code <alan@lxorguk.ukuu.org.uk>
* (C) Copyright 2002 Red Hat Inc, All Rights Reserved
*/
#include <linux/mm.h>
#include <linux/mm_inline.h>
#include <linux/hugetlb.h>
#include <linux/shm.h>
#include <linux/ksm.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/capability.h>
#include <linux/fs.h>
#include <linux/swapops.h>
#include <linux/highmem.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/mmu_notifier.h>
#include <linux/uaccess.h>
#include <linux/userfaultfd_k.h>
#include <linux/mempolicy.h>
#include <asm/cacheflush.h>
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"
/* Classify the kind of remap operation being performed. */
enum mremap_type {
MREMAP_INVALID, /* Initial state. */
MREMAP_NO_RESIZE, /* old_len == new_len, if not moved, do nothing. */
MREMAP_SHRINK, /* old_len > new_len. */
MREMAP_EXPAND, /* old_len < new_len. */
};
/*
* Describes a VMA mremap() operation and is threaded throughout it.
*
* Any of the fields may be mutated by the operation, however these values will
* always accurately reflect the remap (for instance, we may adjust lengths and
* delta to account for hugetlb alignment).
*/
struct vma_remap_struct {
/* User-provided state. */
unsigned long addr; /* User-specified address from which we remap. */
unsigned long old_len; /* Length of range being remapped. */
unsigned long new_len; /* Desired new length of mapping. */
unsigned long flags; /* user-specified MREMAP_* flags. */
unsigned long new_addr; /* Optionally, desired new address. */
/* uffd state. */
struct vm_userfaultfd_ctx *uf;
struct list_head *uf_unmap_early;
struct list_head *uf_unmap;
/* VMA state, determined in do_mremap(). */
struct vm_area_struct *vma;
/* Internal state, determined in do_mremap(). */
unsigned long delta; /* Absolute delta of old_len,new_len. */
bool mlocked; /* Was the VMA mlock()'d? */
enum mremap_type remap_type; /* expand, shrink, etc. */
bool mmap_locked; /* Is mm currently write-locked? */
unsigned long charged; /* If VM_ACCOUNT, # pages to account. */
};
static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pgd = pgd_offset(mm, addr);
if (pgd_none_or_clear_bad(pgd))
return NULL;
p4d = p4d_offset(pgd, addr);
if (p4d_none_or_clear_bad(p4d))
return NULL;
pud = pud_offset(p4d, addr);
if (pud_none_or_clear_bad(pud))
return NULL;
return pud;
}
static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
{
pud_t *pud;
pmd_t *pmd;
pud = get_old_pud(mm, addr);
if (!pud)
return NULL;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return NULL;
return pmd;
}
static pud_t *alloc_new_pud(struct mm_struct *mm, unsigned long addr)
{
pgd_t *pgd;
p4d_t *p4d;
pgd = pgd_offset(mm, addr);
p4d = p4d_alloc(mm, pgd, addr);
if (!p4d)
return NULL;
return pud_alloc(mm, p4d, addr);
}
static pmd_t *alloc_new_pmd(struct mm_struct *mm, unsigned long addr)
{
pud_t *pud;
pmd_t *pmd;
pud = alloc_new_pud(mm, addr);
if (!pud)
return NULL;
pmd = pmd_alloc(mm, pud, addr);
if (!pmd)
return NULL;
VM_BUG_ON(pmd_trans_huge(*pmd));
return pmd;
}
static void take_rmap_locks(struct vm_area_struct *vma)
{
if (vma->vm_file)
i_mmap_lock_write(vma->vm_file->f_mapping);
if (vma->anon_vma)
anon_vma_lock_write(vma->anon_vma);
}
static void drop_rmap_locks(struct vm_area_struct *vma)
{
if (vma->anon_vma)
anon_vma_unlock_write(vma->anon_vma);
if (vma->vm_file)
i_mmap_unlock_write(vma->vm_file->f_mapping);
}
static pte_t move_soft_dirty_pte(pte_t pte)
{
/*
* Set soft dirty bit so we can notice
* in userspace the ptes were moved.
*/
#ifdef CONFIG_MEM_SOFT_DIRTY
if (pte_present(pte))
pte = pte_mksoft_dirty(pte);
else if (is_swap_pte(pte))
pte = pte_swp_mksoft_dirty(pte);
#endif
return pte;
}
static int move_ptes(struct pagetable_move_control *pmc,
unsigned long extent, pmd_t *old_pmd, pmd_t *new_pmd)
{
struct vm_area_struct *vma = pmc->old;
bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
struct mm_struct *mm = vma->vm_mm;
pte_t *old_pte, *new_pte, pte;
pmd_t dummy_pmdval;
spinlock_t *old_ptl, *new_ptl;
bool force_flush = false;
unsigned long old_addr = pmc->old_addr;
unsigned long new_addr = pmc->new_addr;
unsigned long old_end = old_addr + extent;
unsigned long len = old_end - old_addr;
int err = 0;
/*
* When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
* locks to ensure that rmap will always observe either the old or the
* new ptes. This is the easiest way to avoid races with
* truncate_pagecache(), page migration, etc...
*
* When need_rmap_locks is false, we use other ways to avoid
* such races:
*
* - During exec() shift_arg_pages(), we use a specially tagged vma
* which rmap call sites look for using vma_is_temporary_stack().
*
* - During mremap(), new_vma is often known to be placed after vma
* in rmap traversal order. This ensures rmap will always observe
* either the old pte, or the new pte, or both (the page table locks
* serialize access to individual ptes, but only rmap traversal
* order guarantees that we won't miss both the old and new ptes).
*/
if (pmc->need_rmap_locks)
take_rmap_locks(vma);
/*
* We don't have to worry about the ordering of src and dst
* pte locks because exclusive mmap_lock prevents deadlock.
*/
old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
if (!old_pte) {
err = -EAGAIN;
goto out;
}
/*
* Now new_pte is none, so hpage_collapse_scan_file() path can not find
* this by traversing file->f_mapping, so there is no concurrency with
* retract_page_tables(). In addition, we already hold the exclusive
* mmap_lock, so this new_pte page is stable, so there is no need to get
* pmdval and do pmd_same() check.
*/
new_pte = pte_offset_map_rw_nolock(mm, new_pmd, new_addr, &dummy_pmdval,
&new_ptl);
if (!new_pte) {
pte_unmap_unlock(old_pte, old_ptl);
err = -EAGAIN;
goto out;
}
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
flush_tlb_batched_pending(vma->vm_mm);
arch_enter_lazy_mmu_mode();
for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
new_pte++, new_addr += PAGE_SIZE) {
if (pte_none(ptep_get(old_pte)))
continue;
pte = ptep_get_and_clear(mm, old_addr, old_pte);
/*
* If we are remapping a valid PTE, make sure
* to flush TLB before we drop the PTL for the
* PTE.
*
* NOTE! Both old and new PTL matter: the old one
* for racing with folio_mkclean(), the new one to
* make sure the physical page stays valid until
* the TLB entry for the old mapping has been
* flushed.
*/
if (pte_present(pte))
force_flush = true;
pte = move_pte(pte, old_addr, new_addr);
pte = move_soft_dirty_pte(pte);
if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
pte_clear(mm, new_addr, new_pte);
else {
if (need_clear_uffd_wp) {
if (pte_present(pte))
pte = pte_clear_uffd_wp(pte);
else if (is_swap_pte(pte))
pte = pte_swp_clear_uffd_wp(pte);
}
set_pte_at(mm, new_addr, new_pte, pte);
}
}
arch_leave_lazy_mmu_mode();
if (force_flush)
flush_tlb_range(vma, old_end - len, old_end);
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
pte_unmap(new_pte - 1);
pte_unmap_unlock(old_pte - 1, old_ptl);
out:
if (pmc->need_rmap_locks)
drop_rmap_locks(vma);
return err;
}
#ifndef arch_supports_page_table_move
#define arch_supports_page_table_move arch_supports_page_table_move
static inline bool arch_supports_page_table_move(void)
{
return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
}
#endif
#ifdef CONFIG_HAVE_MOVE_PMD
static bool move_normal_pmd(struct pagetable_move_control *pmc,
pmd_t *old_pmd, pmd_t *new_pmd)
{
spinlock_t *old_ptl, *new_ptl;
struct vm_area_struct *vma = pmc->old;
struct mm_struct *mm = vma->vm_mm;
bool res = false;
pmd_t pmd;
if (!arch_supports_page_table_move())
return false;
/*
* The destination pmd shouldn't be established, free_pgtables()
* should have released it.
*
* However, there's a case during execve() where we use mremap
* to move the initial stack, and in that case the target area
* may overlap the source area (always moving down).
*
* If everything is PMD-aligned, that works fine, as moving
* each pmd down will clear the source pmd. But if we first
* have a few 4kB-only pages that get moved down, and then
* hit the "now the rest is PMD-aligned, let's do everything
* one pmd at a time", we will still have the old (now empty
* of any 4kB pages, but still there) PMD in the page table
* tree.
*
* Warn on it once - because we really should try to figure
* out how to do this better - but then say "I won't move
* this pmd".
*
* One alternative might be to just unmap the target pmd at
* this point, and verify that it really is empty. We'll see.
*/
if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
return false;
/* If this pmd belongs to a uffd vma with remap events disabled, we need
* to ensure that the uffd-wp state is cleared from all pgtables. This
* means recursing into lower page tables in move_page_tables(), and we
* can reuse the existing code if we simply treat the entry as "not
* moved".
*/
if (vma_has_uffd_without_event_remap(vma))
return false;
/*
* We don't have to worry about the ordering of src and dst
* ptlocks because exclusive mmap_lock prevents deadlock.
*/
old_ptl = pmd_lock(mm, old_pmd);
new_ptl = pmd_lockptr(mm, new_pmd);
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
pmd = *old_pmd;
/* Racing with collapse? */
if (unlikely(!pmd_present(pmd) || pmd_leaf(pmd)))
goto out_unlock;
/* Clear the pmd */
pmd_clear(old_pmd);
res = true;
VM_BUG_ON(!pmd_none(*new_pmd));
pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
flush_tlb_range(vma, pmc->old_addr, pmc->old_addr + PMD_SIZE);
out_unlock:
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
spin_unlock(old_ptl);
return res;
}
#else
static inline bool move_normal_pmd(struct pagetable_move_control *pmc,
pmd_t *old_pmd, pmd_t *new_pmd)
{
return false;
}
#endif
#if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
static bool move_normal_pud(struct pagetable_move_control *pmc,
pud_t *old_pud, pud_t *new_pud)
{
spinlock_t *old_ptl, *new_ptl;
struct vm_area_struct *vma = pmc->old;
struct mm_struct *mm = vma->vm_mm;
pud_t pud;
if (!arch_supports_page_table_move())
return false;
/*
* The destination pud shouldn't be established, free_pgtables()
* should have released it.
*/
if (WARN_ON_ONCE(!pud_none(*new_pud)))
return false;
/* If this pud belongs to a uffd vma with remap events disabled, we need
* to ensure that the uffd-wp state is cleared from all pgtables. This
* means recursing into lower page tables in move_page_tables(), and we
* can reuse the existing code if we simply treat the entry as "not
* moved".
*/
if (vma_has_uffd_without_event_remap(vma))
return false;
/*
* We don't have to worry about the ordering of src and dst
* ptlocks because exclusive mmap_lock prevents deadlock.
*/
old_ptl = pud_lock(mm, old_pud);
new_ptl = pud_lockptr(mm, new_pud);
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
/* Clear the pud */
pud = *old_pud;
pud_clear(old_pud);
VM_BUG_ON(!pud_none(*new_pud));
pud_populate(mm, new_pud, pud_pgtable(pud));
flush_tlb_range(vma, pmc->old_addr, pmc->old_addr + PUD_SIZE);
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
spin_unlock(old_ptl);
return true;
}
#else
static inline bool move_normal_pud(struct pagetable_move_control *pmc,
pud_t *old_pud, pud_t *new_pud)
{
return false;
}
#endif
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
static bool move_huge_pud(struct pagetable_move_control *pmc,
pud_t *old_pud, pud_t *new_pud)
{
spinlock_t *old_ptl, *new_ptl;
struct vm_area_struct *vma = pmc->old;
struct mm_struct *mm = vma->vm_mm;
pud_t pud;
/*
* The destination pud shouldn't be established, free_pgtables()
* should have released it.
*/
if (WARN_ON_ONCE(!pud_none(*new_pud)))
return false;
/*
* We don't have to worry about the ordering of src and dst
* ptlocks because exclusive mmap_lock prevents deadlock.
*/
old_ptl = pud_lock(mm, old_pud);
new_ptl = pud_lockptr(mm, new_pud);
if (new_ptl != old_ptl)
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
/* Clear the pud */
pud = *old_pud;
pud_clear(old_pud);
VM_BUG_ON(!pud_none(*new_pud));
/* Set the new pud */
/* mark soft_ditry when we add pud level soft dirty support */
set_pud_at(mm, pmc->new_addr, new_pud, pud);
flush_pud_tlb_range(vma, pmc->old_addr, pmc->old_addr + HPAGE_PUD_SIZE);
if (new_ptl != old_ptl)
spin_unlock(new_ptl);
spin_unlock(old_ptl);
return true;
}
#else
static bool move_huge_pud(struct pagetable_move_control *pmc,
pud_t *old_pud, pud_t *new_pud)
{
WARN_ON_ONCE(1);
return false;
}
#endif
enum pgt_entry {
NORMAL_PMD,
HPAGE_PMD,
NORMAL_PUD,
HPAGE_PUD,
};
/*
* Returns an extent of the corresponding size for the pgt_entry specified if
* valid. Else returns a smaller extent bounded by the end of the source and
* destination pgt_entry.
*/
static __always_inline unsigned long get_extent(enum pgt_entry entry,
struct pagetable_move_control *pmc)
{
unsigned long next, extent, mask, size;
unsigned long old_addr = pmc->old_addr;
unsigned long old_end = pmc->old_end;
unsigned long new_addr = pmc->new_addr;
switch (entry) {
case HPAGE_PMD:
case NORMAL_PMD:
mask = PMD_MASK;
size = PMD_SIZE;
break;
case HPAGE_PUD:
case NORMAL_PUD:
mask = PUD_MASK;
size = PUD_SIZE;
break;
default:
BUILD_BUG();
break;
}
next = (old_addr + size) & mask;
/* even if next overflowed, extent below will be ok */
extent = next - old_addr;
if (extent > old_end - old_addr)
extent = old_end - old_addr;
next = (new_addr + size) & mask;
if (extent > next - new_addr)
extent = next - new_addr;
return extent;
}
/*
* Should move_pgt_entry() acquire the rmap locks? This is either expressed in
* the PMC, or overridden in the case of normal, larger page tables.
*/
static bool should_take_rmap_locks(struct pagetable_move_control *pmc,
enum pgt_entry entry)
{
switch (entry) {
case NORMAL_PMD:
case NORMAL_PUD:
return true;
default:
return pmc->need_rmap_locks;
}
}
/*
* Attempts to speedup the move by moving entry at the level corresponding to
* pgt_entry. Returns true if the move was successful, else false.
*/
static bool move_pgt_entry(struct pagetable_move_control *pmc,
enum pgt_entry entry, void *old_entry, void *new_entry)
{
bool moved = false;
bool need_rmap_locks = should_take_rmap_locks(pmc, entry);
/* See comment in move_ptes() */
if (need_rmap_locks)
take_rmap_locks(pmc->old);
switch (entry) {
case NORMAL_PMD:
moved = move_normal_pmd(pmc, old_entry, new_entry);
break;
case NORMAL_PUD:
moved = move_normal_pud(pmc, old_entry, new_entry);
break;
case HPAGE_PMD:
moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
move_huge_pmd(pmc->old, pmc->old_addr, pmc->new_addr, old_entry,
new_entry);
break;
case HPAGE_PUD:
moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
move_huge_pud(pmc, old_entry, new_entry);
break;
default:
WARN_ON_ONCE(1);
break;
}
if (need_rmap_locks)
drop_rmap_locks(pmc->old);
return moved;
}
/*
* A helper to check if aligning down is OK. The aligned address should fall
* on *no mapping*. For the stack moving down, that's a special move within
* the VMA that is created to span the source and destination of the move,
* so we make an exception for it.
*/
static bool can_align_down(struct pagetable_move_control *pmc,
struct vm_area_struct *vma, unsigned long addr_to_align,
unsigned long mask)
{
unsigned long addr_masked = addr_to_align & mask;
/*
* If @addr_to_align of either source or destination is not the beginning
* of the corresponding VMA, we can't align down or we will destroy part
* of the current mapping.
*/
if (!pmc->for_stack && vma->vm_start != addr_to_align)
return false;
/* In the stack case we explicitly permit in-VMA alignment. */
if (pmc->for_stack && addr_masked >= vma->vm_start)
return true;
/*
* Make sure the realignment doesn't cause the address to fall on an
* existing mapping.
*/
return find_vma_intersection(vma->vm_mm, addr_masked, vma->vm_start) == NULL;
}
/*
* Determine if are in fact able to realign for efficiency to a higher page
* table boundary.
*/
static bool can_realign_addr(struct pagetable_move_control *pmc,
unsigned long pagetable_mask)
{
unsigned long align_mask = ~pagetable_mask;
unsigned long old_align = pmc->old_addr & align_mask;
unsigned long new_align = pmc->new_addr & align_mask;
unsigned long pagetable_size = align_mask + 1;
unsigned long old_align_next = pagetable_size - old_align;
/*
* We don't want to have to go hunting for VMAs from the end of the old
* VMA to the next page table boundary, also we want to make sure the
* operation is wortwhile.
*
* So ensure that we only perform this realignment if the end of the
* range being copied reaches or crosses the page table boundary.
*
* boundary boundary
* .<- old_align -> .
* . |----------------.-----------|
* . | vma . |
* . |----------------.-----------|
* . <----------------.----------->
* . len_in
* <------------------------------->
* . pagetable_size .
* . <---------------->
* . old_align_next .
*/
if (pmc->len_in < old_align_next)
return false;
/* Skip if the addresses are already aligned. */
if (old_align == 0)
return false;
/* Only realign if the new and old addresses are mutually aligned. */
if (old_align != new_align)
return false;
/* Ensure realignment doesn't cause overlap with existing mappings. */
if (!can_align_down(pmc, pmc->old, pmc->old_addr, pagetable_mask) ||
!can_align_down(pmc, pmc->new, pmc->new_addr, pagetable_mask))
return false;
return true;
}
/*
* Opportunistically realign to specified boundary for faster copy.
*
* Consider an mremap() of a VMA with page table boundaries as below, and no
* preceding VMAs from the lower page table boundary to the start of the VMA,
* with the end of the range reaching or crossing the page table boundary.
*
* boundary boundary
* . |----------------.-----------|
* . | vma . |
* . |----------------.-----------|
* . pmc->old_addr . pmc->old_end
* . <---------------------------->
* . move these page tables
*
* If we proceed with moving page tables in this scenario, we will have a lot of
* work to do traversing old page tables and establishing new ones in the
* destination across multiple lower level page tables.
*
* The idea here is simply to align pmc->old_addr, pmc->new_addr down to the
* page table boundary, so we can simply copy a single page table entry for the
* aligned portion of the VMA instead:
*
* boundary boundary
* . |----------------.-----------|
* . | vma . |
* . |----------------.-----------|
* pmc->old_addr . pmc->old_end
* <------------------------------------------->
* . move these page tables
*/
static void try_realign_addr(struct pagetable_move_control *pmc,
unsigned long pagetable_mask)
{
if (!can_realign_addr(pmc, pagetable_mask))
return;
/*
* Simply align to page table boundaries. Note that we do NOT update the
* pmc->old_end value, and since the move_page_tables() operation spans
* from [old_addr, old_end) (offsetting new_addr as it is performed),
* this simply changes the start of the copy, not the end.
*/
pmc->old_addr &= pagetable_mask;
pmc->new_addr &= pagetable_mask;
}
/* Is the page table move operation done? */
static bool pmc_done(struct pagetable_move_control *pmc)
{
return pmc->old_addr >= pmc->old_end;
}
/* Advance to the next page table, offset by extent bytes. */
static void pmc_next(struct pagetable_move_control *pmc, unsigned long extent)
{
pmc->old_addr += extent;
pmc->new_addr += extent;
}
/*
* Determine how many bytes in the specified input range have had their page
* tables moved so far.
*/
static unsigned long pmc_progress(struct pagetable_move_control *pmc)
{
unsigned long orig_old_addr = pmc->old_end - pmc->len_in;
unsigned long old_addr = pmc->old_addr;
/*
* Prevent negative return values when {old,new}_addr was realigned but
* we broke out of the loop in move_page_tables() for the first PMD
* itself.
*/
return old_addr < orig_old_addr ? 0 : old_addr - orig_old_addr;
}
unsigned long move_page_tables(struct pagetable_move_control *pmc)
{
unsigned long extent;
struct mmu_notifier_range range;
pmd_t *old_pmd, *new_pmd;
pud_t *old_pud, *new_pud;
struct mm_struct *mm = pmc->old->vm_mm;
if (!pmc->len_in)
return 0;
if (is_vm_hugetlb_page(pmc->old))
return move_hugetlb_page_tables(pmc->old, pmc->new, pmc->old_addr,
pmc->new_addr, pmc->len_in);
/*
* If possible, realign addresses to PMD boundary for faster copy.
* Only realign if the mremap copying hits a PMD boundary.
*/
try_realign_addr(pmc, PMD_MASK);
flush_cache_range(pmc->old, pmc->old_addr, pmc->old_end);
mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, mm,
pmc->old_addr, pmc->old_end);
mmu_notifier_invalidate_range_start(&range);
for (; !pmc_done(pmc); pmc_next(pmc, extent)) {
cond_resched();
/*
* If extent is PUD-sized try to speed up the move by moving at the
* PUD level if possible.
*/
extent = get_extent(NORMAL_PUD, pmc);
old_pud = get_old_pud(mm, pmc->old_addr);
if (!old_pud)
continue;
new_pud = alloc_new_pud(mm, pmc->new_addr);
if (!new_pud)
break;
if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
if (extent == HPAGE_PUD_SIZE) {
move_pgt_entry(pmc, HPAGE_PUD, old_pud, new_pud);
/* We ignore and continue on error? */
continue;
}
} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
if (move_pgt_entry(pmc, NORMAL_PUD, old_pud, new_pud))
continue;
}
extent = get_extent(NORMAL_PMD, pmc);
old_pmd = get_old_pmd(mm, pmc->old_addr);
if (!old_pmd)
continue;
new_pmd = alloc_new_pmd(mm, pmc->new_addr);
if (!new_pmd)
break;
again:
if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
pmd_devmap(*old_pmd)) {
if (extent == HPAGE_PMD_SIZE &&
move_pgt_entry(pmc, HPAGE_PMD, old_pmd, new_pmd))
continue;
split_huge_pmd(pmc->old, old_pmd, pmc->old_addr);
} else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
extent == PMD_SIZE) {
/*
* If the extent is PMD-sized, try to speed the move by
* moving at the PMD level if possible.
*/
if (move_pgt_entry(pmc, NORMAL_PMD, old_pmd, new_pmd))
continue;
}
if (pmd_none(*old_pmd))
continue;
if (pte_alloc(pmc->new->vm_mm, new_pmd))
break;
if (move_ptes(pmc, extent, old_pmd, new_pmd) < 0)
goto again;
}
mmu_notifier_invalidate_range_end(&range);
return pmc_progress(pmc);
}
/* Set vrm->delta to the difference in VMA size specified by user. */
static void vrm_set_delta(struct vma_remap_struct *vrm)
{
vrm->delta = abs_diff(vrm->old_len, vrm->new_len);
}
/* Determine what kind of remap this is - shrink, expand or no resize at all. */
static enum mremap_type vrm_remap_type(struct vma_remap_struct *vrm)
{
if (vrm->delta == 0)
return MREMAP_NO_RESIZE;
if (vrm->old_len > vrm->new_len)
return MREMAP_SHRINK;
return MREMAP_EXPAND;
}
/*
* When moving a VMA to vrm->new_adr, does this result in the new and old VMAs
* overlapping?
*/
static bool vrm_overlaps(struct vma_remap_struct *vrm)
{
unsigned long start_old = vrm->addr;
unsigned long start_new = vrm->new_addr;
unsigned long end_old = vrm->addr + vrm->old_len;
unsigned long end_new = vrm->new_addr + vrm->new_len;
/*
* start_old end_old
* |-----------|
* | |
* |-----------|
* |-------------|
* | |
* |-------------|
* start_new end_new
*/
if (end_old > start_new && end_new > start_old)
return true;
return false;
}
/* Do the mremap() flags require that the new_addr parameter be specified? */
static bool vrm_implies_new_addr(struct vma_remap_struct *vrm)
{
return vrm->flags & (MREMAP_FIXED | MREMAP_DONTUNMAP);
}
/*
* Find an unmapped area for the requested vrm->new_addr.
*
* If MREMAP_FIXED then this is equivalent to a MAP_FIXED mmap() call. If only
* MREMAP_DONTUNMAP is set, then this is equivalent to providing a hint to
* mmap(), otherwise this is equivalent to mmap() specifying a NULL address.
*
* Returns 0 on success (with vrm->new_addr updated), or an error code upon
* failure.
*/
static unsigned long vrm_set_new_addr(struct vma_remap_struct *vrm)
{
struct vm_area_struct *vma = vrm->vma;
unsigned long map_flags = 0;
/* Page Offset _into_ the VMA. */
pgoff_t internal_pgoff = (vrm->addr - vma->vm_start) >> PAGE_SHIFT;
pgoff_t pgoff = vma->vm_pgoff + internal_pgoff;
unsigned long new_addr = vrm_implies_new_addr(vrm) ? vrm->new_addr : 0;
unsigned long res;
if (vrm->flags & MREMAP_FIXED)
map_flags |= MAP_FIXED;
if (vma->vm_flags & VM_MAYSHARE)
map_flags |= MAP_SHARED;
res = get_unmapped_area(vma->vm_file, new_addr, vrm->new_len, pgoff,
map_flags);
if (IS_ERR_VALUE(res))
return res;
vrm->new_addr = res;
return 0;
}
/*
* Keep track of pages which have been added to the memory mapping. If the VMA
* is accounted, also check to see if there is sufficient memory.
*
* Returns true on success, false if insufficient memory to charge.
*/
static bool vrm_charge(struct vma_remap_struct *vrm)
{
unsigned long charged;
if (!(vrm->vma->vm_flags & VM_ACCOUNT))
return true;
/*
* If we don't unmap the old mapping, then we account the entirety of
* the length of the new one. Otherwise it's just the delta in size.
*/
if (vrm->flags & MREMAP_DONTUNMAP)
charged = vrm->new_len >> PAGE_SHIFT;
else
charged = vrm->delta >> PAGE_SHIFT;
/* This accounts 'charged' pages of memory. */
if (security_vm_enough_memory_mm(current->mm, charged))
return false;
vrm->charged = charged;
return true;
}
/*
* an error has occurred so we will not be using vrm->charged memory. Unaccount
* this memory if the VMA is accounted.
*/
static void vrm_uncharge(struct vma_remap_struct *vrm)
{
if (!(vrm->vma->vm_flags & VM_ACCOUNT))
return;
vm_unacct_memory(vrm->charged);
vrm->charged = 0;
}
/*
* Update mm exec_vm, stack_vm, data_vm, and locked_vm fields as needed to
* account for 'bytes' memory used, and if locked, indicate this in the VRM so
* we can handle this correctly later.
*/
static void vrm_stat_account(struct vma_remap_struct *vrm,
unsigned long bytes)
{
unsigned long pages = bytes >> PAGE_SHIFT;
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = vrm->vma;
vm_stat_account(mm, vma->vm_flags, pages);
if (vma->vm_flags & VM_LOCKED) {
mm->locked_vm += pages;
vrm->mlocked = true;
}
}
/*
* Perform checks before attempting to write a VMA prior to it being
* moved.
*/
static unsigned long prep_move_vma(struct vma_remap_struct *vrm)
{
unsigned long err = 0;
struct vm_area_struct *vma = vrm->vma;
unsigned long old_addr = vrm->addr;
unsigned long old_len = vrm->old_len;
unsigned long dummy = vma->vm_flags;
/*
* We'd prefer to avoid failure later on in do_munmap:
* which may split one vma into three before unmapping.
*/
if (current->mm->map_count >= sysctl_max_map_count - 3)
return -ENOMEM;
if (vma->vm_ops && vma->vm_ops->may_split) {
if (vma->vm_start != old_addr)
err = vma->vm_ops->may_split(vma, old_addr);
if (!err && vma->vm_end != old_addr + old_len)
err = vma->vm_ops->may_split(vma, old_addr + old_len);
if (err)
return err;
}
/*
* Advise KSM to break any KSM pages in the area to be moved:
* it would be confusing if they were to turn up at the new
* location, where they happen to coincide with different KSM
* pages recently unmapped. But leave vma->vm_flags as it was,
* so KSM can come around to merge on vma and new_vma afterwards.
*/
err = ksm_madvise(vma, old_addr, old_addr + old_len,
MADV_UNMERGEABLE, &dummy);
if (err)
return err;
return 0;
}
/*
* Unmap source VMA for VMA move, turning it from a copy to a move, being
* careful to ensure we do not underflow memory account while doing so if an
* accountable move.
*
* This is best effort, if we fail to unmap then we simply try to correct
* accounting and exit.
*/
static void unmap_source_vma(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
unsigned long addr = vrm->addr;
unsigned long len = vrm->old_len;
struct vm_area_struct *vma = vrm->vma;
VMA_ITERATOR(vmi, mm, addr);
int err;
unsigned long vm_start;
unsigned long vm_end;
/*
* It might seem odd that we check for MREMAP_DONTUNMAP here, given this
* function implies that we unmap the original VMA, which seems
* contradictory.
*
* However, this occurs when this operation was attempted and an error
* arose, in which case we _do_ wish to unmap the _new_ VMA, which means
* we actually _do_ want it be unaccounted.
*/
bool accountable_move = (vma->vm_flags & VM_ACCOUNT) &&
!(vrm->flags & MREMAP_DONTUNMAP);
/*
* So we perform a trick here to prevent incorrect accounting. Any merge
* or new VMA allocation performed in copy_vma() does not adjust
* accounting, it is expected that callers handle this.
*
* And indeed we already have, accounting appropriately in the case of
* both in vrm_charge().
*
* However, when we unmap the existing VMA (to effect the move), this
* code will, if the VMA has VM_ACCOUNT set, attempt to unaccount
* removed pages.
*
* To avoid this we temporarily clear this flag, reinstating on any
* portions of the original VMA that remain.
*/
if (accountable_move) {
vm_flags_clear(vma, VM_ACCOUNT);
/* We are about to split vma, so store the start/end. */
vm_start = vma->vm_start;
vm_end = vma->vm_end;
}
err = do_vmi_munmap(&vmi, mm, addr, len, vrm->uf_unmap, /* unlock= */false);
vrm->vma = NULL; /* Invalidated. */
if (err) {
/* OOM: unable to split vma, just get accounts right */
vm_acct_memory(len >> PAGE_SHIFT);
return;
}
/*
* If we mremap() from a VMA like this:
*
* addr end
* | |
* v v
* |-------------|
* | |
* |-------------|
*
* Having cleared VM_ACCOUNT from the whole VMA, after we unmap above
* we'll end up with:
*
* addr end
* | |
* v v
* |---| |---|
* | A | | B |
* |---| |---|
*
* The VMI is still pointing at addr, so vma_prev() will give us A, and
* a subsequent or lone vma_next() will give as B.
*
* do_vmi_munmap() will have restored the VMI back to addr.
*/
if (accountable_move) {
unsigned long end = addr + len;
if (vm_start < addr) {
struct vm_area_struct *prev = vma_prev(&vmi);
vm_flags_set(prev, VM_ACCOUNT); /* Acquires VMA lock. */
}
if (vm_end > end) {
struct vm_area_struct *next = vma_next(&vmi);
vm_flags_set(next, VM_ACCOUNT); /* Acquires VMA lock. */
}
}
}
/*
* Copy vrm->vma over to vrm->new_addr possibly adjusting size as part of the
* process. Additionally handle an error occurring on moving of page tables,
* where we reset vrm state to cause unmapping of the new VMA.
*
* Outputs the newly installed VMA to new_vma_ptr. Returns 0 on success or an
* error code.
*/
static int copy_vma_and_data(struct vma_remap_struct *vrm,
struct vm_area_struct **new_vma_ptr)
{
unsigned long internal_offset = vrm->addr - vrm->vma->vm_start;
unsigned long internal_pgoff = internal_offset >> PAGE_SHIFT;
unsigned long new_pgoff = vrm->vma->vm_pgoff + internal_pgoff;
unsigned long moved_len;
struct vm_area_struct *vma = vrm->vma;
struct vm_area_struct *new_vma;
int err = 0;
PAGETABLE_MOVE(pmc, NULL, NULL, vrm->addr, vrm->new_addr, vrm->old_len);
new_vma = copy_vma(&vma, vrm->new_addr, vrm->new_len, new_pgoff,
&pmc.need_rmap_locks);
if (!new_vma) {
vrm_uncharge(vrm);
*new_vma_ptr = NULL;
return -ENOMEM;
}
vrm->vma = vma;
pmc.old = vma;
pmc.new = new_vma;
moved_len = move_page_tables(&pmc);
if (moved_len < vrm->old_len)
err = -ENOMEM;
else if (vma->vm_ops && vma->vm_ops->mremap)
err = vma->vm_ops->mremap(new_vma);
if (unlikely(err)) {
PAGETABLE_MOVE(pmc_revert, new_vma, vma, vrm->new_addr,
vrm->addr, moved_len);
/*
* On error, move entries back from new area to old,
* which will succeed since page tables still there,
* and then proceed to unmap new area instead of old.
*/
pmc_revert.need_rmap_locks = true;
move_page_tables(&pmc_revert);
vrm->vma = new_vma;
vrm->old_len = vrm->new_len;
vrm->addr = vrm->new_addr;
} else {
mremap_userfaultfd_prep(new_vma, vrm->uf);
}
if (is_vm_hugetlb_page(vma))
clear_vma_resv_huge_pages(vma);
/* Tell pfnmap has moved from this vma */
if (unlikely(vma->vm_flags & VM_PFNMAP))
untrack_pfn_clear(vma);
*new_vma_ptr = new_vma;
return err;
}
/*
* Perform final tasks for MADV_DONTUNMAP operation, clearing mlock() and
* account flags on remaining VMA by convention (it cannot be mlock()'d any
* longer, as pages in range are no longer mapped), and removing anon_vma_chain
* links from it (if the entire VMA was copied over).
*/
static void dontunmap_complete(struct vma_remap_struct *vrm,
struct vm_area_struct *new_vma)
{
unsigned long start = vrm->addr;
unsigned long end = vrm->addr + vrm->old_len;
unsigned long old_start = vrm->vma->vm_start;
unsigned long old_end = vrm->vma->vm_end;
/*
* We always clear VM_LOCKED[ONFAULT] | VM_ACCOUNT on the old
* vma.
*/
vm_flags_clear(vrm->vma, VM_LOCKED_MASK | VM_ACCOUNT);
/*
* anon_vma links of the old vma is no longer needed after its page
* table has been moved.
*/
if (new_vma != vrm->vma && start == old_start && end == old_end)
unlink_anon_vmas(vrm->vma);
/* Because we won't unmap we don't need to touch locked_vm. */
}
static unsigned long move_vma(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *new_vma;
unsigned long hiwater_vm;
int err;
err = prep_move_vma(vrm);
if (err)
return err;
/* If accounted, charge the number of bytes the operation will use. */
if (!vrm_charge(vrm))
return -ENOMEM;
/* We don't want racing faults. */
vma_start_write(vrm->vma);
/* Perform copy step. */
err = copy_vma_and_data(vrm, &new_vma);
/*
* If we established the copied-to VMA, we attempt to recover from the
* error by setting the destination VMA to the source VMA and unmapping
* it below.
*/
if (err && !new_vma)
return err;
/*
* If we failed to move page tables we still do total_vm increment
* since do_munmap() will decrement it by old_len == new_len.
*
* Since total_vm is about to be raised artificially high for a
* moment, we need to restore high watermark afterwards: if stats
* are taken meanwhile, total_vm and hiwater_vm appear too high.
* If this were a serious issue, we'd add a flag to do_munmap().
*/
hiwater_vm = mm->hiwater_vm;
vrm_stat_account(vrm, vrm->new_len);
if (unlikely(!err && (vrm->flags & MREMAP_DONTUNMAP)))
dontunmap_complete(vrm, new_vma);
else
unmap_source_vma(vrm);
mm->hiwater_vm = hiwater_vm;
return err ? (unsigned long)err : vrm->new_addr;
}
/*
* resize_is_valid() - Ensure the vma can be resized to the new length at the give
* address.
*
* Return 0 on success, error otherwise.
*/
static int resize_is_valid(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = vrm->vma;
unsigned long addr = vrm->addr;
unsigned long old_len = vrm->old_len;
unsigned long new_len = vrm->new_len;
unsigned long pgoff;
/*
* !old_len is a special case where an attempt is made to 'duplicate'
* a mapping. This makes no sense for private mappings as it will
* instead create a fresh/new mapping unrelated to the original. This
* is contrary to the basic idea of mremap which creates new mappings
* based on the original. There are no known use cases for this
* behavior. As a result, fail such attempts.
*/
if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n",
current->comm, current->pid);
return -EINVAL;
}
if ((vrm->flags & MREMAP_DONTUNMAP) &&
(vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
return -EINVAL;
/* We can't remap across vm area boundaries */
if (old_len > vma->vm_end - addr)
return -EFAULT;
if (new_len == old_len)
return 0;
/* Need to be careful about a growing mapping */
pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
pgoff += vma->vm_pgoff;
if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
return -EINVAL;
if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
return -EFAULT;
if (!mlock_future_ok(mm, vma->vm_flags, vrm->delta))
return -EAGAIN;
if (!may_expand_vm(mm, vma->vm_flags, vrm->delta >> PAGE_SHIFT))
return -ENOMEM;
return 0;
}
/*
* The user has requested that the VMA be shrunk (i.e., old_len > new_len), so
* execute this, optionally dropping the mmap lock when we do so.
*
* In both cases this invalidates the VMA, however if we don't drop the lock,
* then load the correct VMA into vrm->vma afterwards.
*/
static unsigned long shrink_vma(struct vma_remap_struct *vrm,
bool drop_lock)
{
struct mm_struct *mm = current->mm;
unsigned long unmap_start = vrm->addr + vrm->new_len;
unsigned long unmap_bytes = vrm->delta;
unsigned long res;
VMA_ITERATOR(vmi, mm, unmap_start);
VM_BUG_ON(vrm->remap_type != MREMAP_SHRINK);
res = do_vmi_munmap(&vmi, mm, unmap_start, unmap_bytes,
vrm->uf_unmap, drop_lock);
vrm->vma = NULL; /* Invalidated. */
if (res)
return res;
/*
* If we've not dropped the lock, then we should reload the VMA to
* replace the invalidated VMA with the one that may have now been
* split.
*/
if (drop_lock) {
vrm->mmap_locked = false;
} else {
vrm->vma = vma_lookup(mm, vrm->addr);
if (!vrm->vma)
return -EFAULT;
}
return 0;
}
/*
* mremap_to() - remap a vma to a new location.
* Returns: The new address of the vma or an error.
*/
static unsigned long mremap_to(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
unsigned long err;
/* Is the new length or address silly? */
if (vrm->new_len > TASK_SIZE ||
vrm->new_addr > TASK_SIZE - vrm->new_len)
return -EINVAL;
if (vrm_overlaps(vrm))
return -EINVAL;
if (vrm->flags & MREMAP_FIXED) {
/*
* In mremap_to().
* VMA is moved to dst address, and munmap dst first.
* do_munmap will check if dst is sealed.
*/
err = do_munmap(mm, vrm->new_addr, vrm->new_len,
vrm->uf_unmap_early);
vrm->vma = NULL; /* Invalidated. */
if (err)
return err;
/*
* If we remap a portion of a VMA elsewhere in the same VMA,
* this can invalidate the old VMA. Reset.
*/
vrm->vma = vma_lookup(mm, vrm->addr);
if (!vrm->vma)
return -EFAULT;
}
if (vrm->remap_type == MREMAP_SHRINK) {
err = shrink_vma(vrm, /* drop_lock= */false);
if (err)
return err;
/* Set up for the move now shrink has been executed. */
vrm->old_len = vrm->new_len;
}
err = resize_is_valid(vrm);
if (err)
return err;
/* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
if (vrm->flags & MREMAP_DONTUNMAP) {
vm_flags_t vm_flags = vrm->vma->vm_flags;
unsigned long pages = vrm->old_len >> PAGE_SHIFT;
if (!may_expand_vm(mm, vm_flags, pages))
return -ENOMEM;
}
err = vrm_set_new_addr(vrm);
if (err)
return err;
return move_vma(vrm);
}
static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
{
unsigned long end = vma->vm_end + delta;
if (end < vma->vm_end) /* overflow */
return 0;
if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
return 0;
if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
0, MAP_FIXED) & ~PAGE_MASK)
return 0;
return 1;
}
/* Determine whether we are actually able to execute an in-place expansion. */
static bool vrm_can_expand_in_place(struct vma_remap_struct *vrm)
{
/* Number of bytes from vrm->addr to end of VMA. */
unsigned long suffix_bytes = vrm->vma->vm_end - vrm->addr;
/* If end of range aligns to end of VMA, we can just expand in-place. */
if (suffix_bytes != vrm->old_len)
return false;
/* Check whether this is feasible. */
if (!vma_expandable(vrm->vma, vrm->delta))
return false;
return true;
}
/*
* Are the parameters passed to mremap() valid? If so return 0, otherwise return
* error.
*/
static unsigned long check_mremap_params(struct vma_remap_struct *vrm)
{
unsigned long addr = vrm->addr;
unsigned long flags = vrm->flags;
/* Ensure no unexpected flag values. */
if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
return -EINVAL;
/* Start address must be page-aligned. */
if (offset_in_page(addr))
return -EINVAL;
/*
* We allow a zero old-len as a special case
* for DOS-emu "duplicate shm area" thing. But
* a zero new-len is nonsensical.
*/
if (!PAGE_ALIGN(vrm->new_len))
return -EINVAL;
/* Remainder of checks are for cases with specific new_addr. */
if (!vrm_implies_new_addr(vrm))
return 0;
/* The new address must be page-aligned. */
if (offset_in_page(vrm->new_addr))
return -EINVAL;
/* A fixed address implies a move. */
if (!(flags & MREMAP_MAYMOVE))
return -EINVAL;
/* MREMAP_DONTUNMAP does not allow resizing in the process. */
if (flags & MREMAP_DONTUNMAP && vrm->old_len != vrm->new_len)
return -EINVAL;
/*
* move_vma() need us to stay 4 maps below the threshold, otherwise
* it will bail out at the very beginning.
* That is a problem if we have already unmaped the regions here
* (new_addr, and old_addr), because userspace will not know the
* state of the vma's after it gets -ENOMEM.
* So, to avoid such scenario we can pre-compute if the whole
* operation has high chances to success map-wise.
* Worst-scenario case is when both vma's (new_addr and old_addr) get
* split in 3 before unmapping it.
* That means 2 more maps (1 for each) to the ones we already hold.
* Check whether current map count plus 2 still leads us to 4 maps below
* the threshold, otherwise return -ENOMEM here to be more safe.
*/
if ((current->mm->map_count + 2) >= sysctl_max_map_count - 3)
return -ENOMEM;
return 0;
}
/*
* We know we can expand the VMA in-place by delta pages, so do so.
*
* If we discover the VMA is locked, update mm_struct statistics accordingly and
* indicate so to the caller.
*/
static unsigned long expand_vma_in_place(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = vrm->vma;
VMA_ITERATOR(vmi, mm, vma->vm_end);
if (!vrm_charge(vrm))
return -ENOMEM;
/*
* Function vma_merge_extend() is called on the
* extension we are adding to the already existing vma,
* vma_merge_extend() will merge this extension with the
* already existing vma (expand operation itself) and
* possibly also with the next vma if it becomes
* adjacent to the expanded vma and otherwise
* compatible.
*/
vma = vma_merge_extend(&vmi, vma, vrm->delta);
if (!vma) {
vrm_uncharge(vrm);
return -ENOMEM;
}
vrm->vma = vma;
vrm_stat_account(vrm, vrm->delta);
return 0;
}
static bool align_hugetlb(struct vma_remap_struct *vrm)
{
struct hstate *h __maybe_unused = hstate_vma(vrm->vma);
vrm->old_len = ALIGN(vrm->old_len, huge_page_size(h));
vrm->new_len = ALIGN(vrm->new_len, huge_page_size(h));
/* addrs must be huge page aligned */
if (vrm->addr & ~huge_page_mask(h))
return false;
if (vrm->new_addr & ~huge_page_mask(h))
return false;
/*
* Don't allow remap expansion, because the underlying hugetlb
* reservation is not yet capable to handle split reservation.
*/
if (vrm->new_len > vrm->old_len)
return false;
vrm_set_delta(vrm);
return true;
}
/*
* We are mremap()'ing without specifying a fixed address to move to, but are
* requesting that the VMA's size be increased.
*
* Try to do so in-place, if this fails, then move the VMA to a new location to
* action the change.
*/
static unsigned long expand_vma(struct vma_remap_struct *vrm)
{
unsigned long err;
unsigned long addr = vrm->addr;
err = resize_is_valid(vrm);
if (err)
return err;
/*
* [addr, old_len) spans precisely to the end of the VMA, so try to
* expand it in-place.
*/
if (vrm_can_expand_in_place(vrm)) {
err = expand_vma_in_place(vrm);
if (err)
return err;
/*
* We want to populate the newly expanded portion of the VMA to
* satisfy the expectation that mlock()'ing a VMA maintains all
* of its pages in memory.
*/
if (vrm->mlocked)
vrm->new_addr = addr;
/* OK we're done! */
return addr;
}
/*
* We weren't able to just expand or shrink the area,
* we need to create a new one and move it.
*/
/* We're not allowed to move the VMA, so error out. */
if (!(vrm->flags & MREMAP_MAYMOVE))
return -ENOMEM;
/* Find a new location to move the VMA to. */
err = vrm_set_new_addr(vrm);
if (err)
return err;
return move_vma(vrm);
}
/*
* Attempt to resize the VMA in-place, if we cannot, then move the VMA to the
* first available address to perform the operation.
*/
static unsigned long mremap_at(struct vma_remap_struct *vrm)
{
unsigned long res;
switch (vrm->remap_type) {
case MREMAP_INVALID:
break;
case MREMAP_NO_RESIZE:
/* NO-OP CASE - resizing to the same size. */
return vrm->addr;
case MREMAP_SHRINK:
/*
* SHRINK CASE. Can always be done in-place.
*
* Simply unmap the shrunken portion of the VMA. This does all
* the needed commit accounting, and we indicate that the mmap
* lock should be dropped.
*/
res = shrink_vma(vrm, /* drop_lock= */true);
if (res)
return res;
return vrm->addr;
case MREMAP_EXPAND:
return expand_vma(vrm);
}
BUG();
}
static unsigned long do_mremap(struct vma_remap_struct *vrm)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long ret;
ret = check_mremap_params(vrm);
if (ret)
return ret;
vrm->old_len = PAGE_ALIGN(vrm->old_len);
vrm->new_len = PAGE_ALIGN(vrm->new_len);
vrm_set_delta(vrm);
if (mmap_write_lock_killable(mm))
return -EINTR;
vrm->mmap_locked = true;
vma = vrm->vma = vma_lookup(mm, vrm->addr);
if (!vma) {
ret = -EFAULT;
goto out;
}
/* If mseal()'d, mremap() is prohibited. */
if (!can_modify_vma(vma)) {
ret = -EPERM;
goto out;
}
/* Align to hugetlb page size, if required. */
if (is_vm_hugetlb_page(vma) && !align_hugetlb(vrm)) {
ret = -EINVAL;
goto out;
}
vrm->remap_type = vrm_remap_type(vrm);
/* Actually execute mremap. */
ret = vrm_implies_new_addr(vrm) ? mremap_to(vrm) : mremap_at(vrm);
out:
if (vrm->mmap_locked) {
mmap_write_unlock(mm);
vrm->mmap_locked = false;
if (!offset_in_page(ret) && vrm->mlocked && vrm->new_len > vrm->old_len)
mm_populate(vrm->new_addr + vrm->old_len, vrm->delta);
}
userfaultfd_unmap_complete(mm, vrm->uf_unmap_early);
mremap_userfaultfd_complete(vrm->uf, vrm->addr, ret, vrm->old_len);
userfaultfd_unmap_complete(mm, vrm->uf_unmap);
return ret;
}
/*
* Expand (or shrink) an existing mapping, potentially moving it at the
* same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
*
* MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
* This option implies MREMAP_MAYMOVE.
*/
SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
unsigned long, new_len, unsigned long, flags,
unsigned long, new_addr)
{
struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
LIST_HEAD(uf_unmap_early);
LIST_HEAD(uf_unmap);
/*
* There is a deliberate asymmetry here: we strip the pointer tag
* from the old address but leave the new address alone. This is
* for consistency with mmap(), where we prevent the creation of
* aliasing mappings in userspace by leaving the tag bits of the
* mapping address intact. A non-zero tag will cause the subsequent
* range checks to reject the address as invalid.
*
* See Documentation/arch/arm64/tagged-address-abi.rst for more
* information.
*/
struct vma_remap_struct vrm = {
.addr = untagged_addr(addr),
.old_len = old_len,
.new_len = new_len,
.flags = flags,
.new_addr = new_addr,
.uf = &uf,
.uf_unmap_early = &uf_unmap_early,
.uf_unmap = &uf_unmap,
.remap_type = MREMAP_INVALID, /* We set later. */
};
return do_mremap(&vrm);
}
|