diff options
author | Gregory Price <gourry@gourry.net> | 2025-05-12 12:21:21 -0400 |
---|---|---|
committer | Dave Jiang <dave.jiang@intel.com> | 2025-05-13 13:07:44 -0700 |
commit | e4528b9ef0b6e7df1e8eaede2a7f45566fb7970b (patch) | |
tree | 83e084efdd9fd93d8d7701fcf19e23b0c0ebf43c /Documentation/driver-api | |
parent | 750d662c555227b14e8e3b11384e925265174af7 (diff) |
cxl: docs/platform/bios-and-efi documentation
Add some docs on CXL configurations done in bios/efi that affect
linux configuration - information vendors may care to consider.
Signed-off-by: Gregory Price <gourry@gourry.net>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Link: https://patch.msgid.link/20250512162134.3596150-5-gourry@gourry.net
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Diffstat (limited to 'Documentation/driver-api')
-rw-r--r-- | Documentation/driver-api/cxl/index.rst | 6 | ||||
-rw-r--r-- | Documentation/driver-api/cxl/platform/bios-and-efi.rst | 262 |
2 files changed, 268 insertions, 0 deletions
diff --git a/Documentation/driver-api/cxl/index.rst b/Documentation/driver-api/cxl/index.rst index a2d1c5b18a8a..ffa0462ad950 100644 --- a/Documentation/driver-api/cxl/index.rst +++ b/Documentation/driver-api/cxl/index.rst @@ -22,6 +22,12 @@ that have impacts on each other. The docs here break up configurations steps. devices/device-types .. toctree:: + :maxdepth: 2 + :caption: Platform Configuration + + platform/bios-and-efi + +.. toctree:: :maxdepth: 1 :caption: Linux Kernel Configuration diff --git a/Documentation/driver-api/cxl/platform/bios-and-efi.rst b/Documentation/driver-api/cxl/platform/bios-and-efi.rst new file mode 100644 index 000000000000..552a83992bcc --- /dev/null +++ b/Documentation/driver-api/cxl/platform/bios-and-efi.rst @@ -0,0 +1,262 @@ +.. SPDX-License-Identifier: GPL-2.0 + +====================== +BIOS/EFI Configuration +====================== + +BIOS and EFI are largely responsible for configuring static information about +devices (or potential future devices) such that Linux can build the appropriate +logical representations of these devices. + +At a high level, this is what occurs during this phase of configuration. + +* The bootloader starts the BIOS/EFI. + +* BIOS/EFI do early device probe to determine static configuration + +* BIOS/EFI creates ACPI Tables that describe static config for the OS + +* BIOS/EFI create the system memory map (EFI Memory Map, E820, etc) + +* BIOS/EFI calls :code:`start_kernel` and begins the Linux Early Boot process. + +Much of what this section is concerned with is ACPI Table production and +static memory map configuration. More detail on these tables can be found +under Platform Configuration -> ACPI Table Reference. + +.. note:: + Platform Vendors should read carefully, as this sections has recommendations + on physical memory region size and alignment, memory holes, HDM interleave, + and what linux expects of HDM decoders trying to work with these features. + +UEFI Settings +============= +If your platform supports it, the :code:`uefisettings` command can be used to +read/write EFI settings. Changes will be reflected on the next reboot. Kexec +is not a sufficient reboot. + +One notable configuration here is the EFI_MEMORY_SP (Specific Purpose) bit. +When this is enabled, this bit tells linux to defer management of a memory +region to a driver (in this case, the CXL driver). Otherwise, the memory is +treated as "normal memory", and is exposed to the page allocator during +:code:`__init`. + +uefisettings examples +--------------------- + +:code:`uefisettings identify` :: + + uefisettings identify + + bios_vendor: xxx + bios_version: xxx + bios_release: xxx + bios_date: xxx + product_name: xxx + product_family: xxx + product_version: xxx + +On some AMD platforms, the :code:`EFI_MEMORY_SP` bit is set via the :code:`CXL +Memory Attribute` field. This may be called something else on your platform. + +:code:`uefisettings get "CXL Memory Attribute"` :: + + selector: xxx + ... + question: Question { + name: "CXL Memory Attribute", + answer: "Enabled", + ... + } + +Physical Memory Map +=================== + +Physical Address Region Alignment +--------------------------------- + +As of Linux v6.14, the hotplug memory system requires memory regions to be +uniform in size and alignment. While the CXL specification allows for memory +regions as small as 256MB, the supported memory block size and alignment for +hotplugged memory is architecture-defined. + +A Linux memory blocks may be as small as 128MB and increase in powers of two. + +* On ARM, the default block size and alignment is either 128MB or 256MB. + +* On x86, the default block size is 256MB, and increases to 2GB as the + capacity of the system increases up to 64GB. + +For best support across versions, platform vendors should place CXL memory at +a 2GB aligned base address, and regions should be 2GB aligned. This also helps +prevent the creating thousands of memory devices (one per block). + +Memory Holes +------------ + +Holes in the memory map are tricky. Consider a 4GB device located at base +address 0x100000000, but with the following memory map :: + + --------------------- + | 0x100000000 | + | CXL | + | 0x1BFFFFFFF | + --------------------- + | 0x1C0000000 | + | MEMORY HOLE | + | 0x1FFFFFFFF | + --------------------- + | 0x200000000 | + | CXL CONT. | + | 0x23FFFFFFF | + --------------------- + +There are two issues to consider: + +* decoder programming, and +* memory block alignment. + +If your architecture requires 2GB uniform size and aligned memory blocks, the +only capacity Linux is capable of mapping (as of v6.14) would be the capacity +from `0x100000000-0x180000000`. The remaining capacity will be stranded, as +they are not of 2GB aligned length. + +Assuming your architecture and memory configuration allows 1GB memory blocks, +this memory map is supported and this should be presented as multiple CFMWS +in the CEDT that describe each side of the memory hole separately - along with +matching decoders. + +Multiple decoders can (and should) be used to manage such a memory hole (see +below), but each chunk of a memory hole should be aligned to a reasonable block +size (larger alignment is always better). If you intend to have memory holes +in the memory map, expect to use one decoder per contiguous chunk of host +physical memory. + +As of v6.14, Linux does provide support for memory hotplug of multiple +physical memory regions separated by a memory hole described by a single +HDM decoder. + + +Decoder Programming +=================== +If BIOS/EFI intends to program the decoders to be statically configured, +there are a few things to consider to avoid major pitfalls that will +prevent Linux compatibility. Some of these recommendations are not +required "per the specification", but Linux makes no guarantees of support +otherwise. + + +Translation Point +----------------- +Per the specification, the only decoders which **TRANSLATE** Host Physical +Address (HPA) to Device Physical Address (DPA) are the **Endpoint Decoders**. +All other decoders in the fabric are intended to route accesses without +translating the addresses. + +This is heavily implied by the specification, see: :: + + CXL Specification 3.1 + 8.2.4.20: CXL HDM Decoder Capability Structure + - Implementation Note: CXL Host Bridge and Upstream Switch Port Decoder Flow + - Implementation Note: Device Decoder Logic + +Given this, Linux makes a strong assumption that decoders between CPU and +endpoint will all be programmed with addresses ranges that are subsets of +their parent decoder. + +Due to some ambiguity in how Architecture, ACPI, PCI, and CXL specifications +"hand off" responsibility between domains, some early adopting platforms +attempted to do translation at the originating memory controller or host +bridge. This configuration requires a platform specific extension to the +driver and is not officially endorsed - despite being supported. + +It is *highly recommended* **NOT** to do this; otherwise, you are on your own +to implement driver support for your platform. + +Interleave and Configuration Flexibility +---------------------------------------- +If providing cross-host-bridge interleave, a CFMWS entry in the CEDT must be +presented with target host-bridges for the interleaved device sets (there may +be multiple behind each host bridge). + +If providing intra-host-bridge interleaving, only 1 CFMWS entry in the CEDT is +required for that host bridge - if it covers the entire capacity of the devices +behind the host bridge. + +If intending to provide users flexibility in programming decoders beyond the +root, you may want to provide multiple CFMWS entries in the CEDT intended for +different purposes. For example, you may want to consider adding: + +1) A CFMWS entry to cover all interleavable host bridges. +2) A CFMWS entry to cover all devices on a single host bridge. +3) A CFMWS entry to cover each device. + +A platform may choose to add all of these, or change the mode based on a BIOS +setting. For each CFMWS entry, Linux expects descriptions of the described +memory regions in the SRAT to determine the number of NUMA nodes it should +reserve during early boot / init. + +As of v6.14, Linux will create a NUMA node for each CEDT CFMWS entry, even if +a matching SRAT entry does not exist; however, this is not guaranteed in the +future and such a configuration should be avoided. + +Memory Holes +------------ +If your platform includes memory holes intersparsed between your CXL memory, it +is recommended to utilize multiple decoders to cover these regions of memory, +rather than try to program the decoders to accept the entire range and expect +Linux to manage the overlap. + +For example, consider the Memory Hole described above :: + + --------------------- + | 0x100000000 | + | CXL | + | 0x1BFFFFFFF | + --------------------- + | 0x1C0000000 | + | MEMORY HOLE | + | 0x1FFFFFFFF | + --------------------- + | 0x200000000 | + | CXL CONT. | + | 0x23FFFFFFF | + --------------------- + +Assuming this is provided by a single device attached directly to a host bridge, +Linux would expect the following decoder programming :: + + ----------------------- ----------------------- + | root-decoder-0 | | root-decoder-1 | + | base: 0x100000000 | | base: 0x200000000 | + | size: 0xC0000000 | | size: 0x40000000 | + ----------------------- ----------------------- + | | + ----------------------- ----------------------- + | HB-decoder-0 | | HB-decoder-1 | + | base: 0x100000000 | | base: 0x200000000 | + | size: 0xC0000000 | | size: 0x40000000 | + ----------------------- ----------------------- + | | + ----------------------- ----------------------- + | ep-decoder-0 | | ep-decoder-1 | + | base: 0x100000000 | | base: 0x200000000 | + | size: 0xC0000000 | | size: 0x40000000 | + ----------------------- ----------------------- + +With a CEDT configuration with two CFMWS describing the above root decoders. + +Linux makes no guarantee of support for strange memory hole situations. + +Multi-Media Devices +------------------- +The CFMWS field of the CEDT has special restriction bits which describe whether +the described memory region allows volatile or persistent memory (or both). If +the platform intends to support either: + +1) A device with multiple medias, or +2) Using a persistent memory device as normal memory + +A platform may wish to create multiple CEDT CFMWS entries to describe the same +memory, with the intent of allowing the end user flexibility in how that memory +is configured. Linux does not presently have strong requirements in this area. |