diff options
author | Mark Brown <broonie@kernel.org> | 2024-04-17 09:12:19 +0900 |
---|---|---|
committer | Mark Brown <broonie@kernel.org> | 2024-04-17 09:12:19 +0900 |
commit | 1f05252a3a95bb898413126d3cd480fed4edab0e (patch) | |
tree | d19f29a1fed2c3168053e5410304f4b0c191f964 /include/linux/timer.h | |
parent | 351007b069287d3f0399e9e83981b33a2050eb54 (diff) | |
parent | 439fbc97502ae16f3e54e05d266d103674cc4f06 (diff) |
Add bridged amplifiers to cs42l43
Merge series from Charles Keepax <ckeepax@opensource.cirrus.com>:
In some cs42l43 systems a couple of cs35l56 amplifiers are attached
to the cs42l43's SPI and I2S. On Windows the cs42l43 is controlled
by a SDCA class driver and these two amplifiers are controlled by
firmware running on the cs42l43. However, under Linux the decision
was made to interact with the cs42l43 directly, affording the user
greater control over the audio system. However, this has resulted
in an issue where these two bridged cs35l56 amplifiers are not
populated in ACPI and must be added manually. There is at least an
SDCA extension unit DT entry we can key off.
The process of adding this is handled using a software node, firstly the
ability to add native chip selects to software nodes must be added.
Secondly, an additional flag for naming the SPI devices is added this
allows the machine driver to key to the correct amplifier. Then finally,
the cs42l43 SPI driver adds the two amplifiers directly onto its SPI
bus.
An additional series will follow soon to add the audio machine driver
parts (in the sof-sdw driver), however that is fairly orthogonal to
this part of the process, getting the actual amplifiers registered.
Diffstat (limited to 'include/linux/timer.h')
-rw-r--r-- | include/linux/timer.h | 12 |
1 files changed, 10 insertions, 2 deletions
diff --git a/include/linux/timer.h b/include/linux/timer.h index 14a633ba61d6..e67ecd1cbc97 100644 --- a/include/linux/timer.h +++ b/include/linux/timer.h @@ -22,7 +22,7 @@ #define __TIMER_LOCKDEP_MAP_INITIALIZER(_kn) #endif -/** +/* * @TIMER_DEFERRABLE: A deferrable timer will work normally when the * system is busy, but will not cause a CPU to come out of idle just * to service it; instead, the timer will be serviced when the CPU @@ -140,7 +140,7 @@ static inline void destroy_timer_on_stack(struct timer_list *timer) { } * or not. Callers must ensure serialization wrt. other operations done * to this timer, eg. interrupt contexts, or other CPUs on SMP. * - * return value: 1 if the timer is pending, 0 if not. + * Returns: 1 if the timer is pending, 0 if not. */ static inline int timer_pending(const struct timer_list * timer) { @@ -175,6 +175,10 @@ extern int timer_shutdown(struct timer_list *timer); * See timer_delete_sync() for detailed explanation. * * Do not use in new code. Use timer_delete_sync() instead. + * + * Returns: + * * %0 - The timer was not pending + * * %1 - The timer was pending and deactivated */ static inline int del_timer_sync(struct timer_list *timer) { @@ -188,6 +192,10 @@ static inline int del_timer_sync(struct timer_list *timer) * See timer_delete() for detailed explanation. * * Do not use in new code. Use timer_delete() instead. + * + * Returns: + * * %0 - The timer was not pending + * * %1 - The timer was pending and deactivated */ static inline int del_timer(struct timer_list *timer) { |